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Time-dependent variational principle for mixed matrix product states in the thermodynamic limit
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We describe a time evolution algorithm for quantum spin chains whose Hamiltonians are composed of an
infinite uniform left and right bulk part, and an arbitrary finite region in between. The left and right bulk parts
are allowed to be different from each other. The algorithm is based on the time-dependent variational principle
(TDVP) of matrix product states. It is inversion-free and very simple to adapt from an existing TDVP code for
finite systems. The importance of working in the projective Hilbert space is highlighted. We study the quantum
Ising model as a benchmark and an illustrative example. The spread of information after a local quench is studied
in both the ballistic and the diffusive case. We also offer a derivation of TDVP directly from symplectic geometry.
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I. INTRODUCTION

Over the last two decades, research in quantum dynam-
ics has benefited greatly from numerical algorithms that
can simulate accurately the real-time dynamics of many-
body quantum systems. For one-dimensional systems, two
time evolution algorithms, both based on matrix product
states (MPSs), have proved reliable: the time-evolving block
decimation (TEBD) method [1] and the time-dependent vari-
ational principle (TDVP) algorithm [2,3]. For translationally
invariant systems, both methods can generalize to the ther-
modynamic limit: the iTEBD [4] and the iTDVP [5,6],
eliminating the undesirable finite-size effects and reducing
the complexity dependence of the system size from linear to
constant. Based on locality [7], one expects that for systems
composed of uniform left and right bulk parts and finite im-
purities in between, the time evolution algorithms should also
have an efficient thermodynamic version. While it is not clear
to us how this can be done for TEBD, a TDVP-based method
to deal with such cases has been put forth in [8].

Since [8] was published, tangent-space methods of MPSs
have developed significantly [3,5,6,9]. It is thus worthwhile
to revisit the problem and apply these developments. In this
paper, we greatly simplify the algorithm in [8] and improve
it in many ways. While [8] only treats nearest-neighbor in-
teractions, we will be able to treat any Hamiltonian that can
be written as a matrix product operator (MPO). Reference
[8] also uses inverses of matrices conditioned by the MPS
Schmidt coefficients, which can be very small. The algorithm
described below will be completely inversion-free. Reference
[8] considers only the Hamiltonians whose left and right bulk
parts are the same, and the quenches which only change the
finite region of impurities. We will allow the left and right
bulks to be different and the quenches to change the bulk parts.

The core idea of TDVP is very simple. The states rep-
resentable by MPSs with a given bond dimension form a
submanifold, HMPS, of the entire Hilbert space [10]. For a
state, |�(t )〉, at time t , the time evolution governed by its

Hamiltonian Ĥ leads the state out of HMPS; i.e., Ĥ |�(t )〉 is not
in the tangent space of HMPS at |�(t )〉. For the time evolution
to stay in HMPS, the TDVP mandates to approximate Ĥ |�(t )〉
as its orthogonal projection onto the tangent space in the
integration of the time evolution. One then chooses a small
time step, and integrates the projected Ĥ |�(t )〉 to obtain a
trajectory in HMPS. The technical difficulty in applying TDVP
to MPSs comes from the gauge freedom in an MPS; i.e.,
the same quantum state can be represented by two MPSs
with very different matrix elements. This means that the time
evolution of the quantum state does not uniquely specify how
the matrix elements of an MPS should evolve. One thus needs
to specify a gauge choice for the MPS and its tangent vectors.

This paper is organized as follows. In Sec. II, we describe
the system of interest and its MPS approximation. We will
examine very carefully the gauge freedom of the MPS. In
Sec. III, we review some facts about the tangent space of
HMPS and provide a gauge choice for the tangent vectors.
In Sec. IV, we present the orthogonal projection of Ĥ |�〉.
The derivation of the results in this section is technical, and
is given in Appendix A. In Sec. V, we give an integration
scheme to obtain the TDVP dynamics. In Sec. VI, we study
the quantum Ising model as an example. The speed of infor-
mation spreading after a local quench is studied in both the
ballistic and the diffusive case. In Sec. VII, we discuss and
conclude. For completeness, we give a derivation of the TDVP
principle directly from symplectic geometry in Appendix C.

II. THE SYSTEM OF INTEREST, ITS MPS
APPROXIMATION, AND GAUGE FREEDOM

We consider an infinite quantum spin chain with a local
Hilbert space of dimension d on each site. The system has an
infinite left and right bulk part, and a finite region of impurities
with length nW in between. Let the Hamiltonian Ĥ be written
as an infinite MPO with four-index MPO elements W ss′

ab with
a, b = 1, . . . , dW and s, s′ = 1, . . . , d , where dW is the bond

2469-9950/2020/102(13)/134306(10) 134306-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2360-9647
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.134306&domain=pdf&date_stamp=2020-10-12
https://doi.org/10.1103/PhysRevB.102.134306


YANTAO WU PHYSICAL REVIEW B 102, 134306 (2020)

dimension of the MPO:

Ĥ =
s,s′

(...W
si−1s′

i−1

[i−1] W
sis

′
i

[i] W
si+1s′

i+1

[i+1] ...)|s〉〈s′|

= . . . WA WA W1
. . . Wn WZ WZ . . .

