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We study the superconducting proximity effect in inhomogeneous systems in which a disordered or qua-
sicrystalline normal-state wire is connected to a BCS superconductor. We self-consistently compute the local
superconducting order parameters in the real-space Bogoliubov–de Gennes framework for three cases, namely,
when states are (i) extended, (ii) localized, or (iii) critical. The results show that the spatial decay of the
superconducting order parameter as one moves away from the normal-superconductor interface is power law
in cases (i) and (iii), stretched exponential in case (ii). In the quasicrystalline case, we observe self-similarity in
the spatial modulation of the proximity-induced superconducting order parameter. To characterize fluctuations,
which are large in these systems, we study the distribution functions of the order parameter at the center of the
normal region. These are Gaussian functions of the variable [case (i)] or of its logarithm [cases (ii) and (iii)]. We
give arguments to explain the characteristics of the distributions and their scaling with system size for each of
the three cases.
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I. INTRODUCTION

In this paper we study the superconducting pairing
correlations induced by the proximity effect [1] in inhomoge-
neous systems. We will consider, specifically, disordered and
quasiperiodic chains, whose wave functions are not described
by the Bloch theorem. While the subject of bulk disordered
superconductors has been addressed by many previous the-
oretical [2,3] and recent experimental [4,5] works, little is
known about the real-space dependence and the nature of
the fluctuations in the proximity-induced superconductivity
in inhomogeneous systems. The aim of the present paper is
to provide a detailed picture of the spatial decay and the
fluctuations of the proximity-induced superconducting order
parameter in such inhomogeneous systems.

We recall that the proximity effect provides a useful probe
of electronic properties. A number of recent works have con-
sidered the superconducting proximity effect in a variety of
systems: topological insulators [6,7], monolayer and bilayer
graphene [8–10], interacting chains [11], and one-dimensional
quasicrystals [12].

We will consider two archetypal 1D systems: the Anderson
model [13] and the Fibonacci hopping model [14,15], both of
which have been extensively studied since their introduction.
We use a real-space version of the Bogoliubov–de Gennes
mean-field approach to determine the spatial dependence of
the self-consistently calculated local superconducting order
parameter (OP), �i, for a set of samples—chains with a dis-
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ordered/quasiperiodic configuration corresponding to a fixed
pairing strength and a fixed length. We find that the ensemble-
averaged OP decays as a power law when the wave functions
are quasiextended as in the weak-disorder limit of the Ander-
son model, or power-law localized as in the Fibonacci chain.
On the other hand, it decays exponentially on the scale of the
system size when the wave functions are strongly localized as
in the strong-disorder regime of the Anderson model.

The above statements hold for the mean (or typical) value.
To more completely characterize the fluctuations around the
mean, we compute the distribution functions of the values of
the OP for a given position in each of the three cases. These
distribution functions reflect the nature of the electronic states
in the systems, which are respectively quasiextended states,
strongly localized states, and critical (multifractal) states. We
show that in the weak-disorder case, the proximity-induced
superconducting order parameter is described by a Gaussian
distribution, whereas it is described by log-normal distribu-
tions in quasiperiodic and strongly disordered systems.

We close this introduction by mentioning some works on
superconducting order in bulk inhomogeneous systems for
closely related models. Ghosal et al. [16] obtained some
early results for the distribution of order parameters for bulk
disordered superconductors. Their theoretical prediction of
superconducting islands in a nonsuperconducting sea have
led to STM-based experiments on 2D films [17,18]. Bulk
superconductivity in 2D quasicrystals has been studied by
real-space DMFT [19] and also using a mean-field analysis as
we do here [20,21]. Similar mean-field calculations have been
used to study the behavior of the superconducting singlet and
triplet order parameter near edges and impurities in 1D and 2D
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systems [22]. Induced pair correlations have been studied in
detail in clean ferromagnet-superconductor heterostructures
[23], while prominent spectral features have been charac-
terized in the diffusive counterpart [24]. Few experimental
investigations exist for proximity-induced superconductivity
in disordered systems and, thus far, none in quasiperiodic
systems. Disordered wires in the diffusive regime have been
investigated in [25,26], and disordered 2D films in [27]. It
would be therefore interesting to carry out investigations to
test the predictions of this paper for the three paradigmatic
situations that we describe here.

