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Floquet dynamics of disordered bands with isolated critical energies
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We investigate localization properties of driven models which exhibit a subextensive number of extended states
in the static setting. We consider instances where the extended modes are or are not protected by topological
considerations. To this end, we contrast the strongly driven, disordered, lowest Landau level, which we refer to as
the random Landau model (RLM), with the random dimer model (RDM); the RDM also has a subextensive set of
delocalized modes in the middle of the spectrum whose origin is not topological. We map the driven models on to
a higher-dimensional effective model and numerically compute the localization length as a function of disorder
strength, drive amplitude, and frequency using the recursive Green’s function method. Our numerical results
indicate that, in the presence of a strong drive (low frequency and/or large drive amplitude), the topologically
protected RLM continues to exhibit a spectrum with both localized and delocalized (or critical) modes, but
the spectral range of delocalized modes is enhanced by the driving. This occurs due to an admixture of the
localized modes with extended modes arising due to the topologically protected critical energy in the middle of
the spectrum. On the other hand, in the RDM, a weak drive immediately localizes the entire spectrum. This occurs
in contrast to the naive expectation from perturbation theory that mixing between localized and delocalized
modes generically enhances the delocalization of all modes. Our work highlights the importance of the origin of
the delocalized modes in the localization properties of the corresponding Floquet model.
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I. INTRODUCTION

Floquet dynamics [1] is a subclass of unitary dynamics
wherein systems are subject to a periodic-in-time external
drive. Recent work has shown that a new class of dynamical
phases which have no static analog can arise in the Floquet
setting in quantum systems [2–8]. A priori this is unexpected
since driven systems are expected to generically heat up to
infinite temperature [9], which further implies, by virtue of the
eigenstate thermalization hypothesis, that the Floquet unitary
must itself be featureless [10]. However, in certain instances,
novel quantum dynamics may arise when heating is prevented
due to the presence of strong disorder and many-body local-
ization (MBL) [4,5,11,12] or the presence of topologically
protected modes, which remain decoupled from the bulk in the
Floquet setting [2,3,6,13–20]. Additionally, when the system
is driven at high-enough frequencies, a prethermal regime
may be realized wherein an effective Hamiltonian describes
approximate unitary dynamics at stroboscopic (and related)
times for an exponentially long timescale [12,21–26]. Some
of these Floquet phases, for instance time crystals, have
been recently realized across several experimental platforms
[27–30].

Particularly in the context of low-frequency driving, where
prethermalization is absent, an important direction of this
investigation is the study of the transition between systems
that eschew heating and espouse novel quantum dynamics,

to those in which resonances proliferate, leading to the de-
localization and eventual heating of the system. In this regard,
several works considered the mechanism for the proliferation
of resonances in systems with a fully localized set of states
by virtue of driving, both in the interacting, Floquet-MBL
setting [31–33], and the single-particle Anderson insulator
setting [34]. Less is known about if and how such resonances
manifest in systems which have a mix of both localized and
delocalized states, although a previous numerical study [35]
suggested that in interacting systems with a mobility edge,
delocalization occurs immediately at infinitesimally weak
driving. Such a result follows naturally from perturbative ar-
guments: effective hybridization of localized modes with the
delocalized mode should lead to delocalization in general. At
the same time, localization itself follows from nonperturbative
effects, and given its robustness in low dimensions, it is not
obvious such perturbative arguments always apply straight-
forwardly, especially in the low-frequency, “strong driving”
regime. Thus, understanding how resonances lead to delocal-
ization in systems of mixed localized and delocalized states
requires detailed investigation.

In this work, we take a step towards the above goal by
numerically studying localization in Floquet systems, which,
in the static setting, exhibit a subextensive [36] set of delo-
calized states, located around a critical energy at which the
localization length diverges. Such models represent a con-
trolled departure from the setting of fully localized models
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previously studied [34], and further have natural appeal as
they arise in many physical systems, particularly in the quan-
tum Hall setting. Furthermore, we make a distinction between
models where the extended states arise due to topological
considerations as opposed to those in which these states arise
due to nontopological reasons. To access the physics of such
extended states and study their properties in the driven setting,
we focus on noninteracting models.