(1)

where W[i] = WA for all lattice sites i < 1 and W[i] = WZ for
all i > nW , and W[i] are arbitrary for i = 1, . . . , nW . In the
following, for notational conciseness, we drop the physical
index s on the tensors in an MPS or an MPO when confusion
does not arise. Based on locality principles like the Lieb-
Robinson bound [11], we assume that the MPS approximating
the time-evolved quantum states has the form

|Ψ(A;Bi; Z)〉 =
s

(...Asi−1

[i−1]A
si

[i]A
si+1

[i+1]...)|s〉

= . . . A A B1 . . . Bn Z Z . . .
(2)

where n, the number of inhomogeneous tensors Bi, needs to be
larger than nW . We require A[i] = A for all i < 1, and A[i] = Z
for all i > n. The tensors A[i] on lattice sites 1 to n are denoted
as Bi and are allowed to change arbitrarily, except restrained
by the bond dimension D. In the following analysis, in order
for the variational manifold to be well defined, we fix the bond
dimension of the MPS to a given value. Here we note that
as the local information spreads with real-time dynamics in
a spin chain, in order for the MPS approximation to remain
accurate, n needs to increase with time. As shown in Sec. V,
it is very easy to expand n dynamically. For now, we take it to
be a fixed number.

We comment here that the MPO and MPS are only well
defined for a finite system with boundary tensors at the left and
the right end. In Eqs. (1) and (2), we have effectively taken the
system size to infinity and put the boundary tensors at the left
and right infinities. In the thermodynamic limit, the precise
values of the boundary tensors do not matter, and we do not
keep track of them.

A. Gauge freedom

Equation (2) defines the variational manifold used to de-
scribe the time evolution of the system. A, B1, . . . , Bn, Z are
all complex tensors of dimension d × D × D, constituting the
manifold of variational coefficients that we have access to:

MMPS = Cd×D×D × Cd×D×D ×
n∏

i=1

Cd×D×D. (3)

The variational manifold of quantum states is then

HMPS = {|�(A; Bi; Z )〉|(A; Bi; Z ) ∈ MMPS}. (4)

The (complex) dimension of MMPS is much larger than that
of HMPS, because of the gauge symmetries in an MPS. In
Appendix A, it will turn out that it is necessary to work in
the projective space of HMPS:

PHMPS = HMPS/C, (5)

which has more gauge symmetries than HMPS.
To quantify the MPS gauge freedom in PHMPS, we need

to find the gauge group G whose action on MMPS leaves

the quantum state invariant up to a scalar multiplication. To
find G, first note that the following transformation leaves the
quantum state invariant:

A′ = X −1
A AXA, Z ′ = X −1

Z ZXZ , B′i = X −1
i BiXi+1, (6)

where the X ’s are arbitrary D × D invertible matrices, and
X1 = XA and Xn+1 = XZ . Also note that when XA = Xi =
XZ = aI , where a is a complex number and I is the iden-
tity matrix, the transformation in Eq. (6) does not change
A, Bi, Z at all, and should be excluded from the gauge group.
This means that [

∏n+1
i=1 GL(C; D)]/C is a part of G, where

GL(C; D) is the multiplicative group of complex matrices of
dimension D × D and C is the group of scalar multiplication.
Because we work in the thermodynamic limit, the effect of
Eq. (6) on the boundary tensors at the left and right infinities
can be ignored. Because we are interested in the projective
space, scalar multiplications on A and Z are also gauge trans-
formations:

A′ = αA, Z ′ = ζZ, (7)

where α and ζ are two complex numbers. Scalar multi-
plications on Bi can be accomplished by combining the
transformations in Eq. (6) and Eq. (7). Thus, the full gauge
group is

G = CA × CZ ×
[

n+1∏
i=1

GL(C; D)

]
/C, (8)

where CA and CZ are groups of scalar multiplication on A and
Z , each with complex dimension one. The complex dimension
of G is then the number of the complex equations that one can
impose in the gauge choice of tangent vectors to PHMPS. It is
equal to

dimC G = 1 + 1 + (n + 1)D2 − 1 = 2D2 + (n − 1)D2 + 1.

(9)

B. Mixed canonical form of MPS

The gauge freedom of an MPS can be exploited to bring the
MPS in a convenient form. For a entirely uniform MPS, as in
the standard practice, one can write it in the mixed canonical
form [6]:

|Ψ(A)〉 = . . . A A A A A . . .

= . . . AL AL AC AR AR . . .

= . . . AL AL AL CA AR AR . . .

The tensors {AL, AR, AC,CA} satisfy the following relations:

AL

ĀL

=

AR

ĀR

= (10)

and

AC = AL CA = CA AR . (11)
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The tensors AL and AR are respectively called the left and right
canonical forms of A. AC is called the center site tensor, and
CA the bond matrix. When the tensors do not have uniformity
at all, similar left and right canonical tensors can be found
that satisfy Eq. (10) [3]. The mixed-canonical form is the key
to inversion-free TDVP algorithms [6]. Motivated by this, we
also write the MPS in Eq. (2) into the mixed-canonical form:

|Ψ(A; Bi; Z)〉
= . . . A A B1 B2 . . . Bn Z Z . . .

= . . . AL AC B1
R B2

R
. . . Bn

R ZR ZR . . .

= . . . AL AL B1
L B2

C
. . . Bn

R ZR ZR . . .

= . . . AL AL B1
L B2

L
. . . Bn

L ZC ZR . . .

Here {AL, AR, AC} and {ZL, ZR, ZC} are respectively the mixed
canonical tensors of a uniform MPS made of A and Z , and
satisfy Eq. (10). B1

L, . . . , Bn−1
L and B2

R, . . . , Bn
R also respec-

tively satisfy the left and right canonical relations in Eq. (10).
However, Bn

L and B1
R do not satisfy any canonical relation,

because bringing them into canonical forms will destroy the
uniformity of tensor A and Z . This, however, as shown in
Appendix A, is not an essential difficulty.

