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Effective phononic crystals for non-Cartesian elastic wave propagation
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Phononic crystals show novel characteristics when it comes to acoustic and elastic wave propagation control.
Nevertheless, most studies on phononic crystals are based on a plane wave assumption because this allows
for application of Bloch theorem and analysis of the infinite system based on a single unit cell. However, the
plane wave assumption is not valid in the near field of a source, where the wave front takes cylindrical or
spherical form. Here, we overcome this limitation by introducing the concept of effective phononic crystals,
which combine periodicity with varying isotropic material properties to force periodic coefficients in the elastic
equations of motion in a non-Cartesian basis. The periodic coefficients allow for band structure calculation
using Bloch theorem. Using the band structure, we demonstrate band gaps and topologically protected interface
modes can be obtained for cylindrically propagating waves. Through effective phononic crystals, we show how
behaviors of Cartesian phononic crystals can be realized in regions close to sources, where near-field effects are
non-negligible.
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I. INTRODUCTION

Phononic crystals (PC) and metamaterials have shown
great promise when it comes to acoustic and elastic wave
propagation control. For example, band gaps can be tailored
through geometry [1,2] and tuned through external stimuli
[3–5] to prevent select frequency bands from propagating.
Through band gap formation and tailored anisotropy, more
complex phenomena such as negative refraction can be real-
ized [6,7], which can break the diffraction limit [8] resulting in
enhanced imaging. Topologically protected states, stemming
from quantum physics, have also been realized in PCs [9–12],
which provide robust wave guiding and protection against
backscattering.

Despite novel properties of PCs, most studies assume
Cartesian plane waves, limiting their application to plane
wave excitation or in the far field of sources. The main reason
for such assumption is that a plane wave propagating in a
medium with invariance to Cartesian translations is described
by equations of motion that have periodic coefficients. Their
solution satisfies the Bloch theorem [13] and thus the analysis
of the infinite system can be reduced to obtaining the band
structure of a single unit cell. This is not the case in the near
field of a point source, where waves propagate cylindrically
in two dimensions, or spherically in three dimensions. Ax-
isymmetric/cylindrical wave propagation is usually described
in terms of Bessel functions that are solutions to differential
equations where first and second derivatives are multiplied
by the independent variable. For this reason, unlike in the
Cartesian basis, a medium with radial translational invariance
does not yield equations of motion with periodic coefficients.
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Thus, the Bloch theorem is not applicable, and properties of
PCs based on this type of analysis are not valid in this case.

Still, radially periodic media have been studied using alter-
native approaches to calculate approximate band structures,
such as using a radial dependent Floquet propagator [14] or
by assuming a sufficiently large radius to approximate plane
waves [15,16]. Other studies avoid Bloch analysis and study
only finite structures with alternating homogeneous rings
[17–19]. Nonetheless, their behavior depends on where the
finite system is truncated, and the band structure cannot be
calculated.

However, band structure calculation is of great importance
in PCs: A major contribution to the exponential growth of
the field is the unification of wave phenomena in condensed-
matter physics, electromagnetism, and classical mechanics
through band structure analysis; e.g., topologically protected
edge wave propagation was first developed for quantum
systems [20] and super-resolution was first developed in pho-
tonics [8]. Band structure analysis in the polar basis has been
done in radial wave crystals [21], which contain heteroge-
neous media with anisotropic mass density that force periodic
coefficients in the scalar wave equation. These materials have
been shown to exhibit Fabry-Perot-like resonances [21] and
source position detection capabilities [22] in acoustic and
electromagnetic anisotropic systems. However, even though
anisotropic mass density is possible in radially periodic struc-
tures [23], it significantly complicates physical realization. In
fact, radial wave crystals have only been physically realized
in their electromagnetic version [22]. Further, this approach is
limited to acoustic waves in fluids and electromagnetic waves.

In this paper, we extend the concept of radial wave crys-
tals to elastic waves, by combining periodicity with radially
varying isotropic material properties, which we term effec-
tive phononic crystals (EPC). By explicitly choosing how
the material properties depend on radius, we enforce the
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elastodynamic equation in radial coordinates to contain dis-
placements that satisfy the Bloch theorem, while avoiding the
need for anisotropic density. We will show how this approach
enables PC properties, such as band gaps and topological
edge modes, to occur close to sources where near-field effects
are significant. We demonstrate how to generally realize PC
properties in non-Cartesian systems for elastic waves using
radial axisymmetric torsional two-dimensional (2D) waves,
which are relevant for, e.g., rotating machinery [24] and liq-
uid sensing [25]. Still, our approach can be applied to other
polarizations, wave propagation directions, and dimensions.
For example, a combination of a radially dependent elastic
foundation [Eq. (S5)] and radially dependent material proper-
ties [Eqs. (S6) and (S7)] will result in periodic coefficients for
radially propagating waves (see Supplemental Material (SM)
[26]). Here, we specifically show that EPCs allow for band
gaps and topological interface modes in the near field.