Concretely, we study two models with extended states
arising with or without topological underpinning. For the
topological case, we consider the Floquet dynamics of elec-
trons in the lowest Landau level along with some level
broadening due to local potential disorder, which we refer to
as the random Landau model (RLM). The undriven case was
considered by several authors [37–39]; Huo and Bhatt [39],
in particular, showed that the critical energy corresponds to a
subextensive set of delocalized states. For the nontopological
case, we consider the random dimer model (RDM), which,
like the RLM, has states with a diverging localization length
near a single energy in the spectrum [40]. We numerically
compute the localization length as a function of the drive
parameters and disorder strength. Our numerics indicate that
in the case of the RLM, driving results in enhanced delo-
calization of modes near the critical energy but there remain
localized modes at the edges of the band for even large drive
amplitudes. Our result may be understood as a consequence
of the fact that the Chern number of the isolated band stud-
ied cannot be changed by the driving, which guarantees the
presence of an extended state by Laughlin’s argument [41]. In
contrast, for the driven RDM, the delocalized states become
localized even in the presence of a weak drive. We thus pro-
vide evidence that delocalization due to periodic driving in
the presence of a few delocalized states is not a given and is
subject to the origin of these delocalized modes. For the last
of thes, a simple estimate for the mean-free path obtained due
to scattering by time-dependent variations of the drive which
modifies the local potential, agrees reasonably well with the
Floquet localization length.

The numerical study of the low frequency, or strong driv-
ing regime, is made tractable by mapping our d-dimensional
time-dependent Hamiltonian onto a (d + n)-dimensional sys-
tem with n harmonic space directions in a manner similar
to Ref. [42] (for the single frequency driving consid-
ered in this work, the harmonic space dimension n = 1).
The localization properties of this effective Hamiltonian
can then be studied using the recursive Green’s function
approach. For the effective Floquet Hamiltonian in (d + 1)-
dimensional space, the authors showed in Ref. [34] that the
method gives the effective localization length of the Floquet
eigenstates.

This paper is organized as follows. We begin with a review
of Floquet lattice mapping of a periodically driven system and
outline the recursive Green’s function method to calculate the
localization length for the Floquet lattice in the presence of
static disorder. We then apply this method to two models with
a single delocalized state in the thermodynamic limit, namely,
the random dimer model (RDM) and random Landau model
(RLM) and discuss our numerical findings. We conclude by
discussing the qualitative differences between these two cases
and outline future directions.

II. FLOQUET HAMILTONIAN IN HIGHER-DIMENSIONAL
SPACE AND TRANSFER MATRIX METHOD

Quantum Hamiltonians subject to a time-dependent pe-
riodic drive of arbitrary strength can be treated using the
methods of Ref. [42] which studies the monochromatic driv-
ing of a spin-1/2 system by mapping it to one higher
dimension. We note in passing that a single spin driven
by multiple, incommensurate frequencies was treated in an
analogous fashion by mapping it to a system in as many
dimensions as the number of driving frequencies in Ref. [43].
For the purposes of this work, we are interested in driving
a d-dimensional system at a single frequency. This can be
studied by mapping the system using the above methods to a
(d + 1)-dimensional Hamiltonian in an effective electric field.
We will next review this mapping and the recursive Green’s
function method used to compute localization properties in
static models, before finally discussing how the method can
be adapted to the Floquet setting to determine Floquet local-
ization lengths.

A. Review of the Floquet lattice construction

We now briefly review the Floquet lattice mapping of
a periodically driven Hamiltonian. Consider first a generic
periodic-in-time Hamiltonian H (ωt ), where ω is the driving
frequency, written in the basis of states |i〉 which correspond to
the physical Hilbert space of the static part of the Hamiltonian

H =
∑

jk

h jk (ωt )| j〉〈k|, (1)

where h jk (ωt ) = 〈 j|H0 + V (ωt )|k〉, with H0 being the static
term and V (ωt ) is the time-dependent driving term. Floquet
eigenstates of this system can be found by expanding the time-
dependent wave function as a Fourier series in the temporal
harmonics

|ψ (t )〉 = e−iεt
∑

j,n

φ j,ne−inωt | j〉, (2)

and whose coefficients satisfy the equation

(εα + nω)φ j,n =
∑

m

h jk
m φk,n−m,

h jk (ωt ) =
∑

m

h jk
m e−imωt . (3)

In Eq. (3), ε is the quasi-energy corresponding to the
Floquet eigenstate |ψ〉. The above equation can, in fact, be
thought of as an effective Schrödinger equation operating in
a (d + 1)-dimensional lattice system with the temporal har-
monic number being an extra, discrete dimension. hi j

m serve as
effective hopping parameters which not only describe hopping
from states |i, n〉 → | j, n + m〉,∀|n〉, reflecting the absorption
of m photons by the system while hopping from physical basis
state |i〉 to state | j〉. The extra photons cost an energy nω as
one would naively expect; this can be interpreted as an effec-
tive electric field operating in the harmonic-space direction.