III. THE TANGENT SPACE OF MATRIX PRODUCT STATES

We now analyze the tangent space to PHMPS, following
[6]. The tangent space of PHMPS can be obtained from the
tangent space of HMPS by identifying tangent vectors different
by multiples of |�〉. Therefore, we will still work with tangent
vectors to HMPS, knowing that we can add arbitrary multiples
of |�〉 to the tangent vector whenever needed.

At |�(A; Bi; Z )〉, the tangent vectors to HMPS result from
infinitesimal changes on the tensor elements: a ≡ δA, bi ≡
δBi, and z ≡ δZ , and are given by

|Φ(a; bi; z)〉 ≡ |Ψ(A + a; Bi + bi; Z + z)〉 − |Ψ(A; Bi; Z)〉

=
0∑

i=−∞
. . . A a

i

A A . . . Bn Z . . .

+
n∑

i=1

. . . A A B1 . . . bi

i

. . . Bn Z . . .

+
∞∑

i=n+1

. . . A A B1 . . . Z z

i

Z . . .

=
0∑

i=−∞
. . . AL aL

i

AR AR
. . . Bn

R ZR . . .

+
n∑

i=1

. . . AL AL B1
L

. . . bi
L

i

. . . Bn
R ZR . . .

+
∞∑

i=n+1

. . . AL AL B1
L

. . . ZL zR

i

ZR . . .

(12)

where we have also written |�〉 in the mixed canonical form.
The meaning of the subscripts on aL, bi

L, and zR will become
clear in Eq. (15).

Gauge choices of the tangent vectors

Due to the gauge freedom, parameters aL, bi
L, and zR are

redundant in describing a tangent vector to PHMPS, which
poses a problem to computing the projection of Ĥ |�〉. We
now use the gauge symmetries contained in G to fix these
redundancies. Out of the 2D2 + (n − 1)D2 + 1 gauge symme-
tries of PHMPS, we impose at once 2D2 + (n − 1)D2 restraints
on aL, bi

L, and zR:

aL

ĀL

= 0

bi
L

B̄i
L

= 0

zR

Z̄R

= 0 (13)

where the i above only goes from 1 to n − 1. We still have one
last symmetry to use, which we reserve for bn

L until Eq. (A16).
Equation (13) can be explicitly satisfied by giving aL, bi

L, and
zR an effective parametrization:

aL = VA XA , bi
L = VB XB

zR = XZ VZ

(14)

where the right (left) index of VAL (VZR ) has dimension D(d −
1). VAL is determined by requiring that its column vectors be
orthonormal among themselves and orthogonal to those of AL:

VA

V̄A

=

AC

V̄A

=

AL

V̄A

= 0. (15)

VBi
L

are similarly determined for i = 1, . . . , n − 1, and VZR is
determined from a right version of Eq. (15). A tangent vector
to PHMPS is thus given by the effective parameters XA, XBi ,
XZ , and bn

L, where i = 1, . . . , n − 1.

IV. ORTHOGONAL PROJECTION OF Ĥ|�〉
To carry out the TDVP algorithm, one needs the orthog-

onal projection of Ĥ |�〉 on the tangent space of PHMPS at
|�〉, which we denote as |�(XA; XBi ; XZ ; bn

L )〉H . The derivation
leading to |�〉H is technical, which we give in Appendix A.
Only the result is presented here.

Before we proceed, we need some facts about the MPO
transfer matrix, which for AL is defined as

E
[W ]
AL

=

AL

WA

ĀL

. (16)

Similar MPO transfer matrices can be defined for other MPS
and MPO tensors analogously. For a uniform MPS of tensor
A with m sites, 〈�|Ĥ |�〉 ∼ (E [W ]

AL
)m up to some unimportant

boundary terms. The extensivity of energy thus requires that
(E [W ]

AL
)m be asymptotically linear in m. This can only happen
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if the leading eigenvalue of E [W ]
AL

equals one and is defective.

In fact, for a typical MPO, the leading eigenvalue of E [W ]
AL

is indeed one with algebraic multiplicity two and geometric
multiplicity one [9]; i.e., E [W ]

AL
has one eigenvector and one

generalized eigenvector in the leading eigenspace. This be-
havior can be attributed to the Schur form (lower triangular
form) of the W matrix of an MPO [9,12], on which we give a
review in Appendix B. We denote the left generalized eigen-
vector of E [W ]

AL
by (L[W ]

A |, and the right generalized eigenvector

of E [W ]
AR

by |R[W ]
A ). The (L[W ]

A | and |R[W ]
A ) can be efficiently

computed by an algorithm given in the Appendix of [9]. (They
are known as quasifixed points there.) We analogously define
(L[W ]

Z | and |R[W ]
Z ).

We now give the effective parameters, XA, XBi , XZ , and bn
L,

of |�〉H :

XA = L
[W ]
A

AC

WA

V̄A

R
[W ]
A

. (17)

XZ = L
[W ]
Z

ZC

WZ

V̄Z

R
[W ]
Z

. (18)

XB = L
[W ]
A

i−1∏
j=1

E
[W ]

B

Bi
C

Wi

V̄B

n∏
j=i+1

E
[W ]

B R
[W ]
Z , (19)

for i = 1, . . . , n − 1.

bn
L = L

[W ]
A

n−1∏
i=1

E
[W ]

B

Bn
C

Wn R
[W ]
Z . (20)

We can now put Eqs. (17)–(20) back into Eq. (12) to obtain
|�〉H = ProjT PHMPS

Ĥ |�〉.
XA contains no information about Bi and Z , and in fact,

is exactly the same effective parameter as in a translationally
invariant system composed of only A and WA [5,6]. Thus, the
bulk tensors A and Z should evolve as if they are in an entirely
uniform MPS, by the iTDVP algorithm in [5,6]. The effect
of the left and the right bulks on the B tensors only comes
through the boundary tensors (L[W ]

A | and |R[W ]
Z ). In fact, in a

finite system parametrized only by the B tensors, the tensors
at the left (right) boundary have no left (right) indices, and
the effective parameters are given by the terms in Eqs. (19)
and (20) without the (L[W ]

A | and |R[W ]
Z ) tensors [3]. Thus, the

B matrices can be evolved by the same TDVP algorithm in
[3] of a finite system, except under the additional influence of
(L[W ]

A | and |R[W ]
Z ). The only thing unclear is how to patch the

time evolutions of A, Bi, and Z together, which we explain in
the next section.