II. ANALYTICAL DESCRIPTION OF EFFECTIVE
PHONONIC CRYSTALS

The equation of motion and constitutive law for radially
propagating torsional waves in a 2D heterogeneous isotropic
medium, assuming an axisymmetric displacement field, can
be reduced to [27]

∂σrθ (r, t )

∂r
+ 2

r
σrθ (r, t ) + Fθ = ρ(r)

∂2uθ (r, t )

∂t2

σrθ (r, t ) = μ(r)
(∂uθ (r, t )

∂r
− uθ (r, t )

r

)
, (1)

where μ is the shear modulus, uθ is the tangential displace-
ment, ρ is the material density, and Fθ is a tangential body
force (see SM for full derivation [26]). Under free vibration
and applying separation of space and time [i.e., uθ (r, t ) =
Uθ (r) f (t )] the spatial equation of motion is

μ(r)
∂2Uθ (r)

∂r2
+

(∂μ(r)

∂r
+ μ(r)

r

)(∂Uθ (r)

∂r
− Uθ (r)

r

)

= −ω2ρ(r)Uθ (r). (2)

In Eq. (2), imposing material properties μ(r) and ρ(r)
to be invariant to radial translations of the form r = r + na,
where n is an integer, will not result in an ordinary differential
equation with periodic coefficients. Thus, we cannot apply
Bloch theorem nor calculate band structure. We instead define
a set of isotropic material properties that are not invariant
to translation but do enforce periodic coefficients in Eq. (2).
This type of material becomes a phononic material not from
geometrical periodicity, i.e., invariance of geometry to lattice
constant translations in the direction of the basis vectors,
but because their material properties describe an effectively
periodic system. Thus, we define them as effective phononic
crystals. Note that Cartesian PCs are a subset of EPCs that
also have geometric periodicity. Like Cartesian PCs, there is
not a unique way of designing an EPC. Here, we present two
possible designs, one targeting effective periodicity in terms
of angular displacements (EPC1) and the other in terms of
tangential displacements (EPC2).

FIG. 1. (a) Quarter section of the effective phononic crystal for
torsional wave propagation. (b) Radial dependence of material prop-
erties for EPC1 [Eqs. (4) and (5)]. (c) Radial dependence of material
properties for EPC2 [Eqs. (8) and (9)]. The EPCs shown here have
r0/a = 1.

One way of realizing an EPC is to rewrite Eq. (2) in terms
of angular displacements (�(r) = Uθ (r)/r):

∂

∂r

(
μ(r)r3 ∂�(r)

∂r

)
= −ω2ρ(r)r3�(r). (3)

We now define material properties in a piecewise fashion,
such that

μ(r) =
{

M1/r3 r ∈ D1

M2/r3 r ∈ D2
, (4)

ρ(r) =
{

P1/r3 r ∈ D1

P2/r3 r ∈ D2
, (5)

where D1 = {r ∈ IR > 0|r0 + (n − 1)a � r < r0 + na − a2},
D2 = {r ∈ IR > 0|r0 + na − a2 � r < r0 + na} [Fig. 1(a)],
r0 is the internal radius of the EPC, a = a1 + a2 is the
periodicity constant, ai is the thickness of heterogeneous
layer i, n is an integer, and Mi, Pi are constant in each layer
[Fig. 1(b)]. Essentially, the system consists of alternating ring
layers with heterogeneous isotropic material properties. We
refer to this EPC as EPC1. With these material properties,
Eq. (3) is reduced to a second-order ordinary differential
equation with periodic coefficients,

∂2�i(r)

∂r2
+ Pi

Mi
ω2�i(r) = 0. (6)

Note that: (i) the material properties are not geometrically
periodic, and (ii) the periodic coefficients are obtained in
terms of angular displacements, and thus, this material will
behave as an EPC in terms of angular displacements. We
can now apply Bloch theorem and moment and displacement
continuity between layers to obtain the band structure of the
EPC [13]:

cos (Ka) = cos (k1a1) cos (k2a2)

