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Defect production and quench dynamics in the three-dimensional Kitaev model
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We study the quench dynamics of the three-dimensional Kitaev (spin) model under a linear drive using both
exact numerical calculations and analytical independent crossing approximation. Unlike the two-dimensional
Kitaev model, the three-dimensional Kitaev model reduces to a multilevel Landau-Zener problem for each
momentum. We show that for the slow quench, the defect density is proportional to the quench rate 1/τ . We
find that the zeros of the relevant coupling between the levels determine the nonadiabatic condition for the
production of defects. The contour on which the energy spectrum becomes gapless does not play an active role.
The asymptotic behavior of the defect density crucially depends on the way the system reaches the nonadiabatic
regime during the quenching process. We analytically show that defect correlation varies as τ−1e−A/τ where A is
a constant independent of τ . For the slow quench, the qualitative dependence of the entropy (produced during the
quenching process) on the quench time is the same as that of the defect correlation, indicating a close connection
between the defect correlation and the entropy content of the final state. Possible experimental realization of
such quench dynamics is also described briefly.
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I. INTRODUCTION

Properties of physical systems near a quantum phase tran-
sition are determined by the change of the symmetry of the
ground state. In particular, at low temperatures, a quantum
phase transition is observed when the inherent quantum fluc-
tuations win over the thermal fluctuations and determine the
ground-state properties [1–3]. In this respect, it is pertinent
to ask what happens at absolute zero temperature, when
the parameters of a given Hamiltonian (or physical system)
are driven or varied in time and the system is taken across the
different phases. Recently, such driven quantum systems have
attracted a lot of interest [4,5]. On a more fundamental note,
it is appropriate to ask if the quantum system always remains
in its instantaneous ground state or fail to do so due to the
diverging length and timescales, when taken across the critical
region very slowly (by varying the relevant system parameters
linearly with time) [1–7]. Consequently, as the quantum criti-
cal point (QCP) is approached the system gradually enters into
a nonadiabatic regime by failing to remain in its instantaneous
ground state. As a result, excitations are created which are also
called the defects [4,5].

In a generic second-order phase transition, the defect den-
sity, produced during quench across the QCP, scales with the
quench time as τ− dν

(zν+1) , d being the dimension of the system,
ν and z are the correlation length exponent and the dynamical
critical exponent, respectively [4,5,8–13]. It is found explicitly
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that in low dimensions the response of the system to the slow
changes of the Hamiltonian parameters could be nonanalytic
and nonadiabatic [14]. It has been shown that for a suffi-
ciently slow quench at a rate 1/τ (�1), the density of the
above-mentioned defect states scale with the quench time as
nd ∼ τ−( mν

zν+1 ) when the process of quenching takes the system
across a d − m dimensional gapless (critical) hypersurface
instead of a QCP [5,15–17]. Such a scaling behavior has been
studied in the two-dimensional (2D) Kitaev model as well as
in several other exactly solvable models [5,16,17].

The Kitaev model is a rare example of a fully anisotropic
spin model which is exactly solvable [18]. The presence of
Kitaev-like interactions has been found in a class of materials,
viz., iridate systems [19–22]. Several aspects of the Kitaev
model have been explored theoretically, such as topological
order, fractionalization of spins, quantum spin liquid, entan-
glement generation, as well as in the context of quantum
computation [23–32]. A three-dimensional (3D) version of the
Kitaev model has been proposed and studied theoretically, and
has been realized experimentally in layered iridate compounds
[33–36]. The 3D Kitaev model contains four sublattices in
an unit cell and its energy spectrum vanishes on a contour.
Furthermore, it supports fermionic and bosonic nonlocal ex-
citations as well [37].

Motivated by the above studies, we investigate the quench
dynamics in the spin-1/2 3D Kitaev model on a hyper-
honeycomb lattice. Due to the presence of a four-sublattice
structure, the model, in its ground-state flux configuration,
exhibits a pair of negative energy and positive energy states
for each momentum. This enables us to explore a multilevel
Landau-Zener (L-Z) problem in the quench dynamics of the
3D Kitaev model. By filling up both the negative energy states,
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we end up in a six-level L-Z problem. On the other hand, if
we start with the most negative energy state being filled, the
model reduces to a four-level L-Z problem. Although such
a multilevel L-Z problem (both the four-level [38–40] and
beyond [41,42]) has been studied using model Hamiltonians,
however, most of them are either of mathematical interest or
lack a direct connection to the real materials. The question
of the exact solvability of multilevel L-Z problems has also
attracted a lot of interest [43,44]. It is therefore intriguing to
study the quench dynamics of the 3D Kitaev model (in the
multilevel setup) which is both exactly solvable and experi-
mentally realizable in a class of materials mentioned earlier.

In this paper, we investigate the defect density, defect cor-
relation, and entropy in the final state of the quench dynamics
in the 3D Kitaev model. We define the defect correlation
as the two-point fermionic correlation in the defect state
(time-evolved initial state) [14,16,17]. Furthermore, quench-
ing pushes the system to make transitions to other energy
levels via nonadiabatic points. Moreover, we calculate the
von Neumann entropy of the final state [45–47]. Interestingly
enough, we find that the 3D Kitaev model offers a solvable
physical system where the semiclassical independent crossing
approximation (ICA) can be applied to obtain an analytical
form for the defect density, thereby enlarging our scope of
understanding of the multilevel L-Z dynamics. Remarkably,
we observe that in the multilevel L-Z dynamics of 3D Kitaev
model, the nonadiabatic condition between the relevant levels
is not determined entirely by the spectrum of the model, rather
by the coupling between the adiabatic levels. This might lead
to a scaling of the defect density beyond the conventional
two-level L-Z dynamics. We further investigate the defect
correlation and obtain an analytical expression for it which
agrees with the corresponding numerical results. The entropy
is found to be generated due to the nonlocal correlation devel-
oped during the quench.

The paper is organized as follows. In Sec. II, we introduce
the 3D Kitaev model as conceived in Ref. [33]. We explain
in detail the methods to transform the Hamiltonian in mo-
mentum space into the one that is suitable for the quench
dynamics study. Here we elaborate our scheme to reduce
the 3D Kitaev model to a multilevel L-Z problem (both four
and six levels) and describe the numerical scheme to solve
the time-dependent Schrodinger equations. In Sec. III, we
present the analytical formula for the defect density within the
semiclassical ICA. Sections IV, V, and VI describe the results
corresponding to the defect density, defect correlation, and the
entropy of the final state, respectively, obtained numerically
using the method outlined in Sec. II C, and analytically as
well using ICA (whenever applicable). We finally conclude
and discuss our results in Sec. VII. In Appendices B and C,
we briefly discuss the issue of dynamical phases in the tran-
sition probabilities associated with semiclassical trajectories
and justify the ICA. The other Appendices describe various
relevant details related to our calculations.

II. THE MODEL AND FORMALISM

The 3D Kitaev model is defined on a hyperhoneycomb
lattice with lattice coordination number 3 [see Fig. 1(a)]. Each
spin interacts with its three-nearest neighbors through three

(a)

(b)

FIG. 1. Three-dimensional Kitaev model, the lattice, and the
phase diagram. (a) A part of the three-dimensional hyperhoneycomb
lattice on which 3D Kitaev model is defined. The unit cell consist of
two vertical z-type bonds connected by a y-type bond along y direc-
tion. (1a, 1b) corresponds to the dimer μ = 1 with (a, b) being the
sublattice index. Similarly, (2a, 2b) corresponds to the dimer μ = 2.
(b) The phase diagram of the 3D Kitaev model in the parameter space
(Jx, Jy, Jz ). The three sides of the triangle correspond various limits
as shown. The gray shaded region is the gapped phase and the middle
region is the gapless phase.

different links, viz., x-link, y-link, and z-link, which only ex-
hibit interactions between the corresponding spin components
[33]. The spin Hamiltonian on the hyperhoneycomb lattice has
the following form:

H = −Jx

∑
x-link

σ x
i σ x

j − Jy

∑
y-link

σ
y
i σ

y
j − Jz

∑
z-link

σ z
i σ z

j . (1)

In the above equation, i, j represents a pair of nearest-
neighbor spins and the sum is over each type of bond. The
unit cell contains four sites with the basis vectors given by
a1 = 2x̂, a2 = 2ŷ, and a3 = (x̂ + ŷ + 2ẑ) [33].

Following Kitaev’s original prescription for solving the 2D
Kitaev model, the above Hamiltonian can be fermionized to
reduce to a noninteracting Majorana Fermion hopping prob-
lem in the presence of conserved Z2 gauge fields defined on
every link/bond. These Z2 gauge fields can take values ±1.
For each configuration of these Z2 gauge fields, one obtains
a fermionic spectrum. It is found that [33] the ground-state
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sector corresponds to the configuration where the product of
Z2 gauge fields over an elementary plaquette is one. We chose
the Z2 gauge field to be equal to +1 for each bond, and
this enables us to perform a Fourier transform and work in
the momentum space. In the ground-state sector (where all
Z2 gauge fields are uniformly +1), the effective Majorana
fermion Hamiltonian is given by

H = i
∑

r

[
1,2∑

j

Jzc ja(r)c jb(r) + Jxc1a(r)c2b(r3)

+ Jyc1a(r)c2b(r13) + Jyc1b(r)c2a(r2) + Jxc1b(r)c2a(r)

]
,

(2)

where r is a position vector of a lattice point [33] and r3 =
r − a3, r2 = r − a2, and r13 = r + a1 − a3. Owing to the bi-
partite nature of the lattice, in the above Hamiltonian, we
conveniently introduce two indices to label the sites within
a unit cell; μ = 1, 2 denote the dimer to which a site belongs
and α = a, b, denote the sublattice indices [33]. The spectrum
of the Hamiltonian in Eq. (2) is found to be gapless in the
middle white region as shown in Fig. 1(b).