V. INTEGRATION SCHEME

Here we explain how to evolve |�〉 to eδt Ĥ |�〉 using |�〉H .
In iTDVP, one first puts the center site AC at left infinity. Then
one exponentiates the terms in |�〉H , one by one from left to
right, to sequentially act on the current state. As the algorithm
sweeps from left infinity to site 0, the effect of the left bound-
ary tensor decays away and the AC and CA tensors converge
to their respective limits. The iTDVP algorithm in [5] finds
these limits without doing the actual sweep, and is thus very
efficient. However, there is something very peculiar about
the sweeping process: in obtaining {AC (t + δt ),CA(t + δ(t ))}
from {AC (t ),CA(t )}, when the action of one term in |�〉H is
completed, one ends up with CA(t ) instead of CA(t + δt ) as the
bond matrix. [One step of the sweep consists of two half steps,
and CA(t + δt ) is obtained after the first half step.] See page
35 of [6] or Table I of [5] for the details. This peculiar fact is
the key to patch the iTDVP and the finite-TDVP algorithms.

Suppose that at time t , we have a mixed iMPS centered at
B1

C (t ):

. . . AL(t) B1
C(t) . . . Bn

R(t) ZR(t) . . .

To make the MPS centered at AC (t ) at left infinity, one needs
to borrow a CA(t ) from B1

C (t ), so that one has

. . . AR(t) C−1
A (t) B1

C(t) . . . Bn
R(t) ZR(t) . . .

One then performs iTDVP on A for δt to arrive at

. . . AL(t + δt) CA(t) C−1
A (t) B1

C(t) . . . Bn
R(t) ZR(t) . . .

Thus, the bond matrix CA(t ) cancels, and one next carries
out the right sweep of the finite-TDVP algorithm on B for
δt/2 with boundary tensors (L[W ]

A(t+δt )| and |R[W ]
Z (t ) ). Then one

does iTDVP on Z for δt and sweeps on B leftward for δt/2
with boundary tensors (L[W ]

A(t+δt )| and |R[W ]
Z (t+δt ) ). This completes

the mixed-iTDVP for one step of δt . For a pseudocode, see
Table I. We call this algorithm mixed-iTDVP. Globally, mixed-
iTDVP is second order in δt if A and Z are eigenstates of the
bulk Hamiltonian on the left and right, which is the same as
the finite-TDVP algorithm. It is first order in δt if A and Z
evolve nontrivially, which results from the iTDVP algorithm.

The algorithm can also be used to find the ground state
when δt is real and negative. When the time step is infinite, the
algorithm reduces to the conventional one-site density matrix
renormalization group [13]. When the time step approaches
0, however, the time-evolution algorithm has the benefit of
ensuring finding the global energy minimum, as long as the
initial state has nonzero overlap with the ground state.

To dynamically expand n, simply upgrade some number
of A and Z matrices to be part of B. The procedure used in
Sec. VI is that, during the time-evolution process, when the
half-chain entanglement entropy at Bi=5 differs from that at A
by more than 10−5, we add five more B tensors equal to A to
the left end of the inhomogeneous region. The same is done
to the right, too. The fact that n can be expanded dynamically
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TABLE I. Pseudocode of mixed-iTDVP for step δt .

algorithm 1 Mixed-iTDVP: Evolving |�〉 to eδt Ĥ |�〉
Input: MPO tensor WA, W1, . . . ,WnW , WZ ; MPS tensor {AL, AR,CA, AC}, {ZL, ZR,CZ , ZC}, B1

C, B2
R, . . . , Bn

R; L[W ]
A , R[W ]

Z ; time step δt
Output: MPS tensor {AL, AR,CA, AC}, {ZL, ZR,CZ , ZC}, B1

C, B2
R, . . . , Bn

R; L[W ]
A , R[W ]

Z

1: {AL, AR,CA, AC} ← iTDVP(WA, AL, AR,CA, AC, δt)
2: Compute L[W ]

A with AL and WA

3: {B1
L, . . . , Bn−1

L , Bn
C} ← right sweep of finite-size TDVP(B1

C, B2
R, . . . , Bn

R, L[W ]
A , R[W ]

Z , δt/2)
4: {ZL, ZR,CZ , ZC} ← iTDVP(WZ , ZL, ZR,CZ , ZC, δt)
5: Compute R[W ]

Z with ZR and WZ

6: {B1
C, B2

R, . . . , Bn
R} ← left sweep of finite-size TDVP(W1, . . . ,Wn, B1

L, . . . , Bn−1
L , Bn

C, L[W ]
A , R[W ]

Z , δt/2)

means that one can start with a very small inhomogeneous
region at the early times of the time evolution and expand it
gradually as time increases. This is an advantage compared to
a finite-size algorithm.