Note also that the above equations have a redundancy:
there are only L unique Floquet eigenstates, where L is the
the Hilbert space dimension of the physical system. The other
Floquet eigenstates have a quasi-energy that is related to
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FIG. 1. Slab geometry of the system used in the recursive
Green’s function method. The system is bounded in the trans-
verse directions. The system is extended rightward at each step of
the simulation. In this process, the method calculates the matrix for
the two-point Green’s function involving points in the slab at z = zL

and points on the rightmost region at z = zR. The rightmost regions
(indicated by a blue slab) may overlap with the updated region at the
next computational step. In the Floquet setting, one of the transverse
directions is the harmonic-space direction.

these unique states with a shift of a multiple of the drive
frequency. Thus, we may denote different Floquet eigenstates
|ψα,n(t )〉 by the indexes α, and n; these have quasi-energies
ε = εα + nω.

B. Review of the recursive Green’s function approach for
computing the localization length

We would like to study the localization length of Flo-
quet eigenstates. This will be done using a straightforward
generalization of the recursive Green’s function approach for
computing the localization length in static systems, to which
we now turn.

The recursive Green’s function method was originally
developed by Mackinnon and Kramer [44] and adapted
in Refs. [37,45]. It was first employed to study Ander-
son localization in three dimensions numerically. In this
method, one considers the system in a slab geometry; see
Fig. 1. At every step n of the computation, one calcu-
lates the inverse of the two-point Green’s function An =
[〈z ∈ Cz0 |Gz0;zn (ε)|z ∈ Czn〉]−1, using the relation

An+1 = (E − Hn)An − An−1, (4)

where Hn is the Hamiltonian defined only on the (d − 1)-
dimensional slice (of the d-dimensional system) centered at
z = zn; this slice is denoted by Czn . Gz0;zn (ε) represents the
resolvant matrix (ε − Hz0;zn )−1 for a system with open bound-
aries at z = z0 and z = zn, at energy ε.

The localization length ξ (ε) at energy ε can then be com-
puted from the relation

ξ−1(ε) = − lim
n→∞

ln Tr[|Gz0;zn (ε + i0+)|2]

2(zn − z0)
. (5)

In practice, for determining the localization length ξ , it is
useful to perform a singular value decomposition of Gz0;zn

to extract the largest few eigenvalues (which correspond to
the smallest eigenvalues of An), and rescale the values so as
to avoid having entries that are all zero due to falling below
machine precision. For a localized system, this is extremely

important because the eigenvalues of Gz0;zn fall off exponen-
tially in the length of the system.

C. Use of the recursive Green’s function approach in the
Floquet setting

The above method is very naturally extended to the Floquet
setting when we view the Hamiltonian Hi j

m as an effective
hopping Hamiltonian in (d + 1)-dimensional space. Then,
the slabs shown in Fig. 1 are d-dimensional slices with one
(transverse) dimension being the harmonic-space direction.
Nevertheless, there are a few subtleties in making this exten-
sion which we now discuss.

First, what is the physical meaning of the localization
length ξd+1 computed using Eq. (5) in this setting? For a
given Floquet eigenstate |ψα,n(t )〉, the probability of finding
a particle in the location i (corresponding to physical Hilbert
space basis state |i〉) over the course of a full period, is
given by

1

T

∫ T

0
dt |〈i|ψα,n(t )〉|2 =

∑
m

∣∣φ(α,n)
i,m

∣∣2 ≡ ∣∣φ(α)
i

∣∣2
. (6)

Note that given the redundancy of solutions, the final ampli-

tudes |φ(α)
i |2 are independent of the harmonic space index

n in |ψ(α,n)(t )〉. Now these amplitudes can next be used to
sensibly define a Floquet localization length ξF through their
exponential decay in space for a fixed eigenstate.