− 1 + z2

2z
sin (k1a1) sin (k2a2), (7)

where ki
2 = ω2Pi/Mi, z2 = M2P2/M1P1, and K is the Bloch

wave number in the radial direction (see SM [26] for full
derivation). This dispersion relation is analogous to that of
an equivalent bilayer Cartesian PC with elastic moduli Mi,
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FIG. 2. (a) Quarter section of the EPC for r0/a = 0.1(top), r0/a = 1 (middle), and r0/a = 10 (bottom). Images do not have the same scale.
(b) Dispersion relation for the EPCs [Eq. (7)] for a1 = a2 = 0.05m (dashed lines show imaginary Bloch wave number). Transmission curves
for: (c) radially alternating homogeneous rings, (d) EPC1, and (e) EPC2, each plotted for r0/a = 0.1 (red), r0/a = 1 (green), r0/a = 10 (blue),
and compared to the equivalent Cartesian PC (black dashed).

density Pi, and layer thickness ai [28]. Thus, we expect prop-
erties of Cartesian bilayer system to apply to this EPC.

A second way to obtain an EPC is to define the shear
modulus in such a way that the second term in Eq. (2) is
zero for all Uθ (r), and selectively define density. This way,
we recover an analogous equation to Eq. (6) but in terms of
tangential displacements. We do this by setting

μ(r) =
{M1/r r ∈ D1

M2/r r ∈ D2
, (8)

ρ(r) =
{P1/r r ∈ D1

P2/r r ∈ D2
. (9)

We refer to this EPC as EPC2 [Fig. 1(c)], where the tan-
gential displacements follow an ordinary differential equation
with periodic coefficients (i.e., we can apply Bloch theorem
to the tangential displacement equation). However, due to the
dependence of stress on the first derivative of the tangen-
tial displacement [Eq. (1)], the band structure is not equal
to Eq. (7) but asymptotically approaches it as frequency in-
creases. In fact, the transmission of EPC1 is quite close to
the transmission of a Cartesian PC well below the Bragg
frequency [Fig. 2(e)]. The reader is referred to the SM [26]
for more details on the dispersion relation calculations.

III. BAND GAPS IN EPCs

To validate our approach, we calculate transmission of
radial torsional waves using finite element analysis for fi-
nite 4-unit cell EPC1 and EPC2 [Figs. 2(d) and 2(e)]. As a
comparison, we also calculate transmission of a material with
homogeneous alternating ring layers with shear modulus and
density of layer i equal to Mi and Pi, respectively [Fig. 2(c)].
This material is geometrically periodic but not effectively
periodic [Eq. (2)]. In all three systems, we impose a harmonic
tangential displacement on the inner boundary and traction-
free boundary conditions on the outer boundary. Since EPC1
has effective periodicity in terms of angular displacement,
transmission is calculated as the ratio of outer boundary to
inner boundary angular displacement. For EPC2 transmission
is calculated based on tangential displacements. As a bench-
mark, we also calculate transmission of plane Cartesian waves

propagating in the equivalent Cartesian PC using the transfer
matrix method.

The transmission of the homogeneous layered system is
strongly dependent on r0/a [Fig. 2(c)], and deviates in am-
plitude and frequency from the equivalent Cartesian system
at small r0/a. This means that transmission also depends
on where we truncate this material. This demonstrates that
pure radial tessellations do not result in effective periodicity.
For small r0/a, the modes shift toward higher frequencies,
shifting the transmission reduction region (usually associated
with a band gap) toward higher frequencies [Fig. 2(c), red
curve]. This can be explained by considering the solution
of an outward propagating radial torsional wave propagating
in a semi-infinite homogeneous medium (see SM [26]). The
phase velocity of this wave is inversely proportional to radius
and asymptotically approaches the bulk material shear wave
speed as radius increases [see Fig. S2(c) in Ref. [26]). The
phase velocity of the first few rings is higher and thus the
overall frequency shifts. As the ratio between internal radius
and lattice constant increases, the transmission approaches
that of a Cartesian PC. Essentially, in the far field, radially
propagating waves approximate plane wave fronts.