VI. EXAMPLE: QUANTUM ISING MODEL

As an illustrative example, we study the quantum dynamics
of the quantum Ising chain:

ĤIsing = J
∞∑

i=−∞
σ̂ z

i σ̂ z
i+1 +

∞∑
i=−∞

(
hxσ̂

x
i + hzσ̂

z
i

)
, (21)

where σ̂ x,z are the Pauli matrices. It is integrable when hz = 0
or hx = 0, and is critical when hz = 0 and hx/J = ±1 [14].
At criticality, the dispersion relation becomes linear: E (k) =
vs|k|, giving a characteristic sound velocity vs = 2 [14]. We
denote the pre-quenched Hamiltonian by Ĥ0 and the post-
quenched Hamiltonian by Ĥ1. In the following, Ĥ1 = Ĥ0 +
δĤ , where δĤ is a local field on site i0 at the middle of region
B. When the quench is local, we observe that the entanglement
entropy saturates at long time. This means that one can study
the quantum dynamics for long times with a relatively small
bond dimension, well into the stationary limit.

A. Benchmark

We benchmark our algorithm with Ĥ0 with J = −1, hx =
1.5, and hz = 0, and δĤ = σ̂ x

i0 . This local quench does not
break the integrability of the transverse-field Ising chain,
and thus the quench dynamics can be computed exactly on
a finite chain. We follow [15] to compute the quench dy-
namics. In Fig. 1, we show the transverse magnetization at
site i0, 〈σ̂ x

i0 (t )〉, as a function of time, obtained both with
mixed-iTDVP and the Ising exact solution. As seen, the
mixed-iTDVP works correctly well into the stationary regime.

B. Effect of finite size

The defining feature of mixed-iTDVP is that it works di-
rectly in the thermodynamic limit. We demonstrate the lack
of the finite-size effect by computing the ground state of an
inhomogeneous Hamiltonian: ĤIsing + σ̂ z

i0
with J = −1, hx =

1.05, and hz = 0, where i0 is in the middle of the chain.
The transverse magnetization of the ground state is shown in
Fig. 2, in comparison with a finite-size calculation with 500
sites.

C. Speed of information spreading

Here we consider the spread of information after a local
quench in the Ising chain both in the ballistic and the diffu-
sive case. In the ballistic case, the system is integrable and
admits an extensive number of noninteracting quasiparticles
in its spectrum, which transports energy ballistically. When
both hx and hz are nonzero, however, the Ising chain is no
longer integrable, and the only locally conserved quantity is
the energy. In this case, there are no ballistically propagating
quasiparticles so that, in an extended quantum quench, the
energy is transported in a way similar to a random walk, at
a speed which is proportional to

√
t [16]. This is called a

diffusive system.
For the ballistic case, we take Ĥ0 to be the ĤIsing with J =

−1, hx = 1.5, and hz = 0. For the diffusive case, we take Ĥ0 to
be the ĤIsing with J = 1, hx = 0.9045, and hz = 0.8090, which
is shown to be robustly nonintegrable in [16]. In both cases,
the local quench is done through δĤ = σ̂ z

i0
, where we place

i0 in the middle of the inhomogeneous region B. To monitor
the spread of information, we measure the time dependence
of 〈σ̂ x

i 〉 on the whole chain, shown in Figs. 3 and 4. The time
dependence of other local observables is similar to 〈σ̂ x

i 〉.
A very sharp wave front is observed in both cases as the

information of the local quench spreads. While this is ex-
pected for the ballistic system, it is surprising for the diffusive
system, because the energy transports only diffusively in an
extended quench. The slope of the wave front can be com-
puted to give the speed of information spreading, vw. More
specifically, we do a linear fit of the function iridge(t ), which
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FIG. 1. 〈σ̂ x
i0

(t )〉 as a function of time, Ĥ0 with J = −1, hx = 1.5,
and hz = 0, and δĤ = σ̂ x

i0
. The mixed-iTDVP computation is done

with δt = 0.005 and D = 20. The exact Ising solution is computed
for an open chain with 512 sites. The inset is 〈σ̂ x

i0
(t )〉 from t = 40 to

50.
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FIG. 2. 〈σ̂ x
i 〉 in the ground state of ĤIsing + σ̂ z

i0
with J = −1, hx =

1.05, and hz = 0. The calculation is done with D = 20. The inset is a
zoomed-in version of the main plot. The curves for the finite system
and the infinite system are overlapping for most times.
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FIG. 3. 〈σ̂ x
i 〉 as a function of time, represented in a curve plot for

both the ballistic system (top): Ĥ0 = ĤIsing with J = −1, hx = 1.5,
and hz = 0; and the diffusive system (bottom): Ĥ0 = ĤIsing with
J = 1, hx = 0.9045, and hz = 0.8090. The quenching Hamiltonian
is δĤ = σ̂ z

i0
in both cases. The computation is done with δt = 0.005

and D = 20. Computations with D = 30 are also done, and the
results are well converged with the bond dimension.

FIG. 4. 〈σ̂ x
i 〉 as a function of time, represented in a contour plot,

for the same two quenches described in Fig. 3.

TABLE II. Velocity of the wave front in local quenches. The
number in parentheses is the uncertainty of the fit on the last digit.
R2 is the R squared of the linear fit.

System D vw R2

Ballistic 20 1.94(2) 0.99979
Diffusive 20 1.71(3) 0.99949

for the ballistic system equals the site of the leftmost local
maximum of 〈σ̂ x

i 〉 at time t , and take the slope of the linear
fit as the slope of the wave front. For the diffusive system, we
note that there exists a secondary peak in the magnetization
profile, for example at around i = 75 at t = 45. We take the
iridge(t ) to be the site on which 〈σ̂ x

i 〉 is the largest in this
secondary peak.