In our quench study, we take Jz to be increasing linearly
with time t , i.e., Jz(t ) = Jt/τ at a rate 1/τ . To implement the
quench study in the L-Z setup, we rewrite the Hamiltonian in
Eq. (2) by introducing the complex fermions ψ and φ by re-
grouping the two Majorana fermions at two z bonds of the unit
cell as ψi = ci,1a + ici,1b, φi = ci,2a + ici,2b. A subsequent
Fourier transform of Eq. (2) leads us to H = ∑′

k �
†
k h(k)�k ,

where k belongs to half Brillouin zone (HBZ, denoted by the
primed summation). Here,

h(k) =

⎛
⎜⎝

2Jz −	∗
2k 0 −	∗

1k−	2k 2Jz 	1k 0
0 	∗

1k −2Jz 	∗
2k−	1k 0 	2k −2Jz

⎞
⎟⎠ (3)

and �k = (ψ†
k φ

†
k ψ−k φ−k )

†
, where 	1k = eik·a3δ1k +

δ2k , 	2k = e−ik·a3δ∗
1k − δ∗

2k , and δ j,k = Jx + Jyei(−1) j k j with
j = 1, 2. Diagonalizing the upper-left and lower-right 2 × 2
blocks we get a couple of eigenvalues, ε1k = 2Jz + |	2k| and
ε2k = 2Jz − |	2k| corresponding to the upper-left block, and
another couple −ε1k and −ε2k corresponding to the lower-
right block, respectively. Using the unitary transformation
corresponding to the above-mentioned diagonalization (see
Appendix A for explicit form), we rewrite Eq. (3) as

h̃(k) =

⎛
⎜⎝

ε1k 0 gk −γk

0 ε2k γk −gk

−gk γk −ε1k 0
−γk gk 0 −ε2k

⎞
⎟⎠, (4)

where gk = −i|	1k| sin θ12k and γk = −|	1k| cos θ12k with
eiθ12k = 	1k	

∗
2k

|	1k ||	2k | , ε1k = 2Jz + |	2k|, and ε2k = 2Jz − |	2k|.
We denote αi,k (i = 0, 1, 2, 3) as the annihilation operators
corresponding to the four states in the rotated basis. The rela-
tions between the αik to the ψk and φk are given in Appendix
A. We apply the quench protocol by keeping J fixed for a set
of values of α = tan−1 Jy

Jx
quantifying the ratio of Jx and Jy.

The Hamiltonian corresponding to Eq. (4) offers two ways
of studying the quench dynamics depending on if we start
with the initial state as the lowest negative energy state be-
ing occupied or start by filling up both the negative energy
states. In the former case, we end up with a four-level L-Z
problem and in the latter we find a six-level L-Z problem. It is
worthwhile to emphasize that the ground state of the six-level
problem belongs the true ground state of the spin-model at
t = −∞. Therefore, we denote the lowest energy state at
t = −∞ corresponding to the six-level problem as the ground
state and the same corresponding to the four-level problem
as the initial state. However, we shall henceforth use them
synonymously and expect their meaning to be clear in the
context. Below we discuss both of these two possibilities one
by one. Furthermore, in connection to the original spin model
corresponding to Eq. (1), this physically means that for the
four-level L-Z problem, the initial state is the ferromagnetic
state of the lower z-dimer of the unit cell. On the other hand,
for the six-level problem, the initial state is a ferromagnetic
state of both z dimers of the unit cell.

A. As a four-level problem

In the limit of t → ±∞, the dominating terms in Eq. (4)
are the diagonal ones where we retain a very small nonzero
value of |	2k|, given the fact that Jx(y) have infinitesimal but
nonzero values. This helps us to avoid the obvious degen-
eracy [which otherwise originates from the fact that two of
the diagonal elements of Eq. (4) become equal] in the limit
t → ±∞, in the same spirit of removing the ground-state
degeneracy of a spin-S ferromagnetic Heisenberg model with
an infinitesimally small symmetry-breaking field. In the limit
of t → −∞, the initial state is gapped and the corresponding
eigenvalue is given by ε2k = −2Jz − |	2k| with |	2k| very
small (but nonzero) so the diabatic levels are well separated at
t ± ∞, as plotted in Fig. 2(a). According to our convention, at
t → −∞, the eigenstates corresponding to ε2k, ε1k,−ε1k and
−ε2k are denoted by |0〉k, |1〉k, |2〉k , and |3〉k , respectively. The
diabatic ground state/initial state in this time limit is given
by |G−∞〉 = (1 0 0 0)† whereas, in the limit t → +∞,

the diabatic initial state is |G′
+∞〉 = (0 0 1 0)†. The

corresponding adiabatic levels are plotted in Fig. 2(b).
The quench dynamics of various model systems have been

studied in the past and these, in essence, reduce to a two-level
L-Z problem [4,14,16,17], which has been analytically exam-
ined. However, the system we are interested in turns into a
multilevel L-Z model for each momentum k, which limits the
possibility of a complete analytical solution. In these circum-
stances, the numerical analysis of the evolution of the system
under quench turns out to be the most convenient to determine
the long time behavior of the system. We need to solve a set of
coupled first-order differential equations corresponding to the
time-evolution, which is given by i d

dt �4,k = Uk�4,k , where
�

†
4,k = (|0, t〉, |1, t〉, |2, t〉, |3, t〉), and the 4 × 4 matrix Uk is

given below,

Uk =

⎛
⎜⎝

ε2k 0 γk −gk

0 ε1k gk −γk

γk −gk −ε1k 0
gk −γk 0 −ε2k

⎞
⎟⎠, (5)
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FIG. 2. Energy-level diagrams. (a) Diabatic energy levels cor-
responding to the Hamiltonian Eq. (5) when only the diagonal
elements are present. |0〉 is the initial state at t = −∞ which be-
come one of the excited states at t = +∞, whereas |2〉 is the
lowest energy state at t = +∞ which has been one of the ex-
cited states at t = −∞. At t → −∞, the states |0〉, |1〉, |2〉, and |3〉
have eigenvalues ε2k, ε1k, −ε1k, and − ε2k , respectively. (b) Adia-
batic levels corresponding to the same Hamiltonian. (c) Diabatic
energy levels corresponding to the six-level representation corre-
sponding to Eq. (6) when only the diagonal elements are present. At
t → −∞, the states |0̃〉, |1̃〉, |2̃〉, |3̃〉, |4̃〉, and |5̃〉 have eigenvalues
4J3, 0, −2|	2k |, 2|	2k |, 0, and − 4J3, respectively. (d) Plot of
the adiabatic levels for the six-state representation of the 3D Kitaev
model. The plots are representative of the avoided level crossing at
a particular value of k within the HBZ. It is worthwhile to note that
there are only two and four avoided level crossings while there are
four and six diabatic states in the four- and six-level problems, re-
spectively. The red circles indicate the level crossings in the diabatic
limit which eventually lead to avoided level crossings in the diabatic
limit. The avoided crossing points are quite far apart, maintaining the
applicability of the independent crossing approximation.

is the time evolution operator which is obtained from Eq. (4)

by an unitary transformation, Uk =
(
σx 0
0 I2×2

)
.

B. As a six-level problem

We now describe the quench dynamics when the initial
state is constructed by filling up both negative energy states
corresponding to Eq. (4) at t → −∞. The possibility of tran-
sition from the ground state to any state having two particles
results in a six-level L-Z problem. To this end, one needs
to define the two-particle sector of the Hilbert space and it
is given in Appendix A. Time evolution is governed by the
usual Schrodinger equation i d

dt �6,k (t ) = Ũk�6,k (t ), where Ũk

is given by

Ũk =

⎛
⎜⎜⎜⎜⎜⎝

4J3 γk gk −gk −γk 0
γk 0 0 0 0 −γk

+gk 0 −2|	2k| 0 0 −gk

−gk 0 0 2|	2k| 0 +gk

−γk 0 0 0 0 γk

0 −γk −gk gk γk −4J3

⎞
⎟⎟⎟⎟⎟⎠; (6)

see Appendix A for further details.

C. Numerical scheme

Numerical evolution of the time-dependent quantum states
needs a careful algorithm to avoid the large error accumula-
tion, which might result in producing a nonphysical outcome.
We use a numerical algorithm that captures the time evolution
starting from an arbitrarily large time in the past to an arbitrar-
ily large time in the future and proceeds in discrete but small
steps dt . The unitary operator describing the time evolution is
given by

Û (k, t ) =
(

Î + iĥ(k, t )
dt

2

)(
Î − iĥ(k, t )

dt

2

)−1

, (7)

where ĥ(k, t ) is the Hamiltonian matrix governing the time
evolution which is Eq. (5) in the four-level setup and is Eq. (6)
in the six-level one, with the quench protocol mentioned ear-
lier. The identity matrix Î is a 4 × 4 or a 6 × 6 one depending
on the setup. Such a time evolution operator has been used
to study a four-level L-Z model earlier in the context of the
model Hamiltonian [38,39]. The evolution operator Eq. (7) is
equivalent to a true evolution operator in the limit of dt → 0,
and reduces the error to (dt )2

4 (reduction by a factor of 4) at
O(dt2). In this paper, we calculate the following quantities:
〈0|Û (k, t )|0〉 and 〈 f |Û (k, t )|0〉, where | f 〉 are the final states
except the postquench ground state (i.e., the ground state
corresponding to t = ∞). The quantity P00 = 〈0|Û (k, t )|0〉
describes the probability of the system to remain in the initial
state. Using Eqs. (5) (for the four-level problem), (6) (for the
six-level problem), and (7), we determine the defect density
nd = 1

�HBZ

∫
HBZ d3k P00, with �HBZ = π3/2 being the volume

of the HBZ.
Furthermore, we aim to determine the dependence of the

defect density on the quench rate 1/τ (or, equivalently, 1/Jτ ).
Physically, the defect density refers to the number density of
the created excitations [13–15]. These excitations are gener-
ated once the system is taken across a QCP where the system
fails to remain in the adiabatic regime. As explained above,
depending on the choice of the initial state the 3D Kitaev
model reduces to a four-level or a six-level L-Z problem for
each momentum k.