The computation of Eq. (5) extended to the Floquet setting
must directly probe the decay of these amplitudes. To see
that this is the case is straightforward. Expanding the Floquet
Hamiltonian used in the definition of the resolvant matrix as
HF

z0;zn
= ∑

n,α (εα + nω)|ψα,n〉〈ψα,n|, it is easy to show

Tr[|Gz0;zn (ε + i0+)|2]

= π
∑

α,m,i, j

∣∣φ(α)
i∈Cz0

∣∣2∣∣φ(α)
j∈Czn

∣∣2
δ(ε − εα + mω). (7)

Thus, in the Floquet setting, the method produces the same
two-point spectral function as would appear in the usual static

setting, with wave-function amplitudes replaced by |φ(α)
i |2 as

we desire.
Another subtlety particular to the Floquet setting comes

from the inherent redundancy of the Floquet eigenstates. Sup-
pose hi, j

m = 0 for m 	= 0, as for a static system. In this case,
the Floquet eigenstates are simply replicas of the eigenstates
of the static Hamiltonian, but at energies shifted by multiples
of ω. If we are then interested in computing the localization
length of eigenstates of this static Hamiltonian at energy ε, it
will get spurious contributions from states at energy ε + nω,
which may have wildly different localization lengths (and may
be even delocalized in the case where a mobility edge exists).
This problem can be circumvented by making the follow-
ing reasonable approximation: We limit the harmonic-space
dimension to N = cA/ω, where c is an O(1) constant, and
A is the drive amplitude. This is justified because Floquet
eigenstates are, in fact, confined to a width of about ∼A/ω

due to the tilt of the Floquet lattice in the harmonic-space
direction. With this approximation, we can obtain the Floquet
localization length of states at the energies ε that span the
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original spectrum of the static Hamiltonian, with the resolu-
tion Nω = cA.

We implemented this algorithm for the case of a periodi-
cally driven one-dimensional Anderson insulator [34]. In the
present work, we extend this method to the case of driven
disordered models with mobility edges. The two cases of
interest are driven random dimer model (DRDM) and driven
random Landau model (DRLM).

III. DRIVING THE RANDOM LANDAU MODEL

We now use the methods above to ascertain the role of driv-
ing on the localization properties of electrons in the disordered
lowest Landau level.

A. Review of the static model

We begin by revisiting the static RLM. The localiza-
tion properties of the disordered lowest Landau Level (LLL)
was first studied by Ando and Aoki [37] using the recur-
sive Green’s function method [44] and assuming a uniform
concentration of randomly placed delta-function scatterers.
Huckestein et al. [38,45] instead modeled the local potential
disorder as a random variable with zero mean and Gaussian
correlations in the space of some fixed amplitude. This poten-
tial can be efficiently generated and appears to yield results
for the localization length that scales better with system size
[45] than Ando’s choice of delta-potential scatterers, and also
allows efficient extraction of scaling exponents. We will thus
use the formulation of Huckestein et al. in this study.

We now outline the details of the model. We consider a
system with length Lx and width Ly with periodic boundary
conditions in the y-direction and with Lx → ∞. The single-
electron Hamiltonian in the Landau gauge, in the presence of
disorder is given by

H =
∑
mk

Emk|m, k〉〈m, k|

+
∑

mkm′k′
Vmm′,kk′ (�r)|m, k〉〈m′, k′|, (8)

where Vmm′,kk′ (�r) = 〈m, k|V (�r)|m′, k′〉 and basis states |m, k〉
represent states with fixed momentum k in the y-direction. In
particular,

ψmk = 〈r|m, k〉 = 1√
Lylc

eikyχn

(
x − kl2

c

lc

)
. (9)

with χm(x) = (2mm!
√

π )−1/2Hm(x)e−x2/2 where Hm(x) is the
mth Hermite polynomial, lc = (h̄/eB)1/2 is the magnetic
length, and the diagonal part Emk = h̄ωc(m + 1

2 ) is a constant
for a fixed Landau level (here m = 0) and is thus neglected.
Note further that in every patch of width lc in the x-direction,
there are Ly such basis states.