The fitted vw’s are shown in Table II. Because of the
discrete nature of i, iridge(t ) can be ambiguous up to ±1. This
contributes to the slight nonlinearity of rridge(t ), indicated by
R2 < 1. For the ballistic system, there are well-defined quasi-
particles whose velocities are given by the dispersion relation:
E (k) = 2

√
1 − 2hx cos(k) + h2

x [14]. One thus expects that
the speed of information spreading should be

vw = max
k∈[−π,π]

dE (k)

dk
, (22)

which equals 2 for all hx for the transverse-field Ising model.
This is very close to the velocity actually measured in the local
quench. The presence of the light cone in the diffusive system,
however, suggests that the ballistic spread of information is
generic in a local quench, and happens not only in integrable
systems.

VII. DISCUSSION

In this paper, we gave a detailed derivation of the TDVP
equation for mixed infinite MPSs. The result is a simple com-
bination of the finite-TDVP and infinite-TDVP algorithms,
both of which are inversion-free. The method was applied to
local quenches of the quantum Ising model, and interesting
phenomena were found, which calls for future work. We also
expect future work on the algorithmic side. For example,
we note that the mixed infinite MPS is very similar to the
variational ansatz of the elementary excitations [6] of a trans-
lationally invariant system:

|Ψk〉 =
∑

x

eikx . . . A A Bx

x

Z Z . . . , (23)

where x labels the position of spin sites. We thus hope that the
current method can help develop a time-evolution algorithm
for the elementary excitations.

The code is based on ITensor [17] (version 3, C++) and is
available upon request.
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APPENDIX A: DERIVATION OF EQS. (17)–(20)

Before we start, we need some facts about the MPS transfer
matrices EAL and EAR , defined as

EAL
=

AL

ĀL

EAR
=

AR

ĀR

. (A1)

We note that the canonical condition, Eq. (10), is the eigenre-
lation for the nondegenerate leading eigenvalue of the transfer
operators, which is 1 for a normalized uniform MPS [6]. This
is very important, because it means that if one propagates an
arbitrary boundary tensor from left through infinitely many
EAL , only the leading left eigenvector of EAL survives, which
is a two-index delta tensor. The analogous fact is true for EAR ,
too.

We now determine the |�(XA; XBi ; XZ ; bn
L )〉 that is the or-

thogonal projection of Ĥ |�〉 on the tangent space at |�〉. To
do this, we need to first compute the inner product 〈�|�〉, also
known as the Gram matrix. Using Eqs. (10) and (12)–(15), we
have

〈Φ(X̄A; X̄Bi ; X̄Z ; b̄n
L)|Φ(XA; XBi ; XZ ; bn

L)〉

=
∞∑

m=0

XA

X̄A

(EA )m

B1
R

B̄1
R

+
∞∑

m=0

Bn
L

B̄n
L

(EZ )m

XZ

X̄Z

+
n−1∑
i=1

XB

X̄B

+

bn
L

b̄n
L

.

To simplify 〈�|�〉 further, we explicitly split out the contri-
bution of EAR from its leading eigenspace:

EAR
= lA + ẼAR (A2)

where lAR is the leading left eigenvector of EAR , and ẼAR is the
contribution from the subleading eigenspace of EAR . Then,

∞∑
m=0

(EA )m =
∞∑

m=0

lA +
∞∑

m=0

(ẼA )m . (A3)

This splitting is useful because ẼAR has a spectral radius
less than one, and the second term on the right-hand side of
Eq. (A3) converges. We now have

∞∑
m=0

XA

X̄

(EA )m

B1
R

B̄1

=
∞∑

m=0

XA

X̄A

+ FA (A4)

where FA is a finite number. Here we have used the normal-
ization of the state:

〈Ψ|Ψ〉 = lA

B1
R

B̄1
R

= 1. (A5)

A relation analogous to Eq. (A4) holds for the Z tensors, too.
This gives the final form of the Gram matrix:

〈Φ(X̄A; X̄Bi ; X̄Z ; b̄n
L)|Φ(XA; XBi ; XZ ; bn

L)〉

=
∞∑

m=0

XA

X̄A

+
∞∑

m=0

XZ

X̄Z

+

bn
L

b̄n
L

+
n−1∑
i=1

XB

X̄B

+ FA(XA) + FZ(XZ).

(A6)

The Gram matrix is thus essentially diagonal in the effective
parameters of |�〉.

We are ready to compute the orthogonal projection of
Ĥ |�〉, which is given by the solution to the minimization
problem

min
XA,XBi ,XZ ,bn

L

∥∥Ĥ |�〉 − ∣∣�(
XA; XBi ; XZ ; bn

L

)〉∥∥2

2.

XA is determined by

∂〈Φ|Φ〉
∂X̄A

=
∂FA

∂X̄A
+

∞∑
m=0

XA =
∂〈Φ|Ĥ|Ψ〉

∂X̄A
. (A7)

Here,

∂〈Φ|Ĥ|Ψ〉
∂X̄A

=
∞∑

m=0

· · · E
[W ]
A

AC

WA

V̄A

(E[W ]
A )m

n∏
i=1

E
[W ]

B E
[W ]
Z · · ·

(A8)

where the MPO transfer matrices E [W ]
AL

, etc., are defined in
Eq. (16). In addition to their generalized eigenvectors, we
denote the left eigenvectors of E [W ]

AL
and right eigenvectors of

E [W ]
AR

respectively as (I1| and |IdW ). In fact, these eigenvectors
do not depend on the values of the MPO, and thus are the same
for EZL and EZR (see Appendix B). As the left boundary tensor
at left infinity propagates through infinitely many E [W ]

AL
to meet

the center site AC in Eq. (A8), only the leading eigenspace
survives. The same applies to the right side. Thus,

∂〈�|Ĥ |�〉
∂X̄A

= [(
L[W ]

A

∣∣ + α(I1|
]
EC

[∣∣R[W ]
Z

) + β|IdW )
]
, (A9)
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where

(A10)

Here, α and β are two complex numbers. They occur because
every time (L[W ]

A | passes through E [W ]
AL

, there arises a new term

of (I1|: (L[W ]
A |E [W ]

AL
= (L[W ]

A | + e(I1|, where e is the energy
density of the chain [9]. Their values, however, do not matter
because of the following lemmas.

