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Current-induced phonon Hall effect
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Since the first experimental observation of the phonon Hall effect (PHE) in 2005, its physical origin and
theoretical explanation have been extensively investigated. While spin-orbit interactions are believed to play
important roles under external magnetic fields, nonmagnetic effects are also possible. Here we propose a
mechanism of PHE which is induced by electric current in a nonequilibrium system through electron-phonon
interactions. The influence of the drift electrons to the phonon degrees of freedom, as a correction to the
Born-Oppenheimer approximation, is represented by an antisymmetric matrix which has the same form as in
a typical phonon Hall model. We demonstrate the idea with a graphenelike hexagonal lattice having a finite
phonon Hall conductivity under a driven electric current.
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I. INTRODUCTION

The Hall effects, which have been widely studied in elec-
tronic systems, are also observed and explained in recent
years in phononic systems. The thermal current could also be
bent by a magnetic field [1] through Raman-type spin-phonon
interactions [2]. As with the integer quantum Hall effect, the
phonon Hall effect can be related to the topological nature
of the phonon bands [2,3]. More generally, parallel to the
Hall effect in electron transport, it was proposed that, as long
as there is a gauge potential playing a similar role as the
vector potential in a magnetic field, there will be PHE [3].
This net vector potential could come from the inner electron
structure of an atomic system itself combined with an external
magnetic field [4], which has been observed in very recent
experiment [5], or other more complicated interactions like
magnon-phonon interactions [6]. All of the present PHEs,
either experimental or theoretical, need external [7,8] or in-
ternal magnetic field to induce the observable phonon Hall
conductivity.

In 2010, Lü et al. [9] applied an electric current to a
molecular junction and found that the current could break
the junction due to a nonconservative force, originated from a
Berry phase. This inspires us to think about what could happen
if we apply an electric current to a lattice system. Having a
current means we have broken the time-reversal symmetry,
which in some sense has the same effect as an applied mag-
netic field. For the Hall conductivity calculation, we follow
the modern method of Qin et al. [3], which takes into account
the so-called energy magnetization contribution, while those
of earlier results of Wang and Zhang based on the Green-Kubo
formula [10–12] did not realize such a correction. We compute
the phonon Hall conductivity and obtain an approximately
linear dependence with the drift velocity.

*E0212212@u.nus.edu

The paper is organized as follows. In Sec. II we introduce
a general theory for the PHE and the principle of our current-
induced PHE. In Sec. III we demonstrate how we construct
our lattice model. In Sec. IV we show our numerical results
and discuss their significance. In Sec. V we draw a brief
conclusion of our work. We also give an Appendix section
which contains some key details.

II. MECHANISM OF PHONON HALL EFFECT

A. Phonon Hall effect under nonzero vector potential

What is the most general form of a Hamiltonian for
phonons that can result in a Hall effect? Let us consider a
very general system described by 2N Hermitian variables y j ,
j = 1, 2, . . . , 2N , for a system of N degrees of freedom. In
column vector notation, we denote this by y, where x com-
ponents come first, then followed by y components for each
degree of freedom. We assume that the Hamiltonian takes a
quadratic form of Ĥ = 1

2 yT Hy, here we assume H is real and
symmetric, and superscript T is the matrix transpose. The op-
erators y j are completely characterized by their commutation
relations [y j, y j′ ] = ih̄Jj j′ . We assume that Jj j′ is a c number.
Since y is Hermitian, we can show that the matrix J is real and
antisymmetric. The Heisenberg equation of motion is simply

dy

dt
= JHy. (1)

Two common choices of y appear in the literature, that of
Zhang et al. use conjugate pairs of displacement coordinates u
and momenta p, while Qin et al. use the displacements u and
velocities v = du/dt = p − Au. Here in this paper we follow
Qin’s convention. Then the matrix J takes the following form:

J =
( 0 I
−I −2A

)
, with y =

(u
v

)
, (2)

here the matrix A is antisymmetric.
The effect of the Berry phase was long known in coupled

electron-nuclear systems [13], but usually this extra term is
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neglected in a Born-Oppenheimer approximation. When this
term is taken back, the Hamiltonian of the nuclei or phonons
in a solid is given by Mead and Truhlar [14]:

Ĥ =
∑

l j

[−ih̄∇l j − A(R)l j]2

2Mj
+ U (R), (3)

where Rl j is the nucleus position vector of atom j with mass
Mj in the unit cell l , and U (R) is the potential on the nuclei.
Here the vector potential A comes from the electron Berry
phases but can also be the effect of other interactions such
as Raman-type spin-phonon interaction, external magnetic
fields [2], or spin-orbit interaction within electronic struc-
ture [3]. Throughout this paper, index j for bold symbol stands
for atom sites, for unbold symbol, j also includes Cartesian
components. In a periodic lattice system with a harmonic ap-
proximation, we can transform the system into the reciprocal
space, and use a combined coordinate and velocity variable
yq so that Ĥ = 1

2

∑
q y†

qH (q)yq. Here q is the wave vector
sampling over the first Brillouin zone. Note that yq is not
a Hermitian operator; it is a vector of smaller dimension
varying over twice the degrees of freedom per unit cell for
each q. Elements of the H (q) matrix are determined by yq.
The commutation relation in q space is [6]

[y jq, y†
j′q′] = ih̄Jj j′ (q)δqq′ . (4)

Next by assuming yq = ψqe−iωt , the corresponding eigen-
system of the equation of motion will be

iJ (q)H (q)ψq ≡ Heffψq = ωψq. (5)

Since the effective Hamiltonian is non-Hermitian, the left
eigenvector is not related by Hermitian conjugate to the right
eigenvector. We can choose the left eigenvector as ψ̄q =
ψ†

q H (q). The normalization condition is then ψ†
q H (q)ψq ≡

ψ̄qψq = 1. This eigenequation is general to any possi-
ble source of the nonzero vector potential. For exam-
ple, we can choose yq = (uq, vq)T where vq = u̇q, u jq =√

Mj/N
∑

l xl je−iq·R0
l with R0

l being the real space lattice vec-
tor, and xl j being the deviation from equilibrium positions of
atom j in cell l . N is the total number of unit cells. We write
uq without the index j as a column vector consisting of the
degrees in a unit cell. Once we have obtained the eigenvalues
and associated eigenvectors of the effective Hamiltonian, we
can calculate its Berry curvature and phonon Hall conductivity
using the formulas given by Qin et al. [3],

�qi = −Im

[
∂ψ̄qi

∂q
× ∂ψqi

∂q

]
(6)

and [15]

κxy = − 1

2T

∫ ∞

−∞
dεε2σxy(ε)

dn(ε)

dε
, (7)

where

σxy(ε) = − 1

V h̄

∑
h̄ωqi�ε

	z
qi, (8)

n(ε) = 1/(eε/(kBT ) − 1) is the Bose function at temperature
T , and kB is the Boltzmann constant. In the above summa-
tion over mode qi, all modes with both positive and negative

FIG. 1. The schematic setup to detect current-induced phonon
Hall effect. Electric current and temperature gradient are needed
which are parallel to each other. A very small magnetic field, which
is about 10−5 T, is to perturb the system and distinguish the direction
of the phonon Hall current.

frequencies are included. Since we are dealing with a two-
dimensional sheet, the volume V is an ill-defined concept. We
use V = L2a, the area times the thickness, choosing a some-
what arbitrarily to match the units of W/(mK) of the usual
three-dimensional thermal conductivity. When estimating the
phonon Hall conductivity κxy, we assume the thickness of
the sample is the same as the bond length a = 1.42 Å of a
graphene lattice.

B. Current-induced nonzero vector potential

Lü et al. [9] theoretically studied the effect of electric cur-
rent on a molecular bridge connecting two metallic electrodes.
They found a new mechanism, which involves Berry phase,
that can lead to a breakdown of the bridge by a “run away”
mode. Their discovery inspired us to ask if we introduce elec-
tric current into a lattice system, e.g., the honeycomb lattice,
is there a phonon Hall effect? The run away mode means the
amplitude of oscillation including those perpendicular to the
molecular bridge will grow in time, therefore if we extend it
to a 2D lattice, this run away mode induced by electric current
may result in a phonon Hall current. Figure 1 provides a
possible setup on a honeycomb lattice for this current-induced
phonon Hall effect.

For convenience, we use the renormalized coordinate ul j ≡√
Mjxl j to denote the nucleus displacement in real space.