III. ANALYTICAL SCHEME—THE INDEPENDENT
CROSSING APPROXIMATION

We use the ICA [38] to analytically solve the multilevel
L-Z problem. This treats the multilevel L-Z problem as a
collection of independent two-level problems, each two-level
problem being solved without considering the influence of the
rest of the levels. We use the ICA to calculate the scatter-
ing matrix S whose elements’ squared Pi j = |Si j |2 represent
the transition probabilities from ith state at −∞ to jth state
at +∞.

Within the ICA, one follows the diabatic levels, as illus-
trated in Figs. 2(a) and 2(c), and apply the two-level L-Z
formula at each crossing point along the path [38–40,48,49].
To apply the ICA, the avoided level crossing points must be
far from each other, and this is indeed satisfied in our case as
shown in Figs. 2(b) and 2(d). During the quenching process
when the system encounters the avoided level crossings, it
exhibits maximum probability of making transitions to the
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higher excited states. The necessary criteria for the applicabil-
ity of the ICA is the cancellation of the dynamic phase (gained
along the path of evolution) in the expression of the transition
probabilities [38–40]. It indeed turns out that for the four-level
problem, the dynamic phases gained along all the possible
trajectories corresponding to the transitions from the initial
state |0〉 get canceled in the expression of the probability
density, as shown in Appendix B. However, in the case of
trajectories forward in time, all the transitions from states |1〉
and |2〉 exhibit the effects of the dynamical phases.

On the other hand, for the six-level problem the dynamic
phase difference remains finite for a couple of paths corre-
sponding to the transition from the state |0̃〉 (the ground state
at −∞), as shown in the Appendix C.

It is worthwhile to point out that the above approxima-
tion is semiclassical because this does not allow an evolution
backward in time. Therefore, transitions from |0〉 to state
|1〉, and from |3〉 to state |2〉 are not possible in the case
of four-level problem. However, for the six-level problem,
transitions from state |0̃〉 to all other states are possible
without requiring any evolution backward in time. In this
sense, the six-level problem does not distinguish between the
semiclassical and the quantum nature of the system. Further
details of the calculations of the transition amplitudes, eval-
uated within ICA, corresponding to both the four-level and
six-level problems are described in Appendices B and C,
respectively.

To our surprise, we observe that the analytical expressions
corresponding to the probability P(i)

00 (with i = 4, 6 corre-
sponding to the four- and six-level problems obtained in
Appendices B and C, respectively) for the system to remain in
the ground/initial state (of t = −∞), within the semiclassical
approximation, is very similar for both the four-level and
the six-level problems. If we denote p(4)

k = P(4)
00 and p(6)

k =
P(6)

00 as the transition probabilities within the ICA, we find
that

p(6)
k = exp

(
− π (Jτ )

J2
|	1k|2

)
, p(4)

k =
√

p(6)
k , (8)

where p(4)
k and p(6)

k differ by a factor of 1/2 in the exponential.
The defect density can be obtained straightforwardly by using
the following formula:

n(i)
d = 1

�HBZ

∫
HBZ

d3k p(i)
k , i = 4, 6, (9)

where the integration is performed over the HBZ as indicated
above. It is worthwhile to point out that the probabilities
P(i)

0 j for the system to reach a state | j〉 at t = ∞ (except
the corresponding ground state) also represent the defect
densities. However, we have checked numerically for both
the four-level and six-level problems that the defect densi-
ties corresponding to P(i)

0 j exhibit the same scaling with the
quench rate 1/τ as that of Eqs. (9), thereby providing no
new physics. Therefore, in what follows, we evaluate Eqs. (9)
both analytically and numerically. From Eqs. (8) and (9), we
observe that the determining factor for the overall behav-
ior of defect density n(i)

d is |	1k|2, which has the following

expression:

|	1k|2 = 4J2

[
cos2 α cos2 k+

2
+ sin2 α cos2 k−

2

+ sin 2α cos(kx − ky) cos
k+
2

cos
k−
2

]
, (10)

where k± = kx + ky ± 2kz. For sufficiently slow quench Jτ 

1, the quantity pk is exponentially small for all values of
k except on a contour dictated by |	1k|2 = 0 (see Fig. 3).
We henceforth refer to |	1k|2 = 0, for our case, as the
nonadiabatic condition [14–17] and the corresponding points
(satisfying the above condition) in the HBZ as the nonadia-
batic points. Physically, it means that for all the nonadiabatic
points and the points near these, the system exhibits the maxi-
mum nonadiabatic nature, thereby maximizing the probability
of formation of the defects.

Next we calculate the defect density using Eqs. (8) and
(9) within the stationary phase approximation. We note that
if a generic point on the above-mentioned contour is given
by (k0

x , k0
y , k0

z ), the most dominant contributions to the mo-
mentum integrals come from the values of k close to these
points. Also, without loss of generality, if we substitute kx =
ky ± 2nπ [corresponding to cos(kx − ky) = 1 in Eq. (10) with
n being integers], we obtain from |	1k|2 = 0,

tan(kx ) tan(kz ) = 1 + tan α

1 − tan α
, kx = ky ± 2nπ, (11)

where α = Jx/Jy. The above equation indeed represents a set
of critical lines (or d − m = 1 dimensional critical lines) for
each values of α indicating m = 2 in our 3D (d = 3) model.
However, the above conditions are valid only for all the values
of α except α = 0 and π/2. For these two values of α, the
nonadiabatic condition is needed to be obtained directly from
Eq. (10). It is therefore possible to Taylor expand |	1k|2
around (k0

x , k0
y , k0

z ) on the above-mentioned set of lines.
By making the above-mentioned expansion up to leading

order (i.e., the stationary phase approximation), we obtain

|	1k|2 = 1
2 (4J2)

[
4 fxx

(
kx − k0

x

)2 + 4 fxz
(
kx − k0

x

)(
kz − k0

z

)
+ fzz

(
kz − k0

z

)2]
, (12)

where we have rewritten ∂2(|	1k|2 )
∂ki∂k j

= 4J2 fi j (α). The quantity

[ ∂2(|	1k|2 )
∂ki∂k j

] is the i jth element of the precision matrix (2 × 2)
of a multivariate Gaussian. For Jτ 
 1, the values of pk

corresponding to Eqs. (8) turn out to be very small for all
values of k except the points near (k0

x , k0
y , k0

z ). We can then
extend the upper limit of k integration to ∞, and apply Gaus-
sian integral in Eqs. (9). In deriving Eq. (12), we have used
the condition kx = ky ± 2nπ , i.e., kx and ky are related to
each other by a constant shift. This translates into kx − k0

x =
ky − k0

y which reduces the precision matrix to a 2 × 2 from a
3 × 3 one. Evaluating the Gaussian integral, we find the defect
density as

nd = π

�HBZ

(
1

(Jτ )
√|| fi j (α)||

)
, (13)
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FIG. 3. Nonadiabatic conditions for different α. Plot of the con-
tour generated by the condition |	1k |2 = 0. (a) for α = π/8, (b) for
α = π/4, and (c) for α = 3π/8. The set point (k0

x , k0
y , k0

z ), around
which the Taylor expansion is made in Eq. (12), lie on the contour.
We further point out that from the numerical perspective, implemen-
tation of the condition |	1k |2 = 0 is done by considering a threshold
which we take 10−6. This leads to the thickening of the lines corre-
sponding to |	1k |2 = 0.

where || fi j (α)|| = 4[ fxx fzz − ( fxz )2] is the determinant of the
2 × 2 precision matrix, which must be positive definite. It
turns out that for α = 0 and π/2, the above-mentioned deter-
minant vanishes and we can’t evaluate the Gaussian integral.
Therefore, we have evaluated the corresponding integral in

FIG. 4. Defect density. Plot of defect density nd as a function of
Jτ and α where α = tan−1(Jy/Jx ). (a) For the four-level problem, the
red dotted lines are the results corresponding to the exact numeri-
cal calculations and the surface plot is the result corresponding to
the ICA. (b) For the six-level problem, the black dotted lines are
the results corresponding to the exact numerical calculations, and the
surface plot is the result corresponding to the ICA.

Eqs. (9) numerically within the HBZ. Our analytical calcu-
lation using ICA thus establishes nd ∝ (Jτ )−1 in the limit of
the very slow quenching.