Lemma 1: (I1|EC = 0. (This lemma, and others below, are
based on the Schur form of the MPO. See Appendix B for a
discussion of their proofs.)

Lemma 2: (L[W ]
A |EC |IdW ) = 0.

Thus,

∂〈Φ|Ĥ|Ψ〉
∂X̄A

=
∞∑

m=0

L
[W ]
A

AC

WA

V̄A

(E[W ]
A )m

n∏
i=1

E
[W ]

B R
[W ]
Z .

As with EAR , we split out of E [W ]
AR

the term associated with the
leading eigenspace. To do this, we need the following lemma
in linear algebra.

Lemma 3: Let E be a matrix with leading eigenvalue one,
according to which there is one eigenvector and one general-
ized eigenvector. Let (v1| be the left generalized eigenvector,
(v2| the left eigenvector, |u1) the right eigenvector, and |u2)
the right generalized eigenvector. Then, for an integer m > 0,

Em = |u1)(v1| + m|u1)(v2| + |u2)(v2| + Ẽm, (A11)

where Ẽ is the contribution to E from the subleading
eigenspace.

When applying Lemma 3 to E [W ]
AR

, the contribution asso-
ciated with the |u1) = |IdW ) drops because of the following
lemma.

Lemma 4:

L
[W ]
A

AC

WA

V̄A

Id = 0.
. (A12)

Thus, we have

∂〈Φ|Ĥ|Ψ〉
∂X̄A

=
∞∑

m=0

L
[W ]
A

AC

WA

V̄A

R
[W ]
A

+ L
[W ]
A

AC

WA

V̄A

∞∑
m=0

(Ẽ[W ]
A )m

n∏
i=1

E
[W ]

B R
[W ]
Z ,

(A13)

where we have made use of the following lemma.
Lemma 5:

l
[W ]
A

n∏
i=1

E
[W ]

B R
[W ]
Z = 1, (A14)

where l [W ]
AR

is the left eigenvector of E [W ]
AR

.
Note that the second term of Eq. (A13) converges. Now

substitute Eq. (A13) into Eq. (A7), and divide the equation
by

∑∞
m=0 1. The finite terms drop, and we obtain Eq. (17).

Analogously, we obtain Eqs. (18) and (19).
We now determine bn

L, which is given by

∂〈Φ|Φ〉
∂b̄n

L

= bn
L =

∂〈Φ|Ĥ|Ψ〉
∂b̄n

L

=
[
(L[W ]

A | + α(I1|
]
ED

[
|R[W ]

Z ) + β|IdW
)
]
,

where

ED ≡ n−1∏
i=1

E
[W ]

B

Bn
C

Wn . (A15)

Here the α and β are the same as in Eq. (A9). Two lemmas are
now in order.

Lemma 6: (I1|ED|IdW ) = 0.
Lemma 7: (I1|ED|R[W ]

Z ) = (L[W ]
A |ED|IdW ) = Bn

C .

Thus,

bn
L = (

L[W ]
A |ED|R[W ]

Z

) + (α + β )Bn
C . (A16)

But note that bn
L = (α + β )Bn

C gives a contribution of (α +
β )|�〉 to |�〉, which can be dropped in the projective space.
Also recall that we still have one last gauge symmetry to
spare, which we now use to demand α + β = 0 so that bn

L =
(L[W ]

A |ED|R[W ]
Z ) in Eq. (20).

APPENDIX B: SCHUR FORM OF MPO

As discussed in the main text, the W matrix of an MPO is
lower triangular, known as the Schur form. For example, in
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terms of the operator-valued matrices Ŵab = ∑
ss′ W ss′

ab |s〉〈s′|,
the W matrix of the transverse-field Ising Hamiltonian (when
hz = 0) in Eq. (21) can be expressed as

Ŵ =
[

1y 0 0
−σ̂ z 0 0
hxσ̂

x σ̂ z 1y

]
, (B1)

where σ̂ x and σ̂ z are the Pauli matrices. To us, the important
features of Ŵ are that Ŵ is lower triangular and that Ŵ11 =
ŴdW dW = 1y. This means that the dominant left eigenvector
(I1| of E [W ]

AL
and right eigenvector |IdW ) of E [W ]

ZR
are

I1 a = δa1 , IdW
a = δadW

. (B2)

In addition, the generalized eigenvectors (L[W ]
A | and |R[W ]

Z )
satisfy the following relation [9]:

L
[W ]
A

dW = , R
[W ]
Z1 = . (B3)

We now discuss the proofs of the lemmas in Appendix A.
Lemma 1. Because (I1| is nonzero only when its mid-

dle index is one, WA only contributes a 1y to (I1|EC . Thus,
(I1|EC = 0 by Eq. (15).

Lemma 2. Because |IdW ) is nonzero only when its middle
index is dW , and the only nonzero element in the dW column
of W is WdW dW , the (L[W ]

A | contributes only as (IdW |. This makes
(L[W ]

A |EC |IdW ) = 0 by Eq. (15).
Lemma 3. This is proved by putting E into its Jordan

canonical form.
Lemma 4. Similar to Lemma 2.
Lemma 5. Because of the Schur form, (l [W ]

AR
| is nonzero only

when its middle index is 1, and is equal to (lAR | in that case.
Then this lemma reduces to Eq. (A5).