For both EPCs, we observe very good agreement between
transmission reduction and the band gap predicted from the
dispersion relation [Figs. 2(a), and 2(d) and 2(e)]. For EPC1,
the dispersion relation is exact and equivalent to that of a
Cartesian PC. Note that this specific material behaves periodic
only to angular displacements; thus, Bloch wave homogeniza-
tion in the long-wavelength region can only be applied for
this propagation direction and polarization. This will result
in an effective density and shear modulus in rθ plane that
are equivalent to those of the Cartesian PC. Since the system
does not behave as a PC in the other directions/polarizations,
other methods of homogenization (i.e., an elastostatic ap-
proach [29]) must be used to calculate the remaining effective
material properties. Like other one-dimensional (1D) periodic
media, these EPCs will generally have anisotropic effective
material properties. The transmission curves are independent
of unit cell truncation for all frequencies and exactly corre-
spond to the Cartesian system. Note that even though the EPC
is defined for a semi-infinite media (i.e., r � 0), the results
are independent of unit cell truncation even when r0/a < 1.
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FIG. 3. (a) Quarter section of the superlattice for r0/a = 0.1. (b) Dispersion relation for the EPCs sublattices (dashed lines show imaginary
Bloch wave number and shaded regions band gap frequencies). (c) Transmission from inner boundary to interface of the superlattice for
homogeneous layers (red), EPC1 (green), EPC2 (blue), and equivalent Cartesian PC (black dashed). (d) Magnitude of modal displacement at
interface mode frequency for homogeneous layers (red), EPC1 (green), EPC2 (blue), and equivalent Cartesian PC (black dashed) in terms of
normalized spatial coordinate [x̄ = (r − r0)/(rmax − r0) for radial PCs and x̄ = x/xmax for Cartesian PC]. The inset shows zoom-in view of
modal displacements. (e) Normalized modal displacements of the EPC1 at the interface mode frequency.

This means that even though we cannot physically add a unit
towards smaller radii, the system still behaves as infinitely
periodic.

For EPC2, the band structure [Fig. 2(a)] accurately char-
acterizes the EPC above a certain frequency (thus Bloch
wave homogenization in the long-wavelength region is not
possible in this case), which is well below the first Bragg
frequency. Above this frequency, the transmission through
EPC2 is independent of unit cell truncation and approximates
that of the Cartesian PC [Fig. 2(e)]. It is crucial that the band
structure is accurate well below the band gap frequencies
since many interesting properties of PCs arise from band gap
formation. The response of this EPC is a dynamic effect: As
we approach a quasistatic condition (frequency approaches
zero), a tangential displacement in the inner boundary does
not result in an equal tangential displacement in the outer
boundary.

The benefit of band gaps in PCs is that mechanical energy
can be effectively transmitted over a band of frequencies,
while another band of frequencies is effectively attenuated.
In this sense, since the EPCs [Figs. 2(d) and 2(e)] exhibit this
behavior, they are clearly superior to the homogeneous lay-
ered material [Fig. 2(c)], which does not effectively transmit
energy in propagating bands. However, in terms of absolute
vibration mitigation over all frequencies, the homogeneous
layered material actually provides the largest vibration mit-
igation, due to diffraction as the wave propagates outward.
However, this will not be true if the wave were to propa-
gate inward, as in the case of vibrations from the teeth of
a gear to its center shaft. In the latter case, the wavefront
expansion would increase vibration amplitudes resulting in
higher transmission. Instead, the EPCs mimic a Cartesian
system and thus diffraction is effectively compensated by
the prescribed material properties, irrespective of the wave-
propagation direction. For inward propagation, this will result
in lower vibration transmission inside the band gap compared
to the homogeneous layered material. The EPCs presented
here are indeed not unique but represent a subset of possible

ways to overcome issues with non-plane waves and near-field
vibrations.

IV. TOPOLOGICALLY PROTECTED
INTERFACE MODES IN EPCs

Through EPCs, we can embed behaviors of Cartesian PCs
and metamaterials, such as band gaps, in non-Cartesian waves
by redefining the material properties to be nonperiodic. To
further demonstrate this last point, here we show how to
realize topologically protected modes in the EPCs.

Topological concepts in mechanical systems arise from a
correlation between bulk electron bands in a crystal and bulk
vibration bands in periodic lattices [30]. Both electrons and
phonons in periodic media can be characterized with Bloch
wave solutions, and thus topological quantities based on these
can be applied to both domains. However, such behaviors
cannot be embedded in material with radial geometric period-
icity, since these structures are not described by Bloch wave
functions. Instead, we use EPCs that are effectively periodic,
to enable topological properties to be applied to radially prop-
agating waves.

We target a topological interface mode since the EPCs
analyzed here consider 1D wave propagation. It is well known
that a topologically protected mode is generated at the in-
terface of two phononic crystals with different topological
properties. This has been well developed in 1D plane waves
for acoustic [9,31] and elastic waves [10,12,32] but to the
authors’ knowledge it has not yet been shown in other basis
systems.