IV. DEFECT DENSITY

In Figs. 4(a) and 4(b), we have plotted the defect density
with respect to Jτ and α for the four-level and the six-level
L-Z problems, respectively. The dots in Fig. 4 are the numer-
ically (following the scheme outlined in Sec. II C) obtained
defect density. The 3D plot is obtained by using Eqs. (9). We
find that both the plots agree with each other with high degree
of accuracy implying the validity of ICA in this model for both
the four-level and six-level problems. For slow quenching,
in both cases we obtain nd ∼ τ−1. Appendix D features the
log-log plot [see Fig. 15(a)] for nd vs Jτ , which shows that
for α = π/8, π/4 and 3π/8 the scaling is indeed τ−1. It
is worthwhile to point out that for these values of α′s, the
system exhibits a 3D structure. For α = 0 and π/2, the system
becomes a set of independent Kitaev chains, and Fig. 15(b)
shows that nd scales as 1/

√
τ as expected.

Next we compare the above results with the prediction of
Ref. [16] that defect density crucially depends on the dimen-
sionality of the critical hypersurface through which the system
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passes during the quenching. The important quantities are z,
which tells us how the energy dispersion of a given system
depends on momentum at low energy, the dynamical exponent
ν, which determines the asymptotic dependence of two-point
correlation functions at large distance, and m, which tells us
how the system becomes gapless in momentum space. In the
case of our 3D Kitaev model, it can be checked easily that
ν = z = 1. The dispersion of the 3D Kitaev model is such that
it vanishes on a contour which constitutes a 2D critical hyper-
surface under the action of quench yielding m = 2. Keeping in
mind that our system is a 3D one with d = 3, and substituting
the above values of (z, ν, d, m) in the expression of defect den-
sity nd ∝ τ− mν

zν+1 , we obtain nd ∝ τ−1. It is worthwhile to point
out that the 2D Kitaev model exhibits a scaling nd ∝ 1/

√
τ

[16].
We now discuss the gapless condition of the spectrum and

its relation to the scaling of defect density. Diagonalization of
Eq. (4) yields the following eigenvalues:

E1−4
k = ±

√
8J2

z + 2(|	1k|2 + |	2k|2) ± 	k, (14)

where 	k = 4|	2k|
√

4J2
z + |	1k|2 cos2 θ2k . The gapless con-

dition of the spectrum is found to be(
4J2

z + |	1k|2 − |	2k|2
)2 + 4|	1k|2|	2k|2 sin2 θ2k = 0. (15)

We note from the above equations that the condition |	1k|2 =
0, i.e., the nonadiabatic condition is a subset of the gapless
condition. Thus our analysis suggests that for a general mul-
tilevel problem with partial or complete filling of the negative
energy states, the scaling of the defect density is decided by
the coupling of the relevant levels in a given system.

However, the reason that the scaling of the defect density
follows the law proposed in Ref. [14] is that for the case of the
3D Kitaev model the conditions for the zero of the spectrum,
and the condition |	1k|2 = 0 both vanish on a contour in an
identical manner, (i.e., having m = 2). We note that this is
purely coincidental for the case of 3D Kitaev model.

Remarkably, the asymptotic behavior of defect density
(i.e., the behavior of nd in the limit Jτ 
 1) corresponding
to the 2D Kitaev model differs from that of the 3D Kitaev
model with respect to its dependence on α. In the case of
the 2D Kitaev model, when α is varied from 0 to π/2, the
defect density increases monotonically up to α = π/4 and
then decreases monotonically such that it is symmetric with
respect to α = π/4 [16]. For the 3D Kitaev model, although
the asymptotic behavior of the defect density for large Jτ

is symmetric with respect to α = π/4, in contrast to the 2D
Kitaev model, it exhibits the maxima at α = 0 and π/2 and
decreases monotonically and subsequently increases to reach
local maximum at α = π/4 as shown in Fig. 5(a).

To explain this unusual feature, we look back to the ex-
pression of pk appearing in Eqs. (8) and (9). It is reasonable
to define an effective density of states (effective DOS) cor-
responding to the variable 	1k , which essentially quantifies
the number of k points in HBZ satisfying the nonadiabatic
condition 	1k = 0.

From the effective-DOS plot in Fig. 5(b), we see that
the effective DOS corresponding to 	1k = 0 is maximum at
α = 0 and π/2, and decreases initially away from these two
values of the α. However, the effective DOS exhibits a local

(a)

(b)

FIG. 5. Effective-DOS plot. (a) Plot of defect density nd as a
function of α where α = arctan(Jy/Jx ) for Jτ 
 1. The red dotted
points are results corresponding to exact numerical calculations and
the surface plot is the result corresponding to the independent cross-
ing approximation. A hump at α = π/4 signifies a local maximum.
(b) Effective density of states (DOS) as a function of α = tan−1 Jy

Jx
at

the gapless phase.

maximum at α = π/4. The infinite effective DOS at α = 0
and π/2 refer to the contribution from each of the decou-
pled chains, which are infinite in number. This explains the
variation of asymptotic values of nd with respect to α in the
sense that the more the number of k points in HBZ satisfy the
nonadiabatic condition, the more the defect is generated.

V. CORRELATION FUNCTIONS

In this section, we discuss the effect of quenching in the
correlation function and its connection to defect production.
We note that the true quantum ground state of the 3D Ki-
taev model is supposed to be a quantum spin liquid where
the spin-spin correlation (two-spin correlation) function is
short-ranged and anisotropic [30]. The spin-spin correlation
is nonzero only for the nearest-neighbor spins for all values of
the parameters of the system. It remains an intriguing question
how the correlation function develops nonlocality due to the
quenching. For simplicity, we consider the following two-spin
correlation function operator:

O3D(r) = σ z
Rσ z

R+r, (16)

which is nothing but a product of the spin operators cor-
responding to site R at a sublattice and a site R + r at b
sublattice. The quantity O3D(r) is nonzero only for r = 0, and
this fact remains the same for all points in the parameter space.
In the Majorana fermion representation, the above correlation
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function takes the form O3D(r) = SR,R+ric1a(R)c1b(R + r),
where SR,R+r is the product of the Z2 gauge fields defined
on the bonds along the path. In the following, we study the
evolution of this two-fermion correlation function operator
ic1a(R)c1b(R + r) rather than the spin-spin correlation. Thus
the object of our interest is

C3D(r) = ic1a(R)c1b(R + r). (17)

Doing a Fourier transform, the ground-state expectation value
of the two-fermion correlation takes the following form:

〈C3D(r)〉 = ± 1

2N

∑
k∈HBZ

cos(k · r), (18)

where + and − signs refer to the ground state (or initial state
in the case of the four-level problem), corresponding to Jz =
−∞ and ∞, respectively, and 〈C3D(r)〉 is indeed ±δr,0. The
derivation of Eq. (18) is similar to a previous quench study in
1D and 2D Kitaev models [17], and has been briefly described
in Appendix E.

The final state after quench is superposition of both the
initial ground state and excited states such that pk represents
the probability of finding the system in the ground state of
t = −∞ (which is an excited state corresponding to t = ∞).
In the limit Jz → −∞, the system is in the ground state
where nearest-neighbor spins are ferromagnetically aligned

and, as the quenching takes place, the state of the system
deviates from the ground-state configuration (corresponding
to t = −∞) and the defects are generated. Physically, pk

quantifies how much ferromagnetic component is present in
the final state given the fact that the initial state at t = −∞
was a ferromagnetic state. In this case, the correlation function
takes the form

〈C3D(r)〉 = −δr,0 + 1

�HBZ

∫
d3kpk cos(k · r), (19)

where the second term in the above equation is a measure of
defect correlation (i.e., the two-spin correlation in the pres-
ence of defects) and henceforth will be analyzed. We note that
the final state characterizes the excitations or defects gener-
ated in the system due to the quench and, therefore, we refer
the correlation function in the quenched state as the defect
correlation following the earlier usages [17].

We evaluate the second term of the above equation by
expanding the defect probability pk , obtained within the ICA,
in the limit of very slow quench corresponding to Jτ 
 1, for
both four- and six-level problems. As usual, the dominant con-
tribution comes from the contour determined by |	1k|2 = 0.
Evaluating the relevant Gaussian integrals, as has been done
for the defect density in the previous section, we find

〈C3D(r)〉 = π

�HBZ

(
cos

[
k0

x (Nx + Ny) + k0
z Nz

]
(Jτ )

√|| fi j (α)||

)
exp

[
− (Nx + Ny)2 fzz + 4N2

z fxx − 4(Nx + Ny)Nz fxz

4πJτ || fi j (α)||
]
. (20)

The above equation shows that the asymptotic behavior of the
defect correlation as a function of Jτ is given by

〈C3D(r)〉 ∼ τ−1 exp(−Aτ−1), (21)

where A = (Nx+Ny )2 fzz+4N2
z fxx−4(Nx+Ny )Nz fxz

4πJ|| fi j (α)|| , Nx = 2n1 + n3,
Ny = 2n2 + n3, and Nz = 2n3. The above asymptotic
behavior, therefore, remains valid for both the four- and
the six-level problem.

A. Comparison of defect correlation in various planes

After obtaining the asymptotic analytic expression of de-
fect correlation function in Eq. (20), we analyze the latter in
different directions and planes in the real-space. We evaluate
Eq. (19) numerically in various planes and specific directions
by noting that any arbitrary point on the lattice is given by
r = n1a1 + n2a2 + n3a3. First we begin by discussing how the
spatial correlation builds in certain planes.