The paper is organized as follows: In Sec. II we present a
review of the real-space Bogoliubov–de Gennes mean-field
approach that is used here in a self-consistent manner. In
Sec. III we discuss the Hamiltonian and the choice of pa-
rameters. In Sec. IV we analyze the results obtained for the
Anderson model and in Sec. V we analyze the results ob-
tained for the Fibonacci model. Section VI summarizes our
conclusions.

II. THE BOGOLIUBOV–DE GENNES METHOD
FOR INHOMOGENEOUS CHAINS

The starting point for our discussion is the attractive
Hubbard model [28],

Ĥ =
∑

i

{∑
α

(
ε0

i − μi
)
c†

iαciα +
∑

α

tic
†
iαci+1 α + H.c.

−
∑
αβ

Vi

2
c†

iαc†
iβciβciα

}
. (1)

Here ciα is the electron annihilation operator at site i (i =
1, . . . , Ltot , where Ltot is the total number of sites) and with
spin α. The terms ε0

i and μi are the on-site potential and the
chemical potential, respectively, at site i, ti is the hopping
amplitude between sites i and i + 1, and Vi > 0 is the strength
of the attractive Hubbard interaction between spin-up and
spin-down electrons at site i. In the Bogoliubov–de Gennes
method, one introduces the mean fields εHF

i and �i to de-
couple the quartic interaction term. The resulting mean-field
Hamiltonian is given by

Ĥmf =
∑

i

{∑
α

εi︷ ︸︸ ︷(
ε0

i + εHF
i − μi

)
c†

iαciα +
∑

α

ti i+1c†
iαci+1 α

+ H.c. + Vi�ic
†
i↑c†

i↓ + H.c.

}
. (2)

Ĥmf can be diagonalized by introducing the Bogoliubov trans-
formation:

ci↑ =
∑

n

γn↑uin − γ
†
n↓v∗

in, (3)

ci↓ =
∑

n

γn↓uin + γ
†
n↑v∗

in. (4)

One solves the resulting Bogoliubov equations in real
space to obtain the eigenstates and their energies. Introducing
the Ltot-component vectors un and vn, where un (resp. vn)

are the the coefficients uin (resp. vin ) with i = 1, . . . , Ltot , the
matrix form of these equations reads(

K̂ �̂

�̂ −K̂

)(un

vn

)
= En

(un

vn

)
, (5)

where En is the associated eigenvalue. The components of the
matrices K̂ and �̂ are given in terms of the Kronecker delta
δi j by

�i j =
∑

i

Vi�iδi j, (6)

Ki j =
∑

i

εiδi j + tiδi+1 j + ti−1δi−1 j . (7)

Due to the redundancy of this system of equations, it suffices
to keep only the positive energy solutions En > 0. The eigen-
vectors satisfy normalization conditions

∑
n |uin|2+|vin|2=1

at each site i.
The mean-field Hamiltonian (2) contains Ltot local super-

conducting order parameters �i and Ltot local effective on-site
energies εi = ε0

i + εHF
i − μi. These quantities must satisfy the

self-consistency equations,

εHF
i = −V

∑
n

|uin|2 f (En, T ) + |vin|2[1 − f (En, T )],

�i =
∑

n

v∗
inuin[1 − 2 f (En, T )], (8)

where f (En, T ) is the Fermi-Dirac distribution function at
temperature T . In our numerical calculations, we begin with
a starting ansatz for the 2Ltot mean-field parameters. We then
iteratively solve the eigenvalue problem Eq. (5), and compute
the new values of these parameters using Eq. (8). This pro-
cedure is repeated until convergence has been achieved to a
reasonable accuracy [29].

Mean-field methods similar to this have been previously
applied to the problem of inhomogeneous superconductors in
[2,6,10,12,16,20–22,30]. Quantum fluctuations are generally
too strong for mean-field treatments to sufficiently describe
low-dimensional systems. There are however two contexts
in which a one-dimensional mean-field description is mean-
ingful: (1) In an experiment, a 1D quantum wire will be
embedded in a 3D environment. Substrate and other sur-
rounding media may conspire to subdue quantum fluctuations
while the effective description for the quantum wire is 1D.
(2) Quasi-1D systems such as nanotubes or mesoscopic wires
often admit an effective 1D description, while the true dimen-
sionality of the system is 3D and the mean-field results apply.