Electrons in a metal or a semiconductor carrying electric
current can interact with the lattice phonons through the
electron-phonon interaction (EPI). In the NEGF formalism,
EPI effect is included as a self-energy term in the phonon
retarded Green’s function [16],

D(ω, q) = [
ω2I − K̃q − 
(ω=0) − 
NA

q (ω)
]−1

, (9)

where I is the identity matrix in site space of a unit cell,
and K̃q is the dynamic matrix. 
(ω=0) is the second term
in the equation below. We subtract it off so that the leading
contribution is proportional to the frequency ω in the so-called
nonadiabatic self-energy due to electrons:


NA
q j j′ (ω) = 1

N

∑
mn

∑
k

g∗
mn j (k, q)gmn j′ (k, q)

×
[

fmk+q − fnk

εmk+q − εnk − h̄ω − iη
− fmk+q − fnk

εmk+q − εnk

]
,

(10)
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where f is the Fermi function, g is the converted EPI matrix
falling in electron mode space and phonon reciprocal space, k
and q are wave vectors of electrons and phonons, respectively,
εnk is the electron dispersion relation, the subscripts m and
n indicate the electron bands, and the subscripts j and j′
denote the atomic labels in a unit cell including both atom
sites and Cartesian directions. The summation is over the first
Brillouin zone of the electrons. A small positive η attributes
the electrons with a finite lifetime. The self-energy can be
computed from a first-principle package.

Alternatively, the movement of the ions can also be de-
scribed semiclassically by an equation of motion taking into
account the effect of the electrons. In real space under a
Markov approximation, it takes the form [17]

ü = −Ku − 2Au̇, (11)

where K is the spring constant matrix in real space corre-
sponding to the dynamic matrix K̃q in reciprocal space, and
A can be regarded as the matrix representation of the vector
potential induced by EPI which is antisymmetric. Therefore,
the phonon Green’s function is

D(ω, q) = [ω2I − K̃q + 2iωÃq]−1. (12)

Comparing the two expressions, if we ignore the higher order
terms of ω in 
NA(ω), and note that Ãq is anti-Hermitian [the
anti-Hermitian part of 
NA(ω) is the source of dissipative
Joule heating, which we will ignore], we can conclude that

Ãq = lim
ω→0


NA(ω) + (
NA)†(ω)

−4iω
. (13)

The Markov approximation adopted here is well justified as
the electrons move on a much faster timescale than that of
the nuclear degrees of freedom. In terms of the energy scale,
an electron has typical energy of order eV, while phonon
h̄ω is of the order 100 meV or less. So keeping the leading
ω dependence only on self-energy is a good approximation.
We can trace back to an effective Hamiltonian for phonons
with the electrons taken into account through a nondissipative
term as

Ĥ = 1
2 (p − Au)2 + 1

2 uT Ku, (14)

and the corresponding eigenequation is

ωψq = i

(
0 I

−I −2Ãq

)(
K̃q 0

0 I

)
ψq

=
(

0 iI

−iK̃q −i2Ãq

)
ψq. (15)

Here we choose yq = (uq, vq)T , and vq = pq − Ã(q)uq as
before.

III. MODEL IMPLEMENTATION ON A
GRAPHENELIKE LATTICE

A. Hamiltonians and self-energy

Graphene has been widely studied and it has remarkably
high electron mobility, therefore we choose a graphenelike
lattice to implement our settings. We use a standard spinless

tight-binding model for the electrons:

Ĥe = −t
∑

lδ

[c†
A,l cB,l+δ + c†

B,l cA,l+δ], (16)

where t = 2.8 eV is the hopping parameter. A and B indicate
the two sublattices, l runs over the Bravais lattice sites, and δ

runs over the displacements of the three nearest neighbors of
a given site. Zhang et al. [2] have proposed a simple phonon
model for a graphenelike lattice in which the coupling matrix
is diagonal when the bond orientation is in the x direction
between two atoms,

Kx =
(

KL 0

0 KT

)
, (17)

where KL = 0.144 eV/(uÅ2) is the longitudinal spring con-
stant and KT = KL/4 is the transverse spring constant. Other
orientations can be obtained by rotations. The dynamic matrix
is given by

K̃q =
∑

l ′
Kll ′e

i(R0
l′−R0

l )·q, (18)

where Kll ′ is the submatrix between unit cell l and l ′ in the
full K . In this model we have ignored the z mode and consider
only the in-plane motion. The reason is that the motion in the
direction perpendicular to the plane couples quadratically to
the electron degrees of freedom, and this is a high order effect
to the electron-phonon interaction.