In Figs. 6 and 7, we plot the spatial variation of the defect
correlation as a function of n1, n2, and n3 for Jx = Jy = J = 1
(i.e., α = π/4), and also Jτ = 1 for both the four-level and
six-level problems respectively. For the four-level problem,
〈C3D(r)〉 has been evaluated by exact numerical calculation
and for the six-level problem the same has been evaluated
by both exact numerical as well using ICA for comparison.
In Fig. 7, in the left panel we present the results obtained by
exact numerical evaluation and in the right panel we present
the same obtained within ICA. For a detailed description, we

refer to the caption of Fig. 7. (We have not used ICA for the
four-level problem to avoid redundancy.)

Physically, the difference between the four-level and six-
level problems concerning the correlation function study is

(a) (b)

(c) (d)

FIG. 6. Spatial variation of the correlation for the four-level
problem. Plot of defect correlation 〈C3D(r)〉 corresponding to the
four-level representation as a function n1, n2, and n3, i.e., as a
function of spatial coordinate r. The spatial variation of the defect
correlation in the a1 − a2-plane (a) when n3 = 0 and (b) when n3 =
1. The spatial variation of the defect correlation in the a1 − a3-plane
(c) when n2 = 0 and (d) when n2 = 1. See text for explanations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. Spatial variation of the correlation for the six-level
problem. Plot of defect correlation 〈C3D(r)〉, corresponding to the
six-level representation, as a function n1, n2, and n3, i.e., as a function
of spatial coordinate r. (a), (c), (e), (g) are obtained from the full
numerical calculation; (b), (d), (f), (h) are obtained from the ICA
by using pk of Eq. (19), corresponding to the ICA. The spatial
variation of the defect correlation in the a1 − a2-plane are plotted
in (a), (b) when n3 = 0, and in (c), (d) when n3 = 1. The spatial
variation of the defect correlation in the a1 − a3-plane are plotted
in (e), (f) when n2 = 0, and in (g), (h) when n2 = 1. See text for
explanations.

that in the former the ground state of the system is such
that only the ψ fermion defined on the lower z bond of the
unit cell is occupied; see Fig. 8 for schematic illustration.
On the other hand, for the six-level problem the ground state
corresponds to both the ψ and φ fermions defined on the
both the z bonds of the unit cell being occupied. We find that
the correlation functions obtained in these two cases do not
differ qualitatively because though in the four-level problem
initially the φ fermion is absent, it affects the evolution of the
ψ fermion through the nonzero coupling 	2k .

1. Correlation function in the a1 − a2 plane

In Figs. 6(a) and 6(b), we plot defect correlation in the
a1 − a2 plane for n3 = 0 and n3 = 1, respectively, for the four-
level problem. Corresponding plots for the six-level problem
are presented in Figs. 7(a) and 7(c), respectively. These figures

FIG. 8. Unit-cell and ground-state configuration in terms of
fermions. Schematic picture of the ground-state configuration con-
sidered (a) for the four-level problem with only the ψ fermion state
being occupied and (b) for the six-level problem where both the
ψ and φ fermions are occupied. These fermions are defined above,
Eq. (3).

indicate that the nearest-neighbor correlations are the domi-
nant ones and the next-nearest and other long-range correla-
tions with far-away sites quickly die out. However, occasion-
ally, the correlation with the far-away sites build up due to the
lattice geometry and the connectivity. It is worth noticing that
the spatial variation of the defect correlation is symmetric in
the a1 − a2 plane with respect to the line n1 = n2. Figures 7(b)
and 7(d) represent the same correlation functions [plotted in
Figs. 7(a) and 7(c)] obtained using ICA. We notice that ICA
is able to show more oscillations than the exact numerical
evaluation as the latter method has some practical limitations.

2. Correlation function in the a1 − a3 plane

In Figs. 6(c) and 6(d), we plot the defect correlation in
the a1 − a3 plane for n2 = 0 and n2 = 1, respectively, for the
four-level problem. The corresponding plots for the six-level
problem are presented in Figs. 7(e) and 7(f), respectively.
When comparing with the defect correlation in the a1 − a2

plane, we find that in the a1 − a3 plane the defect correlation
is mostly zero and also not symmetric with respect to the line
n1 = n3 line.

3. Correlation function in the a2 − a3 plane

Furthermore, owing to the symmetric nature of it in the
a1 − a2 plane, the spatial variation of the defect correlation
in the a1 − a3 plane is the same as that of the a2 − a3 plane.
It is worthwhile to point out that the symmetric nature of
the correlation function arises due to the condition α = 1
(or Jx = Jy). Therefore, we expect the defect correlation to
develop spatial anisotropy for arbitrary values of the coupling
constants corresponding to Jx �= Jy.

B. Defect correlation along various directions

To investigate the above-mentioned anisotropic nature of
the correlation function in real space when the ratio Jy/Jx is
varied from 0 to ∞, while maintaining J2

x + J2
y = 1, we plot

in Figs. 9(a) and 9(b) the correlation 〈C3D(r)〉 as a function
of α = tan−1 Jy

Jx
for the four-level and six-level L-Z quenches,

respectively. Here the quantity 〈C3D(r)〉 has been obtained by
numerically evaluating the second term of Eq, (19) where
pk has been obtained using both the ICA and the exact
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(a)

(b)

FIG. 9. Variation of correlation function with α. Plot of defect
correlation 〈C3D(r)〉 as a function of α where α = tan−1(Jy/Jx ).
(a) For the four-level problem, (b) for the six-level problem. The line
plots correspond plot to ICA evaluation and the point plots corre-
spond to the exact numerical calculation of the defect correlation

numerical calculations explained in Sec. II C. All the corre-
lation functions are the nearest-neighbor ones and obtained
by substituting r = n1a1 + n2a2 + n3a3. Below we represent r
by simply (n1, n2, n3) and discuss defect correlation for some
representative combinations of (n1, n2, n3).

1. Correlation function for (1,0,0).

First we discuss the behavior for r = (1, 0, 0) which de-
scribe how the correlation function behaves along x direction.
It is plotted in Figs. 9(a) and 9(b) in brown for the four-level
and six-level problems, respectively. This represents a nearest-
neighbor correlation function joined by the z − y bonds along
the x direction. For α = 0 (i.e., Jy = 0), these two bonds are
disconnected and we obtain a zero correlation. In this limit,
the lattice become a set of disconnected x − z zigzag chains
as shown in Fig. 10(b). However, when Jy becomes nonzero,
finite correlation develops and reaches the maximum at α =
π/4. For α above π/4, it starts decreasing and asymptotically
reaches zero at α = π/2 because this limit corresponds to
Jx = 0 for which the two bonds in the discussion again get
disconnected and the lattice become a set of disconnected
y − z zigzag chains as shown in Fig. 10(a). Also, we observe
that in the present context there is no qualitative difference
between the four-level and six-level L-Z quench dynamics as
expected.

FIG. 10. Lattice structure of 3D Kitaev model. (a) When α =
π/2, which corresponds to Jy, Jz �= 0 but Jx = 0 (the absent bonds)
and (b) when α = 0 which corresponds to Jx, Jz �= 0 but Jy = 0 (the
absent bonds).

2. Correlation function in (0,0,1) direction

Next we calculate the correlation function for r = (0, 0, 1).
The two z-bonds are next-neighbor along a z − x zigzag chain
extending in vertical direction. For α = 0, it is expected to
have maximum correlation and should decrease monotoni-
cally as we increase Jy. The red graph in Figs. 9(a) and 9(b)
show exactly the expected behavior. The corresponding lattice
structure is shown in Fig. 10(b).

3. Correlation function in (1,0,1) and (1,1,1) direction

For completeness, we present the correlation functions for
r = (1, 0, 1) and r = (1, 1, 1). They are represented by blue
and black graphs, respectively, in Fig. 9. We notice that unlike
r = (1, 0, 0), the maximum (or minimum) value does not
appear for α = π/4, though they have zero value for α = 0
and π/2. This is attributed to the fact that to connect two
z-bonds of type 1 in (1,0,1) and (1,1,1), one needs to traverse
an unequal number of x and y bonds, which results in shifting
their respective maxima away from α = π/4

We re-emphasize that the zero value of correlation function
in all the above-mentioned cases can be easily understood by
noticing that for α = π/2, the lattice reduces to disconnected
z − y chains as drawn in the right panel of Fig. 10(a). Simi-
larly, at α = 0 the lattice becomes disconnected z − x chains
as depicted in Fig. 10(b).

VI. ENTROPY

In this section, we calculate the von Neumann entropy of
the final quenched state. We note that the initial state is a prod-
uct of the pure states and remains so due to the unitary evo-
lution. However, for a given momentum k, the quenched state
at any instant is a linear superposition of the instantaneous
ground state and the other excited states whose probabilities
exhibit explicit time dependence. It causes the off-diagonal
matrix elements of the density matrix to be time dependent
(and oscillatory too) and leads to intrinsic decoherence such
that for long quench times, the final quenched state is equiv-
alent to a decohered state [47]. It is therefore pertinent to
calculate the von Neumann entropy of this quenched state at
t → ∞. The physical reason behind this entropy generation
is the underlying nonequilibrium processes in the quench dy-
namics and subsequent production of defects.
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As explained above, for the four-level L-Z problem, the
instantaneous state of the system |�4(k, t )〉 can be ex-
pressed as |�4(k, t )〉 = ∑

i

√
Ai(k, t )|i(k, t )〉, i = 0, 1, 2, 3,

where |i(k, t )〉 represents the instantaneous diabatic states (see
Fig. 2) and Ai(k, t ) are the respective probabilities.