III. DESCRIPTION OF MODELS

We study hybrid chains, consisting of a normal, i.e., non-
interacting, region (N) and a superconducting region (SC).
Closed boundary conditions are assumed [see Fig. 1(a)], such
that the system has a ring geometry with two N-SC interfaces.
Within the formalism outlined in the preceding section, this
system can be fully described by appropriately specifying the
matrices �̂, K̂ in Eqs. (6) and (7).

As our primary goal is to examine the effects of disorder
on the proximity effect, we will focus on the ideal case where
the interfaces are transparent. We will measure all energies in
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FIG. 1. Superconducting proximity effect in a normal one-dimensional metal: (a) Sketch of a normal-superconductor (N-SC) hybrid
ring: on the left side is the nonsuperconducting region, whereas on the right is an intrinsic superconductor. (b) Spatial variation of the
superconducting order parameter �i along the chain for a clean N-SC hybrid ring—both parts are bulk-periodic. (c) Spatial decay of the
superconducting order parameter in the normal part of a clean N-SC ring for zero and finite temperature (β = 1/kT ), extracted by finite-size
scaling of �mid for chains with varying L. The best-fit parameters are xo = 10.0 and ζ = 6.4. � decays inversely with distance at zero
temperature and exponentially with distance at finite temperature.

units of the strength of the nearest-neighbor hopping in the
superconductor, t . The hopping energy in the superconductor
is then t = −1. The hopping amplitudes in the N region will
be chosen to be of comparable strength, i.e., of the order of
unity. In each of the models, the band fillings are fixed at
1
2 , so that the Fermi level is in the middle of the spectrum
and particle-hole symmetry is maintained. The strength of the
attractive Hubbard interaction in the SC is set to a fixed value
[31] for L � i � Ltot − 1. The lengths of the SC region are
chosen to be large enough that the OP relaxes to attain the
expected bulk value well inside the SC region. The length of
the N region is likewise chosen large enough that the bulk
penetration laws can be properly determined by finite-size
scaling.

This amounts to the following set of choices for the param-
eters:

(a) The normal region corresponds to the first L sites, i =
0, . . . , L − 1. The superconducting region is of length LSC,
corresponding to indices i = L, L + 1, . . . , Ltot − 1, where
Ltot = L + LSC is the total number of sites. LSC = 200 every-
where; L ranges from 90 to 1598.

(b) The hoppings at the two interfaces are taken to be
unity, i.e., tL−1 = tLtot−1 = −1.

(c) There are no interactions in the normal region, i.e.,
Vi = 0 for 0 � i � L − 1.

(d) Within the N region, ti values are either sampled from
a random distribution function (see Sec. IV) or taken from a
Fibonacci sequence (see Sec. V).

(e) Within the (translationally invariant) superconductor,
ti = −1,Vi/t = 1.5.

(f) Both regions are at half filling; i.e., the Fermi level is
in the middle of the spectrum. In the normal part, this means
ε0

i − μi = 0. In the superconducting part, we need to account
for the Hartree-Fock shift which implies ε0

i − μi= − εHF
i =V

2 .
Throughout this study, the central observable of interest

is the strength of the superconducting order parameter at the
midpoint of the normal region of the ring, �mid. This is given
by � L−1

2
for odd chains and 1

2 (� L
2
+ � L

2 −1) for even chains.
We compute �mid for an ensemble of rings with a given size
and disorder/modulation strength. To obtain the spatial decay
of the order parameter as a function of distance from the
interface, we fit values of the ensemble average 〈�mid〉 for

fixed disorder strength and different chain lengths [32]. We
use histograms of �mid for fixed system size and disorder
strength to study the distributions of the induced OP.

Before moving on to inhomogeneous systems, it is use-
ful to recall results for the periodic case, when the N-chain
hopping amplitudes are uniform, i.e., ti = −1. The real-space
profile of the order parameter for the clean N-SC ring is
shown in Fig. 1(b). We find inverse-distance behavior at zero
temperature and exponential decay at finite temperatures [see
Fig. 1(c)]. These results are in agreement with analytical cal-
culations using Gor’kov’s Green function method to compute
� [33,34].