To obtain a topological interface mode in the cylindrical
basis, we design an EPC superlattice made of two EPC sub-
lattices that follow the formulation of Eqs. (4) and (5) and
Eqs. (8) and (9) [Fig. 3(a)] and r0/a = 0.1. Sublattice A has
a1 = 1/3a and a2 = 2/3a, and sublattice B has a1 = 2/3a and
a2 = 1/3a, where a = 0.1m. Both sublattices have the same
band structure [Fig. 3(b)] but different topological invariants
in their second band: Sublattice A has a second band Zak
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phase of 0 and sublattice B a second band Zak phase of π (see
SM [26]). Because of the difference in topology, a topological
interface mode between sublattices arises inside the second
band gap [Fig. 3(c)]. We calculate transmission from inner
ring to the interface and compare superlattices made of EPC1,
EPC2, homogeneous layer rings, and the equivalent Cartesian
superlattice [Fig. 3(c)].

Transmission results show a mode inside the second band
gap for both EPC1, EPC2, and the homogeneous layered
rings, suggestive of an interface mode. However, we will show
that only EPC1 and EPC2 support an interface mode. The
mode corresponding to the homogeneous layered system is
shifted to a higher frequency for the same reason as the band
gap shift [Fig. 2(c)]. To characterize how localized this mode
is at the interface, we run an eigenfrequency analysis and plot
the modal displacement of the interface mode normalized by
the maximum value [Fig. 3(d)]. While there is some local-
ization in all systems, the homogeneous system clearly does
not show the characteristic behavior of a topological interface
mode: There is no increase in oscillating displacements from
source boundary (x̄ = 0) to the interface (x̄ = 0.5). This is
particularly evident close to the inner boundary where the
effect of diffraction is more significant. In fact, close to the
source, modal displacements are about 5 times larger than
those of EPC1, EPC2, and the equivalent Cartesian PC.

For EPC1, the interface mode is clearly present and there is
a localization at the interface compared to the source bound-
ary. The modal displacements of EPC1 match those of the
Cartesian PC, because the dispersion relation is exactly the
same as the equivalent Cartesian PC. The interface mode is
also present in EPC2. Even though the dispersion relation of
EPC2 is an approximation of the Cartesian PC, the band struc-
ture at these high frequencies accurately captures the behavior
of EPC2, and differences in modal displacements of EPC2
compared to the Cartesian PC are almost negligible [Fig. 3(d),
inset]. Through EPCs, we demonstrate a topological interface
mode with a cylindrical wave [Fig. 3(e)].

V. CONCLUSIONS

In this paper, we introduce the concept of effec-
tive phononic crystals, which combine radially dependent

isotropic material properties with geometric periodicity, such
that the Bloch theorem can be applied to non-Cartesian elastic
waves in nonperiodic media. Further, our approach enables
non-Cartesian elastic waves to exhibit PC properties, such
as band gaps and topologically edge modes. By analyzing
finite EPCs, we show that the calculated band structure of
the EPCs using Bloch theorem is valid and accurately ap-
proximates that of the Cartesian PC. Using this approach,
we demonstrate topological interface modes for cylindrically
propagating waves, which do not occur in homogeneous radi-
ally periodic systems.

The EPCs require isotropic mass density, thus simplify-
ing physical realization compared to anisotropic mass density
[21]. Even though continuously changing material properties
could be challenging to physically realize, we show that dis-
cretization of material properties within each layer yields a
similar approximate behavior [see Fig. S3(a) and S3(b) in
Ref. [26]]. In this way, each heterogenous layer could consist
of one or more layers with homogeneous material proper-
ties. Although achieving these specific material properties
poses a challenge due to the wide range of required mod-
ulus and density, lattice materials may have potential since
they have tailorable moduli over several orders of magnitude
[33,34]. Particularly, stretch-dominated lattices, such as the
octet lattice, exhibit the requisite linear dependence of effec-
tive modulus on density [33,34]. In addition, lattice material
properties also depend on the underlying material, and thus
a broader range of properties could be achieved using fabri-
cation techniques such as voxel-based additive manufacturing
[35], which allow for bulk material spatial variations. Appli-
cation of EPCs to other polarizations and wave propagation
directions may allow for improved focusing, subwavelength
band gaps, negative refraction properties, topological states,
and other novel wave propagation control, that occur close
to sources where near-field effects limit the application of
conventional PCs.
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