Keeping in mind that the off-diagonal element of the den-
sity matrix constructed from |�4(k, t )〉 does not contribute to
the expectation value of any thermodynamic quantity [47], the
von Neumann entropy of the quenched state at t = +∞ is
given by

S = −
∫

HBZ

d3k

�HBZ

∑
i

Ai(k,∞) ln[Ai(k,∞)], (22)

where the above equation contains only the time-independent
diagonal elements of the density matrix. The above equation
is evaluated numerically to obtain the von Neumann entropy
of the final decohered state. Moreover, one can write an equiv-
alent expression of |�4(k, t )〉 within ICA as

|�4(k, t )〉ICA = √
P00e−iE0,kt |0〉 + √

P02e−iE2,kt |2〉
+√

P03e−iE3,kt |3〉, (23)

where the eigenvalues En,k are essentially corresponding to
t = ±∞ and P′

i js are the matrix elements of the transition ma-
trix Eq. (B7). However, the final density matrix of the system
still remains diagonal as the rapidly oscillating off-diagonal
terms do not affect any physical quantity [47,50]. Therefore,
the von-Neumann entropy can be evaluated in the quenched
state by the following formula:

S(ICA) = − 1

�HBZ

∫
HBZ

d3k

[∑
i

P0i ln P0i

]
, i = 0, 2, 3.

(24)
In the limit of very small τ , i.e., τ → 0, P00 → 1 and P02 =
P03 = 0, the von Neumann entropy is zero. A procedure sim-
ilar to Eq. (22) can be implemented for the six-level L-Z
problem and the von Neumann entropy can be computed
numerically. However, contrary to the four-level problem,
an expression of the quenched state equivalent to Eq. (23)
cannot be obtained for the six-level L-Z problem due to the
appearance of the dynamic phases in some of the probability
amplitudes (see Appendix C).

The von Neumann entropy of the initial state is zero be-
cause in this case P00 = 1 [see (24)]. The nonequilibrium
process caused by quenching is expected to generate finite
entropy by inducing transitions to the other states such that
P00 < 1. The von Neumann entropy is plotted as a function
of Jτ and α in Figs. 11(a) and 11(b) for the four-level and
six-level problems, respectively. We notice from Fig. 11 that
for a given α, the entropy reaches the maximum at a certain
value of Jτ , then decreases monotonically and asymptoti-
cally saturates to a finite value. This finite value appearing
at t → +∞ is due to the fact that the final state is a linear
superposition of the ground state of t = +∞ and the defect
states.

To obtain a more physical insight to this final decohered
state originiating from the quenching, we plot the correlation
function as a function of Jτ for some representative values
of α in Fig. 12. The correlation function exhibits the form
1
τ

e−Aτ derived in Eq. (21) as a function of quench time Jτ .

FIG. 11. von Neumann entropy. Plot of von-Neumann entropy
S as a function of Jτ and α. (a) The plot corresponds to the four-
level problem where black dots are obtained from exact numerical
calculations of Eq. (22), and the three-dimensional plot is obtained
from the ICA [evaluating Eq. (24)]. (b) The plot corresponds to the
six-level problem obtained by exact numerical calculation of Eq. (22)
but with i = 0 − 5. In this case, the reason for not evaluating the
S(ICA) is explained in the text.

Comparing Figs. 11 and 12, we see that for a given α, the
entropy behaves the same as the correlation function as a
function of Jτ . It indicates that the quenching generates,
through the defect production, the correlation between the
Majorana fermions (and therefore, spins) beyond the nearest
neighbors, which manifests itself in the increased entropy of
the final state. Also, the similar dependence of the entropy
(of the final state) and the correlation function as a func-
tion of Jτ conform to the fact that the quenched state is an
inherently decohered state whose density matrix can be rep-
resented by the time-independent diagonal elements. These
diagonal elements, in effect, determine the expectation values
of any thermodynamic quantities (correlation function in this
case) [47].

VII. CONCLUSIONS AND DISCUSSIONS

To summarize, we have studied the quench dynamics and
defect production in the spin- 1/2 3D Kitaev model within
the setup of a multilevel L-Z problem. By mapping the spin
Hamiltonian to a quadratic Hamiltonian of Majorana fermions
hopping in the background of a uniform static Z2 gauge field
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FIG. 12. Variation of correlation functions with Jτ : Plot of cor-
relation function (as defined earlier) as a function of Jτ and for a
few representative values of α and direction. Upper panel: Four-level
problem. Lower panel: Six-level problem. In both plots, the black
dots are numerically obtained and the solid lines are obtained from
ICA. We see that though maximum of correlation function explains
the maximum of entropy given in Fig. 11, it cannot explain why
the maximum of the entropy is almost constant for all α. (1,0,0)
and (0,1,0) direction correlations are identical for symmetry reasons.
Here maximum correlation function obtained for a given α has been
plotted.

corresponding to each bond, we have obtained a Hamiltonian
with 4 × 4 block diagonal form in the momentum space. We
have constructed a four-level and six-level L-Z problem by
filling up the lowest negative energy state and both the neg-
ative energy states, respectively. Our analytical calculations
using the ICA agree with the corresponding exact numerical
calculations. Our major findings are the following:

(1) In the limit of very slow quench, viz., τ 
 1, the defect
density nd scales as τ−1 with the quench time τ and satisfies
the general scaling law nd = τ− mν

zν+1 , with m = 2 and ν = z =
1, where ν is the critical exponent of the correlation length
and z is the dynamic critical exponent. Moreover, in the τ 
 1
limit for a fixed τ , the defect density is found to be maximum
at α = 0 and π/2, and at π/4 exhibits a local maximum.

(2) In the limit of very slow quench, the defect correlation
function is found to scale as τ−1e−A/τ with the quench time τ .
Furthermore, the correlation function is found to be spatially
symmetric in the x − y-plane (or, equivalently, in the a1 − a2

plane) and asymmetric in the other two planes for Jx = Jy.
However, in general, the defect correlation is anisotropic for
Jx �= Jy.

(3) We have evaluated the residual entropy in the final
state after quenching as a function of the system parameter.

The dependence of the entropy on the quench rate is qualita-
tively the same as that of the correlation function.

In the following, we discuss all the above-mentioned find-
ings one by one.

The scaling behavior of the defect density obtained in the
3D Kitaev model considered hare is a direct consequence of
the way the system enters into the non-adiabatic regime. The
nonadiabatic condition, governed by |	1k|2 = 0, where 	1k

is the relevant coupling between the levels determining the
defect density, does not ensure the spectrum of the system to
be gapless. The fact that the defect density satisfies the general
scaling law nd = τ− mν

zν+1 , proposed in Refs. [14,17], indicates
a deeper connection between the gapless condition for the en-
ergy spectrum and the nonadiabatic condition. For the present
model, the parameter 	1k appears within the condition for the
spectrum to be gapless, but the zeros of 	1k do not ensure
the gaplessness of the spectrum. Incidentally, the zeros of 	1k

and the spectrum both constitute their own set of d − m = 1
dimensional critical lines which ensure the general scaling law
being satisfied. This is unlike the 2D Kitaev model where the
gapless condition itself determines the nonadiabaticity [17].
We further speculate that the departure of the scaling law from
the above-mentioned behavior may be possible in a multilevel
L-Z problem if the relevant nonadiabatic condition exhibits a
different dimensional dependence than the condition for the
energy spectrum to be gapless. Finding such a possibility or
lack of it, we believe, is a definitive direction of theoretical
investigation in the future.

The dependence of the defect density on α originates form
the nature of the effective-DOS corresponding to the function
	1k in the gapless phase as shown in Fig. 5. Physically, the
effective DOS quantifies the number of k states satisfying the
nonadiabatic condition. When the quenching process takes the
system across the gapless phase, the number of k states satis-
fying the nonadiabatic condition is the maximum at α = 0 and
π/2. This leads to a larger defect formation at these values
of α. On the other hand, the number of k states satisfying
the nonadiabatic condition at α = π/4 is locally maximum,
making the defect density locally maximum as well.

Moreover, when Jx = Jy, the lattice retains its full 3D
structure and the nearest-neighbor dimers are placed along
the a1 and a2 directions. From Fig. 1, it is easy to recognize
that when Jx = Jy, a dimer finds an equal number of nearest-
neighbor dimers in both a1 and a2 directions. This makes the
defect correlation in the a1 − a2 plane to become symmetric
with respect to the |a1| = |a2| line. For other planes, such a
condition is not satisfied. It turns out that when either Jx or Jy

vanishes, the lattice becomes a set of decoupled chains (see
Fig. 10) and only those correlations survive for which a dimer
can find another dimer in the same chain.

Starting from a trivial product state of ferromagnetic
dimers, the quenching process takes the system to a final
state whose density matrix can be approximated as a suit-
able reduced density matrix exhibiting a finite value of the
von Neumann entropy. Most certainly, the final state contains
the ground state of the Hamiltonian at t = ∞ and the other
excited states. The postquench (at t = ∞) ground state of
the Hamiltonian exhibits a structure where antiferromagnetic
dimers are sitting on each z link. In this regard, it is worth-
while to point out that our definition of the defect density
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quantifies the ferromagnetic component of the final state.
The maxima of the correlation functions and the entropy are
reached around same values of Jτ . This indicates that the
quenching process gives rise to the generation of a nonlocal
correlation which is further manifested in the finite values
entropy.