IV. THE PROXIMITY EFFECT IN DISORDERED CHAINS

As discussed, for example, by Pannetier and Courtois
[35], in disordered noninteracting metals the proximity ef-
fect results from the Andreev reflections at the N-S interface
combined with the presence of long-range coherence of the
metal. We now ask what happens in 1D systems, where the
metallic state disappears upon the addition of disorder. Indeed,
it is well known that adding arbitrarily small disorder in the
one-dimensional periodic model leads to Anderson localiza-
tion: the Lyapunov exponent (inverse localization length) is
nonzero for all eigenstates. In a finite chain, however, one
can identify a weak-disorder regime, in which the localization
length ξ (E ) of single-particle eigenstates is much larger than
the system size L, i.e., ξ � L. Upon increasing the disorder
strength one then has a crossover to a strong-disorder regime,
where the localization length is smaller than L, i.e., ξ < L.
For T = 0, a third length scale, the inelastic (phase breaking)
length scale, in this noninteracting model is infinite and thus
plays no role.

In the following we present results corresponding to the
two disorder regimes using the self-consistent theory out-
lined above. We show, first, that in the weak-disorder case,
the proximity-induced superconducting order parameter (OP)
decays as a power law of the distance from the interface. In
contrast, the OP decays exponentially in the strong-disorder
regime. In addition, we obtain the full probability distributions
of the OP and show how they differ in the two regimes.
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FIG. 2. Superconducting proximity effect in a disordered one-
dimensional metal: spatial profile of the superconducting order
parameter � along the chain in a hybrid N-SC system with
off-diagonal disorder in the normal region. Disorder strength:
W/t = 0.08.

We will consider the off-diagonal disordered Anderson
model, in which the on-site terms are uniform and set equal
to zero, while the hopping amplitudes ti = t + ηi are ran-
dom. The independent random variables ηi are drawn from

a uniform (box) distribution P(η) = �(η+ W
2 )−�(η− W

2 )
W , where

W/t < 2 is the disorder strength and �(η) is the Heaviside
step function. The width of the distribution is restricted to be
less than 2, so that the hopping amplitudes ti are all strictly
negative. Although we work with a box distribution, the ex-
act form of the randomness is not expected to matter for
our results, which should also hold for more general random
distributions [36].

A. Weak-disorder regime

In a weakly disordered finite chain, one can compute
the (sample-dependent) corrections to the energies and wave
functions of the clean system using perturbation theory. In
this limit, the semiclassical viewpoint—in which the principal
effect of the randomness is to randomize the phase of the wave
functions—is useful. That wave functions in reality remain
extended can be readily seen from the fact that the average
probability at each site 〈ψ2

n (i)〉 tracks the values obtained in
the clean system. We therefore use the term quasiextended to
denote this type of wave function. Figure 2 shows a typical
order-parameter profile in the weak-disorder regime. Figure 3
shows our main numerical results. The order parameter decays
as a power law away from the interface into the normal part of

the ring [Fig. 3(a)]. �mid for a given system size and disorder
strength is normally distributed [Fig. 3(b)]. �mid on average
differs from the clean case by a term proportional to W 2

[Fig. 3(c)].
These observations can be explained by means of per-

turbation theory in the variables ηi. In the clean limit, the
eigenfunctions and energies of the hybrid chain system have
been analytically studied in [30,37]. Considering a BdG type
model in which they fixed the OP in the superconductor to a
constant value, these authors showed that there is a finite, con-
stant density of states within the gap. These states should exist
even after relaxing the constraint on the OP, as we do in our
self-consistent approach. These eigenstates are of interest in
the following perturbative argument for the induced OP within
the N chain. We write the solutions of Eq. (5) in terms of
the coefficients for the clean system un, vn and corrections to
these, δun and δvn. Within perturbation theory, the correction
terms δun and δvn up to second order in ηi are kept. At zero
temperature, we have an expression for the order parameter at
a given site (we suppress the index i) from Eq. (8) [38],

� =
∑

n

(vn + δvn)(un + δun)

= �0 +
∑

n

vnδun + δvnun + δvnδun, (9)

where �0 is the OP in the clean case. The normalization
condition

∑
n |un|2 + |vn|2 = 1 leads to∑

n

unδun + vnδvn = −1

2

∑
n

(|δun|2 + |δvn|2). (10)

Taken together,

� − �0 =
∑

n

{
(vn − un)(δun − δvn) − 1

2
(|δun|2 + |δvn|2)

}
.