For the electron-phonon interaction, we take a Su-
Schrieffer-Heeger-like model, as used in a previous work by
Jiang and Wang [18],

Ĥepi = J1

∑
lδ

[c†
A,l cB,l+δ + c†

B,l+δ
cA,l ]

× [(uB,l+δ − uA,l ) · êl,δ], (19)

where J1 = −6.0 eV/Å and êl,δ is the direction between two
nearest atoms. The g matrix is given by

gmn j (k, q) =
∑
m′n′

S†
mm′ (k + q)
 j

m′n′ (k, q)Sn′n(k), (20)

where j = {Ax, Ay, Bx, By},

S(k) = 1√
2

(
1 eiφ(k)

−e−iφ(k) 1

)
, (21)

with eiφ(k) = f (k)/| f (k)|, f (k) = e−ikxa + ei(kxa/2+√
3kya/2) +

ei(kxa/2−√
3kya/2), and 


j
m′n′ (k, q) is the reciprocal EPI matrix

corresponding to Ĥepi. The expression is given in Appendix A.
In this work we focus on the EPI for k points near the Dirac

points of the electrons and q near the � point of the phonons,
for we find that they are dominant in determining the final
phonon Hall conductivity. It seems that we have prepared all
the ingredients to calculate Ãq. However, there is a problem
that when we apply an electric current to this graphenelike
two-dimensional surface, assuming the drift velocity v1 of
current is along the x direction, it is in a nonequilibrium state,
therefore we cannot just substitute the Fermi function into
the formula. To solve this problem, we use a single-mode
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relaxation approximation [19] so that

f = f 0 − ∂ f 0

∂ε
� ≈ f 0(ε − �), (22)

where f 0 = [e(ε−μ)/kBT + 1]−1 with μ being the chemical po-
tential of electron, and � ≡ �nk is mode dependent:

�nk = −eEτnk
∂εnk

∂ h̄kx
, (23)

where E is the applied electric field, and τnk is the relaxation
time which is only related to the magnitude of the wave vector.
In practice, since we do not know the relaxation time, we
combine it with the electric field and replace them with the
drift velocity v1, for graphenelike lattice [20]:

�nk = v1 Re
[
z∗ ∂z

∂kx

]
/(h̄v2

F ), (24)

where vF = 3at/(2h̄) is the Fermi velocity, a = 1.42 Å is
the distance between atoms, and z = −t f (k). By requiring
this correction to the Fermi function, the self-energy can be
numerically calculated, and thereafter, the Ãq matrix.

B. The Berry curvature—is it unique?

As we have discussed in the previous section, the choice
of yq is not unique—at least three different choices ex-
ist in the literature. Zhang et al. choose yq = (uq, pq), Qin
et al. choose yq = (uq, vq), and Liu et al. choose yq =
(K̃−1/2

q uq, vq) [2,3,21]. The difference between Zhang’s and
Qin’s choices is like the difference between Lagrangian me-
chanics and Hamiltonian mechanics, therefore they are more
or less equivalent. The special choice of Liu results in a Her-
mitian effective Hamiltonian, which implies immediately the
eigenfrequencies are all real. When the vector potential term
can be separated from the usual potential energy term as in our
case, these three bases are related by similarity transforma-
tions explicitly. However, this kind of variable transformations
is not gauge invariant. Therefore, generally, if Ãq is not a
constant matrix, they will result in different Berry curvatures.
The question then arises as which one should be used to
compute the phonon Hall conductivity? To illustrate and con-
firm that there is indeed a difference, we choose a smooth
Ãq = (� + i|�|) ∗ (b · q + c) matrix, where � is a constant
4 × 4 antisymmetric matrix, |�| takes the absolute value of
each element in �, b is a constant vector parameter, and c
is another constant parameter. In principle, these three bases
should result in different Berry curvatures, but in practice, the
differences are small, especially between Zhang’s and Qin’s
choices, therefore we choose such a highly anisotropic case.
We plot the corresponding Berry curvatures of the three bases
along a high-symmetry path of the graphenelike lattice in
Fig. 2. We see that there are sharp peaks at the � point. How-
ever, the signs of the peaks are opposite for Liu et al. definition
to that of Zhang and Qin et al. Away from the � point, the
values tend to be close among the three. In conclusion, since
only Qin et al. derived the correct formula for the phonon
Hall conductivity with their definition of the Berry curvature,
which considers an energy magnetization contribution to Hall
conductivity [3] while Zhang et al. did not, we prefer to follow