There exists a class of 3D materials, such as β− and
γ − Li2IrO3, containing Kitaev interactions as the effective
low-energy description [51]. These materials offer a possi-
bility to experimentally realize the quench dynamics in the
3D Kitaev model studied here. However, in these materials
apart from the Kitaev interactions, other interactions such as
Heisenberg interaction, asymmetric interaction of the type
SxSy, or even Dzyaloshinskii-Moriya interaction are present,
which destroy the exact solvability of the system. We expect
that the external pressure or magnetic field may become useful
in realizing a similar quench dynamics given the fact that these
parameters have been useful to realize the much-coveted spin-
liquid phase in the Kitaev materials [36,52,53]. In particular,
it has been pointed out that x–x-, y–y, or z–z-type interactions
can be changed by applying pressure [53]. Therefore, one can,
in principle, achieve the quench protocol we have considered,
viz., the variation of the strength of z − z interaction. We also
believe that an alternative way to realize our quench study,
as well as quench studies in other multilevel L-Z problems,
would be in the optical lattices as envisaged in a recent exper-
iment [54].
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APPENDIX A: GROUND STATES OF THE SINGLE AND
THE TWO-PARTICLE SECTOR

We have performed a unitary transformation to diagonalize
the upper-left and lower-right 2 × 2 blocks of Eq. (3). As a
result, we get the following relationship between the old �k

fermions [defined in Eq. (3)] and new ηi,k fermions:(
ψk

φk

)
= uk

(
η3k

η2k

)
,

(
ψ

†
−k

φ
†
−k

)
= uk

(
η0k

η1k

)
, (A1)

where uk is the 2 × 2 unitary matrix used in the above-
mentioned diagonalization, and k has been defined only over
the HBZ. The explicit expression for uk is given by

uk =
(−e−iθ2k e−iθ2k

1 1

)
, eiθ2k = 	2k

|	2k| . (A2)

The initial state for the four-level problem, which we de-
note by |I〉, is obtained by filling only the η0k of the vacuum
of ηik (|∅̃〉). Similarly, the ground state |G〉 for the six-level
problem is obtained by filling η0k and η1k . We then find the
following relations:

|∅̃〉 = η0kη1k|∅〉, (A3)

|I〉 = η
†
0k|∅̃〉, |G〉 = η

†
1kη

†
0k|∅̃〉. (A4)

In the above, |∅〉 is the original vacuum of the fermions rep-
resenting a zero-fermion state and we used the fact that |∅〉 is
already a vacuum for η2k and η3k .

All four singly occupied states corresponding to the four-
level problem are given by |0〉 = η

†
0k|∅̃〉, |1〉 = η

†
1k|∅̃〉, |2〉 =

η
†
2k|∅̃〉, and |3〉 = η

†
3k|∅̃〉. With these notations, we have de-

fined �4,k in Eq. (5). Similarly, for the six-level problem,
we enumerate all six doubly occupied states in terms of the
single-particle states and their respective energies as follows:

|0̃〉 = η
†
0kη

†
1k|∅̃〉, ε̃0 = 4J3, (A5)

|1̃〉 = η
†
0kη

†
2k|∅̃〉, ε̃1 = 0, (A6)

|2̃〉 = η
†
1kη

†
2k|∅̃〉, ε̃2 = −2|	2|, (A7)

|3̃〉 = η
†
0kη

†
3k|∅̃〉, ε̃4 = 2|	2|, (A8)

|4̃〉 = η
†
1kη

†
3k|∅̃〉, ε̃3 = 0, (A9)

|5̃〉 = η
†
2kη

†
3k|∅̃〉, ε̃5 = −4J3. (A10)

Within this notation, we have defined, in the Schrodinger
equation governing the time evolution of the system, �

†
6,k =

(|0̃〉, |1̃〉, |2̃〉, |3̃〉, |4̃〉, |5̃〉).

APPENDIX B: TRANSITION AMPLITUDES:
FOUR-LEVEL PROBLEM

To calculate the transition amplitudes, we first consider all
possible semi-classical paths corresponding to Fig. 2(a). As
mentioned in Sec. II, the ground state at t = −∞ is |0〉. First
we note that there are four crossing points, viz.,

|0〉 → |3〉 : with coupling constant : gk,

|3〉 → |0〉 : with coupling constant : −gk,

|1〉 → |2〉 : with coupling constant : −gk,

|2〉 → |1〉 : with coupling constant : gk,

|3〉 → |1〉 : with coupling constant : −γk,

|0〉 → |2〉 : with coupling constant : γk. (B1)

We apply the LZ formula by using the above coupling con-
stants corresponding to the respective crossing points. We
note that whenever a state crosses another state with cou-
pling constant gk (as well as −gk), the probability amplitude
that the system remains in the same state is given by ug =
exp (−π |gk |2(Jτ )

4J2 ). Therefore, the probability amplitude that the
system makes a transition is iξ

√
1 − (ug)2, where ξ = 1 when

the sign of the coupling constant is positive and ξ = −1,
when negative. These expressions for the crossing points with
coupling γk are same except |gk| shall be replaced by |γk|. In
the following, let us write down the transition amplitudes Si j

for all the semiclassically allowed paths. In writing such paths,
we need to consider the effect of the dynamic phase eiφi j

d (ν) in
a given path ν which is given by

φ
i j
d (ν) =

∫ +∞

−∞
dtενk (t ); with 0, 1, 2, 3, (B2)
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FIG. 13. Diabatic level diagram and the dynamic phase difference. Diabatic levels corresponding to the Hamiltonian Eq. (4). (a) The
semiclassical trajectories showing the possible paths along which a transition from state |1〉 to state |0〉 can take place. Similar trajectories
corresponding to the transitions from (b) state |1〉 to state |3〉, (c) state |2〉 to state |0〉, (d) state |2〉 to state |3〉 are shown. The blue dashed and
red solid trajectories shall henceforth be called trajectories (2) and (1), respectively. The gray shaded region is the dynamic phase difference
between the said trajectories.

where ενk (t ) are the diabatic energy levels participating in
the trajectory. This dynamic phase is nothing but the area
under the trajectory ν under consideration. All the transition
amplitudes corresponding to the transitions from state |0〉 to
the rest of the states are given by

|0〉 → |0〉 : S00 = uguγ ,

|0〉 → |1〉 : S01 = 0, not an allowed transition,

|0〉 → |2〉 : S02 = i
√

1 − u2
γ ,

|0〉 → |3〉 : S03 = iuγ

√
1 − u2

g. (B3)

In the above equation, the dynamic phases in the respective
trajectories get canceled when the square of the modulus
of the transition amplitudes are taken. Therefore, we have
dropped the term eiφ0 j

d (ν) corresponding to the dynamic phase.
Similarly, all the transition amplitudes corresponding to the
transitions from |1〉 to the rest of the states can be written
down. Here, while considering all the semiclassical trajecto-
ries, we need to consider the effects of the dynamic phases on
the transition amplitude in the corresponding trajectories,

|1〉 → |1〉 : S11 = uguγ ,

|1〉 → |0〉 : S10 = ug

√(
1 − u2

g

)(
1 − u2

γ

)[
eiφ10

d (1) − eiφ10
d (2)

]
,

|1〉 → |3〉 : S13 = i
√

1 − u2
γ

[(
1 − u2

g

)
eiφ13

d (1) − u2
geiφ13

d (2)
]
,

|1〉 → |2〉 : S12 = i
(√

1 − u2
g

)
uγ , (B4)

where in the above equation eiφi j
d (1) and eiφi j

d (2) are the dynamic
phases corresponding to trajectories (1) and (2), respectively,
and the phase difference is given by 	φd (2, 1) = φ

i j
d (2) −

φ
i j
d (1) = 4JzT 2 + |	2k|T , which is the area in the ε − t plane

bounded by both the trajectories. ±T are the points on the t
axis where the diabatic levels cross each other and the time
axis too. It is easy to recognize from Fig. 13 that the phase
difference is the same for all four transition amplitudes where
the dynamic phase plays its role. Likewise, all transition am-
plitudes corresponding to the transitions from |2〉 are given by

|2〉 → |2〉 : S22 = uguγ

|2〉 → |3〉 : S23 = −S10 (from symmetry),

|2〉 → |0〉 : S20 = −S13 (from symmetry),

|2〉 → |1〉 : S21 = i
(√

1 − u2
g

)
uγ . (B5)

Lastly, all transition amplitudes corresponding to the transi-
tions from state |3〉 are given by

|3〉 → |3〉 : S33 = uguγ ,

|3〉 → |2〉 : S32 = 0, not an allowed transition,
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|3〉 → |1〉 : S31 = −i
√

1 − u2
γ ,

|3〉 → |0〉 : S30 = −iuγ

√
1 − u2

g. (B6)

Therefore, the transition probability matrix is given by

P4 =

⎛
⎜⎜⎜⎜⎝

(uguγ )2 0
(
1 − u2

γ

)
u2

γ

(
1 − u2

g

)
|S10|2 (uguγ )2 u2

γ

(
1 − u2

g

) |S13|2
|S13|2 u2

γ

(
1 − u2

g

)
(uguγ )2 |S10|2

u2
γ

(
1 − u2

g

) (
1 − u2

γ

)
0 (uguγ )2

⎞
⎟⎟⎟⎟⎠,

(B7)

where the matrix elements of the above matrix is given by
Pi j = S∗

i jSi j , and

P10 = |S10|2 = 4u2
g

(
1 − u2

g

)(
1 − u2

γ

)
sin2

[	φd (2, 1)

2

]
,

P13 = |S13|2 = [
1 − 4u2

g

(
1 − u2

g

)](
1 − u2

γ

)
× cos2

[	φd (2, 1)

2

]
. (B8)

The quantity P(4)
00 used in Eqs. (8) is given by P(4)

00 = (uguγ )2.