(11)

Averaging over the disorder then yields

〈� − �0〉 ≈ −1

2

∑
n

〈(|δun|2 + |δvn|2)〉, (12)

where we neglected the contribution of the first term in (11)
compared to that of the second term. This follows because the
averages of δun and δvn are very small (the linear corrections

FIG. 3. Superconducting proximity effect in the weak-disorder regime: (a) Finite-size scaling of 〈�mid〉 with the length of the normal
region L shows inverse-law decay of � away from the interface in N-SC hybrid rings where N is weakly disordered. The variance of �mid

is also inversely proportional to the distance. Disorder strength: W/t = 0.005. Fit offset x0 = 10.4. (b) Normal distribution of �mid in N-SC
rings in the weakly disordered regime. 10 000 realizations, W/t = 0.005, L = 90, LSC = 200. (c) The dependence of the mean and standard
deviation of �mid on the disorder strength W/t in the weakly disordered regime.
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FIG. 4. Superconducting proximity effect in the strong-disorder regime: (a) Finite-size scaling of 〈�mid〉 with the length of the normal
region L shows stretched exponential decay of � away from the interface in N-SC hybrid rings where N is strongly disordered. Disorder
strength: W/t = 0.7. ζ = 8.4. (b) Log-normal distribution of �mid in N-SC rings in the strongly disordered regime. 9000 realizations, W/t =
0.2, L = 90, LSC = 200. (c) The dependence of the mean and standard deviation of ln(�mid ) on the disorder strength W/t in the strongly
disordered regime.

in η average to zero, and the second-order corrections are
small) compared to the average of |δun|2 and |δvn|2. Note that
the correction term due to disorder in (12) is always negative
and proportional to W 2.

For a chain of length L, Eq. (11) is a sum of L/2 random
variables of variance proportional to W 2. Therefore, we can
invoke the central limit theorem to see that the distribution
of �mid must be a Gaussian, with a width proportional to W ,
centered at �0 − c(W/t )2, where c is a constant. The scaling
of the width of the distribution with system size is given by
the product of a factor of 1/L (normalization), and a factor√

L (from the variance of the sum over L random variables).
These features are observed in the inset of Fig. 3(a) and in
Fig. 3(c).

We now discuss the spatial decay of the OP, which we
compute from the dependence of the average OP value at
the midpoint of the chain, 〈�mid〉, for different lengths L.
As shown in Fig. 3(a), 〈�mid〉 has an inverse-distance or 1/L
dependence. This is expected in view of the weak-localization
physics we expect in this regime. According to theory, the
averaged density-density correlations are known to obey a
diffusion equation [39]. These correlations therefore decay
as the inverse power of distance, similarly to the case in a
pure metal. In our present context, this property implies that
the spatial dependence of the proximity induced averaged
pair correlation function will be similar to that of the clean
system. In other words, it should fall off with the inverse of
the distance from the interface, �(x) ∼ 1/x [33]. These T = 0
properties should carry over at finite temperatures as long as
the phase-breaking length scale remains large compared to the
system size.

B. Strong disorder

The strong-disorder regime corresponds, in our model, to
values of W/t of order 0.1 or larger. In this regime, the wave
functions have an exponentially decaying envelope function.
The proximity effect is expected to be short-ranged, in con-
trast to the weak-disorder regime. Indeed this is observed
in Fig. 4(a), where the value of 〈�mid〉 for a fixed disorder
strength W/t = 0.7 is plotted as a function of system size L.
The characteristic decay length decreases as W is increased,
in accordance with the theoretically predicted exponential
behavior.

Figure 4(b) shows the distribution function of 〈�mid〉 in
the strong-disorder regime. This distribution is well described
by a log-normal form; i.e., the variable y = ln(�mid) is dis-
tributed according to a Gaussian,

P(y) = Ce−(y−y0 )2/2σ (W,L), (13)

where C is a normalization constant. The width of the Gaus-
sian, σ (W, L), is found to grow linearly with W and with the
system size L, as shown in Fig. 4(c).