FIG. 2. The Berry curvatures along the high-symmetry path un-
der three different bases [2,3,21]. Although they do not differ so
much from each other, they are indeed different. The parameter set
is chosen to be: b · q = (1000 Å, 1 Å) · q, c = 0.1 rad/ps, and � is a
constant antisymmetric matrix with upper triangular elements, lower
triangular elements, and diagonal elements being 1.0, −1.0, and 0
rad/ps, respectively.

Qin’s definition. It is natural that if we use other choices, we
will obtain different formulas for phonon Hall conductivity.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to have a well-defined topological structure, we
need to perturb our system to open tiny gaps at � and K
points, as the Berry curvature becomes ill-defined when the
bands are degenerate. This goal is achieved by adding a small
on-site potential term to the phonon dynamic matrix and a
nearly zero magnetic field which goes into the Hamiltonian
through Raman-type spin-phonon interaction [2]. The effect
of the magnetic field is described by a constant antisymmetric
matrix Ah:

Ah =
(

Bh 0

0 Bh

)
, Bh =

(
0 h

−h 0

)
, (25)

where h is an effective parameter representing magnetic field
with units rad/ps (1 rad/ps ≈ 33.3 cm−1). Adding this ma-
trix to our previous Ãq will introduce magnetic field into
our system. When we calculate Ãq, a 400 × 400 k grid is
used and the parameter η is set to be about 0.2 eV. We note
that as a function of a constant magnetic field h, the Berry
curvatures and the Chern numbers are odd functions of h and
experience a discontinuity at h = 0, thus ill-defined at h = 0.
Our results presented below thus should be considered as the
limit when h → 0+ and Von-site → 0+. This is physical since
we can always apply a small magnetic field and put the system
on a substrate, thereby acquiring an on-site interaction. There
is one more important thing to note that inside the formula
of Ãq, since we only focus on q points near � point, there
is a hidden δ function behavior when temperature is low.
This δ function originates from the difference of the intraband
Fermi functions in the numerator of Ãq if we take a Taylor
expansion of q near � point at low temperature. To handle this
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FIG. 3. The dispersion relation of positive branches along high-
symmetry path �-M-K-� with v1 = 1.0 × 104 m/s, T = 300 K,
μ = 0.1 eV. A small on-site potential Von-site = 1.0 × 10−3KL and a
nearly 0 magnetic field measured by effective parameter h = 1.0 ×
10−9 rad/ps are employed to perturb the system. The inset shows one
of the anticrossing points. Note that the out-of-plane ZA mode is not
considered here.

δ function numerically, we should compute in a very dense k
grids which requires a lot of computation power. However,
we can also broaden this δ function by tuning the electron
parameter β = 1/kBT . Through computation we find that the
differences of EPI at low temperature range, e.g., below 300 K
or even below 500 K, are very small, therefore, when we
calculate Ãq at low temperature, we can make an approxima-
tion to fix the broadening parameter to be the value at higher
temperature like 300 or 500 K.

Figure 3 shows the positive part of the dispersion relation
of our current-induced system, from which we can see that the
two acoustic branches are very close to the pure phonon sys-
tem without the drift current, while the two optical branches
get modified drastically. This behavior is easy to understand
if we review the EPI form of our model. The strength of
EPI in our model is proportional to the relative displacement
of atoms, therefore the optical modes, in which atoms move
relatively, are equipped with stronger EPI than acoustic ones.
It deserves notice that there are several anticrossing points in
the dispersion relations. These points will possess much larger
Berry curvature, therefore they are dominant in determining
the topological properties of the system. Points in acoustic
branches near � point and anticrossing points near K points
also have large Berry curvatures. However, these pairs of
Berry curvatures should cancel each other for they are similar
to pure phonon system where there are no PHE.