Lemma 6. Because of the Schur form, (I1|ED is only
nonzero when its middle index is 1, but |IdW ) is only nonzero
when its middle index is dW . This makes the whole thing zero.

Lemma 7. Similar to Lemma 2; (L[W ]
A |(|R[W ]

Z )) contributes
only as (IdW |(|I1)) and Wn contributes only as 1y. Thus, the
whole expression reduces to Bn

C .

APPENDIX C: SYMPLECTIC DERIVATION OF TDVP

The derivations [2] of TDVP in the literature have been
based on a variational principle, hence the name. This has
the benefit of not needing differential geometry, but buries the
symplectic structure of TDVP under the heavy calculations in
the derivation. Here we give a derivation directly from sym-
plectic geometry, which is quite elegant and may be preferable
to a person who knows some basic differential geometry. We
assume knowledge of basic differential geometry at the level
of chapters 5 and 8 of [18].

Let H be a complex vector space with (complex) di-
mension m. H can also be viewed as a real manifold with

real dimension 2m, and thus with a tangent space T�H at
� ∈ H of real dimension 2m. T�H can be complexified to
give (T�H)C which has complex dimension 2m. Let J be a
linear complex structure on (T�H)C . J2 = 1 and have two
eigenvalues i and −i, each with an eigenspace of complex
dimension m. (T�H)C can then be written as a direct sum of
the eigenspaces of J: (T�H)C = (T�H)+ ⊕ (T�H)−, where
J (T�H)+ = i(T�H)+ and J (T�H)− = −i(T�H)−. Note that
dimC (T�H)+ = m = dimC H, and a linear isomorphism can
be established: (T�H)+ ∼= H. This allows one to extend the
inner product of H to (T�H)+:

I (X,Y ) ≡ 〈X |Y 〉, ∀X,Y ∈ (T�H)+ ∼= H. (C1)

Note that we do not define an inner product on (T�H)−. I al-
lows a definition of a metric g on (T�H)C: ∀X,Y ∈ (T�H)+,

g(Ȳ , X ) = I (Y, X ),

g(Y, X ) = 0,

g(Ȳ , X̄ ) = 0. (C2)

This g is known as the Hermitian metric. It is such that
g(JX, JY ) = g(X,Y ) for all X,Y ∈ (T�H)C . g defines a two-
form �:

�(X,Y ) = g(JX,Y ), ∀X,Y ∈ (T�H)C. (C3)

[It is not hard to show �(X,Y ) = −�(Y, X ).] Because vector
spaces are “flat,” g does not change from point to point, thus
d� = 0. This means � is symplectic. A manifold with a
compatible complex structure J , Hermitian structure I , Rie-
mannian structure g, and symplectic structure � is known as a
Kähler manifold. We have essentially shown that any complex
vector space with an inner product is Kähler.

Let ξ, η, χ, φ ∈ (T�H)+. � and I are connected by the
following:

�(χ + φ̄, ξ + η̄) = g(J (χ + φ̄), ξ + η̄)

= g(iχ − iφ̄, ξ + η̄)

= g(iχ, η̄) + g(−iφ̄, ξ )

= I (η, iχ ) + I (iφ, ξ ). (C4)

On H, for a Hamiltonian operator Ĥ , consider the Hamil-
tonian flow of the Hamiltonian function H : � ∈ H 
→
〈�|Ĥ |�〉. For ξ, η infinitesimal:

dH (ξ + η̄)|� = 〈� + η|Ĥ |� + χ〉 − 〈�|Ĥ |�〉
= I (η, Ĥ�) + I (�, Ĥξ )

= I (η, Ĥ�) + I (Ĥ�, ξ )

= �(XH , ξ + η̄), (C5)

where XH is the Hamiltonian flow of H :

XH = −iĤ� + −iĤ�. (C6)

This is nothing but the Schrödinger flow. Thus, the
Schrödinger dynamics can be viewed as a symplectic flow of
the Hamiltonian function H (�).

Now let M be a submanifold of H. Does H induce a
symplectic Schrödinger flow on M? Yes. Let the inclusion
function from M to H be denoted as

inc : M → H, inc : � ∈ M 
→ � ∈ H. (C7)
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Both the Hamiltonian function and the symplectic form have
a restriction on M:

HM = H ◦ inc, �M = inc∗�. (C8)

Because the exterior differentiation d and the pullback inc∗

commute, d�M = 0, and thus M is also symplectic. We now
look for the Hamiltonian flow XHM associated with HM on M.
For all ξ, η ∈ (T�M )+, we look for XHM ∈ (T�M )C such that
�M (XHM , ξ + η̄) = dHM (ξ + η̄)|� .

dHM (ξ + η̄)|� = dH (inc∗(ξ + η̄))|�
= dH (ξ + η̄)|�
= I (η, Ĥ�) + I (Ĥ�, ξ ). (C9)

Now here is the key: Because ξ, η are both only in (T�M )+,
Ĥ� can be replaced with its orthogonal projection on
(T�M )C , ProjĤ�:

dHM (ξ + η̄) = I (η, ProjĤ�) + I (ProjĤ�, ξ )

= �(XHM , ξ + η̄),
(C10)

where XHM is the Hamiltonian flow of HM on M:

XHM = −iProjĤ� + −iProjĤ�. (C11)

This gives the TDVP dynamics on M and the dynamics is
symplectic.
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