We now present an argument for these observations. Due
to the bipartite character of the random hopping Hamiltonian,
the single-particle states exactly at E = 0 are known to have
a stretched exponential form [40,41], meaning a spatial decay
faster than a power law but slower than a pure exponential.
This is most readily shown by using the tight-binding equa-
tions for E = 0 to relate the wave function amplitude ψ (i) in
the interior of the chain to the wave function on the boundary
ψ (0) and ψ (1). For a site located at a distance 2m from the
boundary, the local wave function amplitude is

ψE=0(2m) ∝
∏

1�l�m

(−1)m t2l

t2l−1
. (14)

A similar relation holds for the state on the odd sublattice.
From the above it is clear that the logarithm of the E = 0 wave
function at the midpoint of the chain of length L = 2M can be
written as a sum,

ln ψE=0 =
M∑

i=1

xi + constant, (15)

where the random numbers xi are related to the hopping am-
plitudes by xi = ln(t2i/t2i−1) [42]. The above equation shows
that, according to the central limit theorem, ln ψ is a Gaussian-
distributed random variable. Its variance increases with the
number of xi, that is, is proportional to the chain length L.

In the strong-disorder regime, we assume that �mid can be
approximately written as

�mid ∼ uE=0
L/2 vE=0

L/2 , (16)

i.e., that the contributions from finite-energy states in the sum
(8) can be neglected, so the OP at the midpoint is determined
principally by the wave functions u and v at E = 0. This
simplification can be justified as a result of two factors: first,
the fact that there is a singularity (in finite systems, a peak)
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in the density of states at this energy [43]; second, that the
localization length is largest at the band center and decreases
for energies away from E = 0 [44,45], so that contributions
due to finite-energy states should be small. The OP at the
midpoint is thus determined by the wave functions u and v

at the midpoint of the chain which both have the form given
by Eq. (15), differing only in the values of the prefactor. The
central limit theorem applied to the logarithm of the product
uv tells us that ln(�mid ) ∼ ln(ψ ) must have a Gaussian distri-
bution of width proportional to W , increasing with system size
as

√
L. This is in agreement with the results shown in Fig. 4.

Note that for strong disorder the distribution width of the OP
grows with the system size, in contrast with the distribution
in the weak-disorder limit where it decreases with L. The
proximity-induced OP is clearly a strongly fluctuating quan-
tity, analogous to the distribution of values of the resistivity in
1D systems [42,46].

To conclude this section, we have shown that extended
states lead to a power-law decay of the OP and a Gaussian
distribution in the weak-disorder regime, whereas localized
states lead to a stretched exponential decay and a log-normal
distribution in the strong-disorder regime. We have checked
that these features in the induced order parameter in the
off-diagonal Anderson model carry over to the the diagonal
Anderson model except that for high values of W , the OP
decay is fitted better by an exponential rather than a stretched
exponential.

V. PROXIMITY EFFECT IN THE FIBONACCI CHAIN

We now consider a quintessential example of a one-
dimensional quasiperiodic system—the Fibonacci chain. The
Fibonacci chain is the most influential and best studied ex-
ample of a 1D quasicrystal. It exhibits many of the most
interesting novel features of quasicrystals including a singu-
lar continuous spectrum [14,15,47], topological edge states
[12], critical states [48], and discrete scaling symmetries [49].
We consider the off-diagonal model, in which the hopping
amplitudes ti take one of two values, tA and tB. We start by
considering chains which are obtained by repeated applica-
tion of the map σ : σ (tA) → tA tB, σ (tB) → tA to the initial
sequence {tB}. To illustrate this, the first few applications
yield {tB} → {tA} → {tA tB} → {tA tB tA}, and so on. These fi-
nite sequences obtained after n applications of σ are called
approximants of the Fibonacci quasicrystal. The number of
hoppings in an approximant is a Fibonacci number Fn =
1, 2, 3, 5, 8 . . . . In an approximant of length Fn, the ratio of
the number of A bonds to the number of B bonds is τn =
Fn−1/Fn−2 and tends to the golden mean, τ = 1+√

5
2 ≈ 1.618,

as the chain length tends to infinity. We will see below, when
we come to the study of fluctuations, that that these are not
the only allowed Fibonacci approximant sequences; there are,
in fact, Fn different approximants corresponding to a given
generation n.