Figure 4(a) demonstrates the relationship between κxy and
the drift velocity v1. κxy is roughly linear dependent on v1

for our picked velocity sequence. When v1 is gradually close
to the Fermi velocity of this graphenelike lattice system, our
theory and approximation on EPI will gradually break down.
The Chern numbers of positive branches are C1 = 1,C2 =
C3 = 0,C4 = −1, where larger indices are associated with
higher frequencies. In our range of the drift velocity, there
is no jump among Chern numbers, which seems kind of
trivial. The discontinuities due to numerical errors for the

FIG. 4. (a) Phonon Hall conductivity κxy versus drift velocity
v1 at a temperature T = 300 K. The broadening parameter is β =
1/(kB × 300 K). (b) Phonon Hall conductivity κxy versus temperature
at v1 = 10 000 m/s. The broadening parameter is set to be β =
1/(kB × 500 K). These two plots share the same set of parameters
of temperature, chemical potential, on-site potential, and nearly 0
magnetic field as Fig. 3.

Chern numbers do not change, which means the dispersion
relation of the system has the same pattern. Figure 4(b) shows
temperature dependence of κxy. When the temperature is very
small, PHE tends to disappear, and in our temperature range,
the absolute value of the phonon Hall conductivity gradually
increases as temperature is increasing, but we cannot conclude
what the exact relationship between κxy and temperature is.
In our calculation, numerical errors mainly come from the
calculation of Ã(q) and cubic interpolation to obtain its values
with denser grids, which is 2000 × 2000.

The order of magnitude of our current-induced κxy is one
order smaller than the case with the magnetic field parameter
h being several rad/ps. It is instructive to compare the mag-
nitude of the Hall conductivity to the universal conductance
quantum which is G0 = T (πkB)2/(3h), when converted into
the same units of conductivity G0/a at 300 K, we find it is
about 2 W/(mK). Our result is about 1/100th of the con-
ductance quantum. Since κxy with our model is only about
one order smaller than a pure magnetic field experimental
results [1], it should be still observable experimentally in
principle.

Figure 5 shows this sign jump of the phonon Hall con-
ductivity. The role small magnetic field played in our system
is to perturb our system at � point to induce circular polar-
ization like the run away mode in the work by Lü et al.,
for the current-induced Ã(q) it is 0 due to the translational
symmetry. Therefore, the magnetic field determines the sign
of the phonon Hall conductivity. Away from � point, current-
induced Ã(q) starts to affect the system so that there is a
discontinuity of κxy. In Sec. II we said we ignore the Joule
heating effect. However, in practice, Joule heating always
exists without special flowing direction. Therefore, it will not
prevent us from observing PHE. We simply prepare a sample
with temperature gradient in a direction, let electric current
flow parallel to this temperature gradient, and apply a small
magnetic field twice with opposite direction, then measure
the temperature differences in the direction transverse to the
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FIG. 5. Phonon Hall conductivity κxy versus magnetic field pa-
rameter h. We can see κxy changes sign as h changes sign and there
is a discontinuity when h crosses 0.

current flow. The Joule heating effect does not change sign
while the Hall effect changes sign. From this we can deduce
the pure Hall contribution.

V. CONCLUSION

In summary, we have proposed a mechanism of PHE in-
duced by the electric current. Compared with other PHEs, no
significant magnetic field is needed in our system. The Chern
numbers of some phonon branches are not 0, but the total
Chern number of all the branches are still 0. The property of
our system is that for a suitable range of the drift velocities,
the phonon Hall conductivity has a linear relation on the drift
velocity, which is proportional to the applied current.
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APPENDIX A: DYNAMIC MATRIX AND EPI
MATRIX ELEMENTS

Starting from a basic coupling matrix between two atoms
in x direction Kx, we can construct a dynamic matrix of our lat-
tice model [2]. In our coordinates, unit cell lattice vectors are
a1 = (3a/2,

√
3a/2) and a2 = (3a/2,−√

3a/2). The explicit
coupling matrices among three nearest pair can be obtained
by a rotation matrix U which are K01 = U (π/3)KxU (−π/3),
K02 = U (−π/3)KxU (π/3), and K03 = U (π )KxU (−π ), re-
spectively. Based on these matrices, we can construct five
coupling matrices between unit cells:

K0 =
(

K01 + K02 + K03 −K03

−K03 K01 + K02 + K03

)
, (A1)