APPENDIX C: TRANSITION AMPLITUDES:
SIX-LEVEL PROBLEM

The six-level matrix representation for the 3D Kitaev
Model is given by

Ũk =

⎛
⎜⎜⎜⎜⎜⎝

4J3 γk −gk gk −γk 0
γk ε 0 0 0 −γk

−gk 0 2|	2k| 0 0 gk

gk 0 0 −2|	2k| 0 −gk

−γk 0 0 0 −ε γk

0 −γk gk −gk γk −4J3

⎞
⎟⎟⎟⎟⎟⎠, (C1)

with J3 = Jt/τ , where the degeneracy removal term ±ε has
been used for the horizontal levels at zero energy. This is
perhaps the only way to apply ICA in a system exhibiting
more than one degenerate horizontal energy levels passing
through zero energy. However, to take the limit ε → 0 is
mandatory at the end of the calculation, and in this limit T1

also vanishes. The couplings at the crossings are given by

|0̃〉 ←→ |2̃〉 : gk; at t = −T2,

|0̃〉 ←→ |1̃〉 : −γk; at t = −T1,

|0̃〉 ←→ |4̃〉 : γk; at t = T1,

|0̃〉 ←→ |3̃〉 : −gk ; at t = T2,

|5̃〉 ←→ |2̃〉 : −gk ; at t = T2,

|5̃〉 ←→ |1̃〉 : γk; at t = T1,

|5̃〉 ←→ |4̃〉 : −γk; at t = −T1,

|5̃〉 ←→ |3̃〉 : gk; at t = −T2. (C2)

It is worthwhile to note that there is no direct coupling be-
tween states |0〉 and |5〉. At each crossing point, the crossing
involves a horizontal level (with zero slope) and a state with
definite nonzero slope ±4J/τ . Therefore, the denominator

in the corresponding two-level L-Z transition amplitude is
always 4J/τ for all available independent two-level L-Z tran-
sitions. There are only two types of transition amplitudes
for diabatic passage through any crossing point, viz., ug =
exp (−π |g|2Jτ

4J2 ) and uγ = exp (−π |γ |2Jτ

4J2 ) whereas the transi-
tion amplitude for the adiabatic passage through the crossing

points are iξ
√

1 − u2
g and iξ

√
1 − u2

γ , with ξ = ±1 as men-

tioned earlier.
Let us start by finding all the amplitudes corresponding to

the transitions from state |0〉 to all other states, viz.,

|0̃〉 → |0̃〉 : S00 = (uguγ )2eiφ00 ,

|0̃〉 → |2̃〉 : S02,

|0̃〉 → |1̃〉 : S01 = uγ ug(−i)
√

1 − u2
γ eiφ02 ,

|0̃〉 → |4̃〉 : S04 = uγ ug(i)
√

1 − u2
γ eiφ03 ,

|0̃〉 → |3̃〉 : S03 = u2
γ ug(−i)

√
1 − u2

geiφ04 ,

|0̃〉 → |5̃〉 : S05, (C3)

where φ′
0is are the dynamic phases associated with the paths.

In the above,

S02 = [
(i)ug

√
1 − u2

geiφ(1)
01 + ug

√
1 − u2

g(i)3
(
1 − u2

γ

)
eiφ(2)

01
]
,

S05 = [
(−i)(i)

(
1 − u2

g

)
eiφ(1)

05 + u2
g(−i)(i)

(
1 − u2

γ

)
eiφ(2)

05
]
.

(C4)

In the above equations, the dynamic phases associated with
the paths are given by

φ
(1)
02 =

∫ −T2

−∞

4Jt

τ
dt +

∫ T2

−T2

(−2|	2k|) dt

+
∫ ∞

T2

(−2|	2k|) dt,

φ
(2)
02 =

∫ −T1

−∞

4Jt

τ
dt +

∫ T1

−T1

(−ε) dt

+
∫ T2

T1

(
−4Jt

τ

)
dt +

∫ ∞

T2

(−2|	2k|) dt, (C5)

implying, in the limit ε → 0,

	φ02 = φ
(1)
02 − φ

(2)
02 = −4|	2k|T2, (C6)

φ
(1)
05 =

∫ −T2

−∞

4Jt

τ
dt +

∫ T2

−T2

(−2|	2k|) dt

+
∫ ∞

T2

(
−4Jt

τ

)
dt,

φ
(2)
05 =

(∫ −T2

−∞
+

∫ −T1

−T2

)
4Jt

τ
dt +

∫ T1

−T1

(−ε) dt

+
(∫ T2

T1

+
∫ ∞

T2

)(
−4Jt

τ

)
dt, (C7)

implying, in the limit ε → 0,

	φ05 = φ
(1)
05 − φ

(2)
05 = −4|	2k|T2. (C8)
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FIG. 14. Six-level problem, diabatic levels. Plot of the diabatic
energy levels corresponding to the six-level problem as a function of
time.

It is worthwhile to note that once again (as was the case for
four-state model) the dynamic phase difference is equal to the
area under the curve. The transition probabilities are given by
P00 = |S00|2 = (uguγ )4; this is the quantity we have defined as
defect probability in Eqs. (8). Similarly, P01 = |S01|2 = P04 =
|S04|2 = (uguγ )2(1 − u2

γ ) (note that they are equally proba-
ble), P03 = |S03|2 = (uγ )4u2

g(1 − u2
g), and

P02 = S∗
01S01

= u2
g

(
1 − u2

g

)[
1 + (

1 − u2
γ

)2 − 2
(
1 − u2

γ

)
sin(	φ01)

]
,

P05 = S∗
05S05

= (
1 − u2

g

)2 + [
u2

g

(
1 − u2

γ

)]2 + 2
(
1 − u2

γ

)
u2

g

(
1 − u2

g

)
× cos(	φ05). (C9)

Although we have defined P00 only as the defect probability,
the other probabilities except P05 are still representing proba-
bilities of the system going into different adiabatic states other
than the adiabatic ground state |5〉 at t = ∞. As a whole, the
total probability must be one, i.e., (P00 + P01 + P02 + P03 +
P04 + P05) = 1. Furthermore, it is easy to determine the re-
lation between the time T2 and the other parameters of the
system to be T2 = |	2k |

2J2 (Jτ ), from the fact that the slope of the
diabatic energy curve, 2|	2k |

T2
= 4J

τ
. In the limit of Jτ 
 1, we

expect the dynamic phase difference to be large enough and
can be considered as a random phase.

In the above analysis, we have considered all the transitions
from state |0̃〉 since it is the ground state of our 3D Kitaev
model at t = −∞. One can follow the methodology explained
above to get the entire transition probability matrix as has been
done for four-state representation of the model however, this
is unnecessary for our purpose.

APPENDIX D: FITTING OF NUMERICALLY OBTAINED
DEFECT DENSITY

In the following, we have plotted the ln(nd ) corresponding
to the six-level representation as a function of ln(Jτ ) for
different values of α. We have found that when α = 0 and
π/2 the exponent of the defect density is 1/2, which is as ex-
pected since in these two limits the 3D Kitaev model becomes

(a)

(b)

FIG. 15. Log-log plot of defect density as a function of Jτ .
(a) Plot of ln(nd ) vs ln(Jτ ) in the Jτ 
 1 limit (in this case, Jτ > 10)
for the numerically obtained defect density. Black circle, blue square,
and red diamond correspond to α = π/4, π/8, and 3π/8, respec-
tively. (b) Plot of ln(nd ) vs ln(Jτ ) in the Jτ 
 1 limit (in this case,
Jτ > 10) for the numerically obtained defect density. Blue circle
corresponds to α = 0 and green circle corresponds to α = π/2. The
expressions at the top of both plots represents ln(nd ) = ln ( A

(Jτ )b ) =
ln A − b ln(Jτ ), where b determines the exponent corresponding to
the scaling of the defect density.

disconnected Kitaev chains exhibiting a scaling of τ−1/2. For
other values of α, the defect density scales as τ−1 according
to ICA and as shown in Fig. 15(a); the numerically obtained
scaling is τ−0.9 which matches with the ICA value (within
the numerical accuracy). We have checked that the four-level
problem exhibits exactly the same quantitative behavior with
respect to the scaling of the defect density. However, we have
not provided the corresponding plots to avoid redundancy.

APPENDIX E: DERIVATION OF THE CORRELATION
FUNCTION EXPRESSION CORRESPONDING TO EQ. (18)

The correlation function as defined in Eq. (17) can be
expressed in terms of the original ψ (R) and φ(R) fermions
in real space as follows:

ic1a(R)c1b(R + r)

= 1
4 (ψ (R) + ψ†(R))(ψ (R + r) − ψ†(R + r)), (E1)

= 1
4 (ψ (R)ψ (R + r) − ψ (R)ψ†(R + r)

+ψ†(R)ψ (R + r) − ψ†(R)ψ†(R + r)). (E2)
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Now we use the Fourier transformation ψ (R) =
1√
N

∫
dkeik·Rψk . We notice that contributions from the

first and last terms are zero, and contributions from
the second and the third are conjugate to each other.

With the above expressions, we use the definitions in
Eq. (A1) to re-express correlation function in terms
of αik and, using orthogonality of states, we arrive at
Eq. (18).
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