We will consider henceforth the case where tA � tB. The
case tA = tB corresponds to the periodic chain, and the dif-
ference W = tB − tA gives a measure of the strength of the
quasiperiodic modulations. For a given value of W , we choose
tB and tA such that the average of the hoppings over the chain is
unity ⇒ 1

Fn
(Fn−1tA + Fn−2tB) = −1. The spectrum and wave

FIG. 5. Superconducting proximity effect in a Fibonacci chain:
(a) Real-space profile of the superconducting order parameter when
the normal segment is a Fibonacci chain. Modulation strength:
W/t = 0.1. (b) Superconducting order parameter profile in the cen-
tral 987 (top), 233 (middle), and 55 (bottom) segments of the
Fibonacci chain in a hybrid Fibonacci-SC ring. The order-parameter
profiles are self-similar upon scaling by the renormalization parame-
ter τ 3. The data in panel (b) are taken from a hybrid ring with 2585
and 200 sites in the normal and superconducting regions, respec-
tively. (c) The hopping sequence corresponding to the sites shown
in the last panel in (b).

functions of this hopping Hamiltonian have been extensively
studied, and it is well known that all states are multifractal
and critical [47]. Such states are characterized by very large
fluctuations, and wave function amplitudes decay with dif-
ferent power laws, depending on the local environment. This
has been checked by numerical calculations and by explicit
computations within a perturbative renormalization group ap-
proach [49]. The state for E = 0 has been studied in detail in
[48] and is of particular interest for the proximity effect, as
discussed next.

A. OP profile in Fibonacci approximants

Figure 5(a) shows the spatial behavior of the superconduct-
ing order parameter in a hybrid ring composed of a Fibonacci
chain coupled to a BCS superconductor. This order param-
eter profile displays a self-similarity, which can be seen in
Fig. 5(b), where we zoom into successively smaller sections
in the center of the Fibonacci chain. The plots show a central
region where the number of sites is reduced successively by a
factor τ 3 [50].
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FIG. 6. The local order parameter and its correlation with the
symmetry of the local environment: the peaks in �i occur at sites
with high reflection symmetry represented by λi.

Local environment plays an important role in the value of
the OP on a given site. The lowest panel of Fig. 5(b) shows
the hopping sequence for the region shown in Fig. 5(c), with
tA and tB shown by yellow (resp. black) bands. One sees a
correlation between the heights of OP peaks and the local
environment, described as follows. Let us define λi as the
distance up to which reflection symmetry is present around
a given site i: specifically, λi is the smallest whole number
d such that ti+1+d �= ti−d . In Fig. 6, notice that peaks in λi

coincide with higher values of �i. This type of characteriza-
tion of local environments was presented in [51], where they
find that edge states with certain energies localize in such high
symmetry regions, which they call local resonators.

This self-similarity and the local-environment dependence
of the OP have simple explanations in terms of the theoretical
description of Fibonacci chain eigenstates in [49] and [48].
We assume, as in (16), that the sum over states can be re-
placed by the E = 0 contribution. The OP is thus determined
by the structure of the E = 0 wave functions which is well
known. In the limit of strong quasiperiodic modulation, these
wave functions tend to have their support concentrated on the
sites which are surrounded on either side by tA bonds (and
were called “atom” sites in the renormalization group (RG)
approach due to Niu and Nori and to Kalugin et al. [52,53]).
Under a renormalization transformation, the absolute value of
the E = 0 wave function of a site in the nth generation chain
is related to that of a site in the (n − 3)th generation by the
recursion formula∣∣ψn

E=0(i)
∣∣ =

√
λ

∣∣ψn−3
E=0(i′)

∣∣, (17)

where i and i′ are the site indices of the old and the new
(renormalized) chain, and λ is a wave function rescaling factor
which can be computed as a function of the hopping param-
eters [49]. The superconducting OP is given by the product
of two such wave functions. The highest amplitude is found
for the sites which remain after the largest number of RG
transformations. Under RG transformation, the number of
such sites is reduced by a factor τ 3. The distance out to which
the site possesses reflection symmetry increases by the same
factor. Thus the RG theory of the Fibonacci chain explains
the numerical observations of (a) self-similarity of the OP,

and (b) the correspondence between the OP and the local
environment.