The potential matrix elements 〈k1|V (�r)|k2〉 are nonzero for
k1 	= k2 due to disorder. These elements can be generated to
satisfy desired statistical properties as noted above, as outlined
in Ref. [38]. For completeness, the matrix elements are given

by the relation

〈k1|V (�r)|k2〉 = V0
e− (k1−k2 )2 l2c β2

4

∑
p u2k1+p,k2−k1 e

− π2 l2c
L2

y β2 p2

√
(2π )1/2lcLy

∑
p e

−2 π2 l2c
L2

y β2 p2

, (10)

where the elements ui, j are drawn independently from a nor-
mal distribution, V0 sets the amplitude of the disorder, and we
set β = 1 for which the correlation length of the disorder is
equal to the magnetic length; it is thus a smoother version of
the delta-function disorder potential.

The basis states |k〉 may be viewed as basis states of a
one-dimensional hopping matrix, and in this sense, the above
model is effectively a one-dimensional (1D) Anderson impu-
rity model, albeit with very special diagonal and off-diagonal
disorder. The lattice sites of this model are marked by their
position i ≡ kLy

2π
. The diagonal matrix elements 〈k|V (�r)|k〉 are

the random onsite energies εi. In the above language, the
model may appear to be a “long-range hopping model” since
the off-diagonal disorder couples sites distance lc apart in
real space, or alternatively, sites that are Ly-distant, a num-
ber which is scaled to infinity in the thermodynamic limit.
However, the amplitude of this off-diagonal matrix elements
is also reduced appropriately so that lc is the only relevant
quantity in the thermodynamic limit. This suppression allows
truncation of next-to-nearest neighbor intercell terms. Within
a self-consistent Born approximation, the width of the LLL
due to the disorder is given by � = 2V0/

√
2π lc; all energies

will be presented in units of � in what follows.

B. Formulation of the driven random Landau model

Floquet dynamics of the driven RLM model (DRLM) can
be studied by introducing a periodic driving term to the dis-
ordered Hamiltonian projected to the LLL. We consider a
time-dependent monochromatic drive of the form

VD(r, t ) = 4E0 cos(ωt + kxx) (11)

with period T ≡ 2π/ω, and sinusoidal variation along the
x-direction with wave vector kx = π/lc. Note that spatial vari-
ation of the potential is necessary to obtain a finite response
and the magnetic length is the natural lengthscale for this
purpose; we note that the precise value of kx is not qualita-
tively important. The drive amplitude 4E0 is assumed to be
much smaller than the cyclotron gap (otherwise, LL transi-
tions would have to be considered), but can be comparable to
the disorder strength V0.

The projected matrix element for the driving potential is a
diagonal term given by

〈k1|VD(r, t )|k2〉 = A cos
(
ωt + k1kxl2

c

)
δk1,k2 (12)

where the overall drive amplitude is given by A = 4E0e− 1
4 l2

c k2
x .

The diagonal form is a consequence of the choice of the
x-dependent phase modulation in the drive potential and can
be generalized by considering a more general spatial variation
that depends on both x and y. This again does not change
the result qualitatively and thus we restrict ourselves to the
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FIG. 2. Schematic of the lowest Landau level subject to a peri-
odic drive. The resulting quasi-energy spectrum on the right creates
the repeated pattern of the disordered Landau level band.

diagonal drive. The DRLM model is thus given by

H =
∑
k1k2

〈k1|V (�r) + VD(�r, t )|k2〉|k1〉〈k2| (13)

with matrix elements given in Eqs. (12) and (10).
Finally, the Floquet lattice representation of the DRLM

model is given by

H =
∑
k,n

A

2
(eikxkl2

c |k, n〉〈k, n + 1| + e−ikxkl2
c |k, n + 1〉〈k, n|)

+
∑

k1,k2,n

(nωδk1,k2 + Vk1,k2 (r))|k1, n〉〈k2, n|, (14)

where the index n corresponds to the harmonic space dimen-
sion as usual. The Hamiltonian has D unique eigenfunctions
corresponding to the LLL degeneracy D. All other eigen-
states are constructed by translation of this k space lattice in
harmonic space with a corresponding increase in energy by
appropriate multiples of the drive frequency (ω) (see Fig. 2).
We numerically compute the localization length associated
with Floquet lattice model H using recursive Green’s function
method as discussed in Sec. II B.