K1 =
(

0 0

−K02 0

)
, K2 =

(
0 0

−K01 0

)
, (A2)

K3 =
(

0 −K02

0 0

)
, K4 =

(
0 −K01

0 0

)
. (A3)

Then the dynamic matrix is

K̄q = K0 + K1ei(3qxa/2−√
3qya/2) + K2ei(3qxa/2+√

3qya/2)

+ K3e−i(3qxa/2−√
3qya/2) + K4e−i(3qxa/2+√

3qya/2). (A4)

To calculate the nonadiabatic self-energy 
NA
q , we need to

know EPI matrix in reciprocal space. By transforming Ĥepi

into reciprocal space, we can extract tensor elements. We use
A,B to represent two atoms in a unit cell and {Ax, Ay, Bx,
By} to represent four degrees of freedom of EPI in our lattice
model. Then the reciprocal EPI matrix elements are


Ax
AB(k, q) = −J1[eikxa/2cos(

√
3kya/2) − e−ikxa], (A5)



Ay
AB(k, q) = −J1

√
3ieikxa/2sin(

√
3kya/2), (A6)


Bx
AB(k, q)=J1{ei(kx+qx )a/2cos[

√
3(ky + qy)a/2]−e−i(kx+qx )a},

(A7)



By
AB(k, q) = J1

√
3iei(kx+qx )a/2sin[

√
3(ky + qy)a/2], (A8)



j
BA(k, q) = [



j
AB(k + q,−q)

]∗
, j = {Ax, Ay, Bx, By},

(A9)

and other elements are all zero.

APPENDIX B: EQUATION OF MOTION CONTAINING
A MATRIX

For a general electron-phonon system, there is a general-
ized Langevin equation describing the atoms’ movement [17]:

ü = −Ku −
∫ t


r
epi(t − t ′)u(t ′)dt ′ + ξ . (B1)

Here we do not consider the bath contribution and set the noise
term ξ to zero, for our system is infinitely large. We can define
d�(t )/dt ≡ 
r

epi(t ) and integrate by parts so that the equation
of motion becomes

ü = −Ku −
∫ t

�(t − t ′)u̇(t ′)dt ′. (B2)

Next we apply a Markov approximation to �(t − t ′) so that
�(t − t ′) ≈ 4A(t ′)δ(t − t ′) (factor 4 is for consistency). The
final expression of the equation of motion will be

ü = −Ku − 2Au̇, (B3)

which is used in Sec. II.

APPENDIX C: BERRY CURVATURE

Usually there are two ways of calculating the Berry cur-
vature, one is the explicit way by inserting the completeness
identity into the definition of the Berry curvature. In our
system, the explicit formula is

	i = −Im
∑
i′ 	=i

ψ̄i
∂Heff
∂qx

ψi′ψ̄i′
∂Heff
∂qy

ψi − (qx ↔ qy)

(ωi − ωi′ )2
. (C1)
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However, to calculate the partial derivative of Heff , we need
numerical differentiation which will cost a large amount of
computation to be precise enough. Therefore we choose an-
other way, a geometric way by dividing the Brillouin zone
into plaquettes each consisting of four points on a square with
area �S and calculating the Berry phase around them [22,23]:

φ = −Im ln(ψ̄1ψ2ψ̄2ψ3ψ̄3ψ4ψ̄4ψ1). (C2)

Compared with the Hermitian case, we have replaced the
Hermitian conjugate of the eigenvector by the left eigenvector.
If investigated further, we find that this replacement is not
correct for ψ̄1ψ2 	= (ψ̄2ψ1)∗. This break of the equality, a
fundamental property of the inner product in Hilbert space,

will invalidate Stokes’ theorem so that we cannot obtain Berry
curvature through Berry phase. To overcome this, we define a
new version of inner product:

〈ψ̄1ψ2〉 ≡ ψ̄1ψ2 + (ψ̄2ψ1)∗

2
. (C3)

With this definition, property of inner product in Hilbert space
and validity of Stokes’ theorem are restored. Then the Berry
curvature is calculated by

	 = lim
�S→0

−Im ln(〈ψ̄1ψ2〉〈ψ̄2ψ3〉〈ψ̄3ψ4〉〈ψ̄4ψ1〉)

�S
. (C4)

One can show that the two ways computing the Berry curva-
ture are mathematically equivalent.
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