C. Numerical results

Extracting the localization length in the DRLM model is
computationally challenging due to the two-dimensional na-
ture of the system. In particular, the localization length is first
found for fixed Ly and subsequently scaled to the thermody-
namic limit. Increasing Ly increases the linear dimension of
the Green’s function matrix between the “left” and “right” end
of the system (see Fig. 1). In the one-dimensional picture of
this model, increasing the Hilbert space with Ly corresponds
to having Ly (in units of

√
2π lc) states inside a strip of width

lc. This makes the scaling fairly challenging for the static case
(see Refs. [37,38]) although exponents have been reliably ex-
tracted with relatively small Ly. In our case, the computational
complexity is further increased due to the additional harmonic
space dimension.

As a preliminary analysis, we recover the localization
length as a function of Ly = 1, 2, 4, 8, 16, 32, 64 (in units of√

2π lc) for the static case A = 0, and use the same harmonic
space size, n = 6, as used in the DRLM results. The local-
ization length tends to a fixed value as Lx is increased (due
to self-averaging); all results are presented for Lx = 5000lc.
Figure 3 shows the localization length as a function of the
strip width Ly for different values of energy E that ranges
from relatively close to the center of the band E = 0.1� to

A = 0.0

FIG. 3. Zero drive case (A = 0): Dimensionless localization
length ξ/Ly plotted as a function of the dimensionless width
Ly/[(2π )1/2lc] for different values of energy E = 0.1�–1.0�. The
number of harmonics is fixed at n = 6.

the edge of the band E = 1.0�. The localization length clearly
decreases as a function of Ly away from the center of the band
indicating localization as Ly → ∞. However, as we approach
the band center (E = 0.1�), the localization begins to scale
linearly with the system size (i.e., roughly constant ξ/Ly), in-
dicating the onset of delocalization (see Fig. 3). These results
agree well with those of Huckestein et al. in Refs. [38,45].

We now proceed to study the effects of driving on localized
states in the band. Similar to the static case, a decreasing
dimensionless localization length ξ/Ly with increasing width
Ly/[(2π )1/2lc] implies localization and a localization length
increasing with the width is an indicator of delocalization.
We focus on the energy range 0.3� < E < 0.9� where the
nondriven (A = 0) case shows clear localization (see Fig. 3)
[37,38]. The main question of interest is if these localized
states are delocalized due to periodic driving. We restrict the
number of harmonics to be n = 6. Having too large a value of
n can spuriously indicate delocalization just by the replication
of bands in the quasi-energy space. At the same time, for a
fixed n, the largest drive amplitude A we can study satisfies
A � nω. The choice of drive amplitude and the frequency
considered in the work is dictated by these restrictions. All
results have an energy resolution of ∼nω ≈ 0.3�; this reso-
lution further dictates the closest energy from the band center
that we can examine reliably.

The results presented in Fig. 4 demonstrate that for ener-
gies E = (0.3, 0.4, 0.5, 0.6)�, the localization length appears
to grow larger with increasing Ly for large drive amplitudes,
whereas for the smallest drive amplitudes, the reverse is true
(just like the static model case as a function of the static
energy). For E > 0.6� the localization length increases with
the drive amplitude, but the drive is not strong enough to
mix the delocalized modes with the localized modes at this
energy scale effectively. While our finite-size results with
limited number of harmonics indicate that modes near the cen-
ter become delocalized with sufficient drive, certainty about
whether this actually happens for a finite range of energies
in the thermodynamic limit would require larger sizes than
we are able to do. It would also be very interesting to study
if the exponent determining the scaling of the localization
length with energy changes as a result of the driving. Again,
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FIG. 4. Dimensionless Floquet localization length ξ/Ly plotted as a function of the dimensionless width Ly/[(2π )1/2lc] for different values
of the drive amplitude A = 0�, 0.01�, 0.02�, 0.04�, 0.06�, 0.1�, 0.2�, 0.4�. The frequency of the drive and the number of harmonics is
fixed at ω = 0.05� and n = 6, respectively. The static energy values considered are E = 0.3�–0.9� in steps of 0.1�. E = 0 and E = � are
the center and edge of the LLL band, respectively.

simulations on much larger systems would be required to
answer this question conclusively.

IV. DRIVEN RANDOM DIMER MODEL

A. Review of the static random dimer model

The static random dimer model (RDM) [40] is a model
of binary disorder where pairs of consecutive lattice sites
(or dimer pairs) have a different onsite potential compared
to the remainder of the system. For concreteness, we take
this different value to be εb while nondimerized sites have
on-site potential εa ≡ 0. The locations of these dimers are
picked at random. The RDM has a spectrum which features
a subextensive set of extended modes near the energy E = εb

as long as −2t < εb < 2t where t is the hopping amplitude.
The localization length diverges as ξ (E ) ∼ 1/|E − εb|ν with
a critical exponent ν ≈ 2, which is not too dissimilar to the
exponent νQH ≈ 2.5 (see Refs. [46,47] and references therein
for a critical exponent for the quantum Hall plateau transition)
for the integer quantum Hall system. Thus, the static RDM has
localization properties that are reminiscent of the disordered
quantum Hall system but with one significant difference: the
critical energy state in the RDM is not topologically protected.

B. Floquet dynamics of the driven model

With this difference in mind, it is sensible to ask the fol-
lowing question: Can localized states in the RDM couple to
the extended states in the vicinity of the critical energy due
to the driving, and thus become delocalized? Specifically we
study the following Hamiltonian:

HDRDM = −t
∑

i

c†
i ci+1 + h.c. +

∑
i∈X

εb[c†
i ci + c†

i+1ci+1]

+ A cos(ωt )
∑

i

(−1)ic†
i ci, (15)

where X is a random set of noncontiguous sites that denote
the first site in the dimer pair, A is the drive amplitude, and
ω is the drive frequency. Consistent with previous work, we
use a driving potential that alternates in sign from site to site.
We assume that any site has probability q to appear in the set
X , however, we disallow dimers from overlapping or being
contiguous to one another.

In the large frequency regime ω/t � 1, the driving has
the effect of reducing the coherence of the hopping process
t → tJ0(2A/ω), as is known from performing a Peierls trans-
formation, which transfers the time dependence of the drive
on to the fermionic operators—the reduction follows from the
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FIG. 5. Floquet localization length as a function of energy ε −
εb ∈ (−ω/2, ω/2) where the driving frequency ω = 0.4 and system
size is 106 lattice constants. Note the logarithmic scale on the y-axis.
All quantities are measured in units of t ≡ 1. The curves correspond-
ing to smaller values of the localization length corresponding to
progressively larger values of the drive amplitude A—an immediate
collapse of the delocalization of the extended state can be observed
as the amplitude is turned on. Inset: The localization length ξc of the
central mode which is extended in the absence of driving is seen to
scale approximately as ∼1/A2 as per arguments in the main text; note
that the deviation from the value 1 at the smallest values of A is well
within the error bounds in calculating ξ as can be seen from the main
plot.

time averaging of the time dependence of the hopping over
one time period (see, for example, Ref. [48]). In this case, we
expect a localization transition to occur by which the extended
states get localized when the condition −2tJ0(2A/ω) < εb <

2tJ0(2A/ω) is violated. (In fact, due to the oscillatory nature
of the Bessel function, one expects a series of localization-
delocalization transitions [48,49].)

Here again we focus on the low-frequency (and strong-
driving) regime, where the frequency ω � t . We can again
map the dynamics of the system to that of a higher-
dimensional Floquet-Hamiltonian wherein hopping in the
harmonic-space dimension is set by A. We use this Floquet
representation to numerically evaluate the Floquet localization
length as discussed above. The results are shown in Fig. 5.
Most significantly, unlike the random Landau model where
the delocalized mode is clearly stable to driving and the local-
ization length of all modes is seen to increase due to driving,
here we find that the localization length immediately begins
to decrease as a drive is turned on.

Due to the lack of topological protection in this instance,
a conventional scattering analysis can explain our findings,
at least at small amplitudes A � ω. Let us focus on the
“unscattered eigenstates” at momentum k = cos−1(εb/2t ). A
wavepacket centered at this momentum travels ballistically
at a velocity v ≈ ∂εk

∂k |k=k0
, where εk = −2t cos(k) is the dis-

persion of the clean band without the dimerized disorder. On
timescales τ ∼ min[1/(vq), 1/ω], we expect the wavepacket
to essentially propagate ballistically. For 1/ω � 1/(vq), scat-

tering of the wavepacket will occur due to reflection off of
imbalanced dimer pairs which have a local potential mis-
match ∼A between the dimer sites. (For no mismatch, the
RDM would be recovered and there would be no reflection
of such a wavepacket). On such timescales, one can assume
that the potential configuration is static, and solve the eigen-
value equation for a wavepacket propagating at energy εk0

and momentum k0, in a flat potential landscape with a single
imbalanced dimer. A straightforward calculation reveals a re-
flection amplitude |R|2 = ( A

2t )
2

for the wave off of the dimer.
Thus, the mean free path of such a wavepacket, λ ∼ 1

q|R|2 =
4t2

qA2 . Alternatively, if 1/ω � 1/(vq), the particle’s environ-
ment is not static and it encounters changes in the potential
∼A on the timescale ∼1/ω; this will again be associated with
an approximate reflection amplitude ∼1/|R|2. In this case, the
mean free path is given by λ ∼ v

ω|R|2 ∼ vt2

ωA2 . Finally, since the
localization length is of the same order as the mean free path
in one dimension, the above scaling forms are also valid for
the Floquet localization length. We verify that the decrease
in the Floquet localization length follows the scaling ∼1/A2

in the limit ω � vq in the numerics, see Fig. 5.

V. CONCLUSION AND OUTLOOK

In this paper, we investigate the effect of periodic driving
on two disordered models that possess an isolated critical
energy and associated subextensive but diverging number
of quasi-extended modes in the thermodynamic limit. The
two models are periodically driven random Landau model
(DRLM) and random dimer model (DRDM). The critical
energy state in the first is topologically protected but not in the
second. We mapped the periodically driven systems to Floquet
lattice models in one higher dimension, where the extra di-
mension corresponds to harmonic space. We then numerically
studied the localization properties of this higher-dimensional
lattice using the recursive Green’s function method. Our re-
sults indicate that the localization properties upon driving
crucially depend on the origin of the the critical energy giving
rise to delocalized behavior. For the DRLM case, the scaling
of localization length as a function of sample width indicates
an increase of localization length and an enhanced spectral
range of delocalized modes as a function of drive amplitude.
As mentioned above, this may be understood as a consequence
of the fact that the Chern number of the isolated band studied
cannot be changed by the driving, which guarantees the pres-
ence of an extended state [41]. On the other hand, even weak
driving of DRDM results in localization of the delocalized
mode. The localization of the delocalized mode is in contrast
to the perturbative intuition that the mixing of localized and
delocalized states must result in delocalization. These two
contrasting behaviors points out that the fate of the mixing
of localized and delocalized states upon driving can depend
starkly on the origin of the delocalized states.

This contrasting behavior is similar to the contrasting
behavior found [50,51] for the effect of disorder on two
spin-chain models the dimerized spin-1/2 chain which is in a
gapped, topological Haldane phase, and the Majumdar-Ghosh
model spin-1/2 chain with nearest-neighbor and next-nearest-
neighbor couplings, which has a broken symmetry ground
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state with a gap to excited states like the dimerized chain.
While the gap of the first is maintained at small disorder,
showing the robustness of the topological protection, the gap
of the Majumdar-Ghosh model is destroyed by any amount of
disorder. More generally, the fragility of the extended states
in the random dimer model to localization are reminiscent of
the fragility of symmetry-protected topological insulators to
symmetry-breaking perturbations.

The full scaling analysis of the DRLM case as a function
of system size, amplitude, frequency, and energy requires
access to larger system sizes and we leave this effort for
future work. In this paper, we restrict our analysis to the case
where both the single-band model possess an isolated critical
energy and associated subextensive but diverging number of
quasi-extended modes in the thermodynamic limit. An anal-
ogous situation is encountered in the 1D tight-binding chain
of noninteracting electrons with disordered nearest-neighbor
hopping [52,53]. This model is equivalent to the Dyson model
[54,55] and is known to have a Lyapunov exponent (inverse
localization length) that goes to zero at the center of the band.

It would be interesting to consider the influence of peri-
odic driving on mobility edges with an extensive number of

delocalized states which arise in three-dimensional Anderson
localization and certain quasiperiodic potentials in one di-
mension [56]. Another direction would be to systematically
understand the role of dimensionality of the static model and
the presence of multiple incommensurate driving frequen-
cies. The additional incommensurate drive frequencies can
be treated by adding more harmonic space dimensions on the
Floquet lattice.
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