B. Fluctuations of the OP

The chains built by substitution of the previous section are
only one of a family of approximants: there are exactly Fn

Fibonacci approximants of length Fn. The local order parame-
ters in the Fibonacci chain fluctuate according to the structure
of the chain considered. A systematic way to generate all
approximants of length Fn uses the characteristic function,

χ j = sgn
[
cos

(
2π jτ−1

n + φ
) − cos

(
πτ−1

n

)]
. (18)

Here χ j gives the jth hopping, where we identify − (+)
with tA (tB), and j = 1, 2, . . . , Fn. By varying φ throughout
the interval [0, 2π ), we recover all approximants of the given
length. The difference between chains generated by changing
φ is small and consists of phason flips—exchanging a pair
of bonds tBtA → tAtB. The variation of the induced OP as a
function of φ was studied in [12]. There it was shown that
varying φ leads to complex oscillations of the OP, with periods
given by the topological indices of the gaps of the Fibonacci
chain spectrum.

One can plot the distribution function of the OP, just as we
have done for the randomly disordered case. However, there
is a significant difference between the models: whereas in the
disordered system one can generate as many realizations of
the chain as one wishes, for the Fibonacci chain there are only
Fn realizations of a chain of length Fn. It is therefore necessary
to go to very large systems to obtain a good fit for the decay
law of 〈�mid〉 and to fit the distribution function to a smooth
form. In this work, the biggest system that we have studied
consists of N = 1597 bonds.

1. Decay law of the typical value of the order parameter

In this subsection we consider the properties of the typical
value of the OP 〈�mid〉g—after averaging over all values of φ

[54]—and focus in particular on its spatial decay away from
the N-SC interface. To study the spatial decay of 〈�mid〉g as
one moves away from the interface, we compute this quantity
for chains of different lengths L. Plotting it as a function of
length L/2, as shown in Fig. 7(a) yields a power law with
〈�mid(n)〉g ∼ n−α , where the exponent α depends on the mod-
ulation of hopping amplitudes.

The observed power-law decay is consistent with the pres-
ence of critical states: the effective exponent is nonuniversal
and depends on the average values of the density of states
and the states close to the Fermi level. An explicit calculation
is outside the scope of the present discussion. We remark
simply that when the ratio tA → tB, the power α → 1, i.e.,
approaching the decay law for the simple nonmodulated chain
[see inset of Fig. 7(a)]. As one might expect, increasing the
strength W of the quasiperiodic modulation results in wave
functions becoming less extended, leading to a faster spatial
decay of the OP as one moves away from the interface.

2. Distribution of the OP

The distribution of the induced order parameters is shown
in Fig. 7(b) for a chain of length L = 988 for two different
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FIG. 7. Superconducting proximity effect in a Fibonacci chain: (a) Finite-size scaling of 〈�mid〉 with the length of the normal region L
shows power-law decay of � away from the interface in N-SC hybrid rings where N is a Fibonacci chain. Modulation strength: W/t = 0.005.
Fit offset x0 = 10.85. (b) The distribution of ln �mid in N-SC rings is symmetric when N is a Fibonacci chain. L = 988, LSC = 200. (c) The
dependence of the mean and standard deviation of �mid on the modulation strength W/t . Inset: The functional dependence of the width,
σ (ln �mid ), on the ratio of the hopping parameters.

values of the modulation strength W , while the dependence
of its mean and standard deviation on the disorder strength
is shown in Fig. 7(c). More precisely, Fig. 7(b) shows distri-
butions of the logarithm of �mid, which are more symmetric.
This can be explained by an argument, which suggests that
�mid should tend to a log-normal distribution. We approxi-
mate the sum in Eq. (8) for �mid by keeping only the E = 0
term, as we did in the previous section for the strongly dis-
ordered case. Here, our justification is that the spectrum has
many minigaps, so that the contribution of states away from
the Fermi energy can be neglected. There are two E = 0
states, one for each of the two sublattices. Considering the
state on the even sites, for example, the same transfer matrix
calculation used in the preceding section for the strongly
disordered chain holds, so that ψ (2m) has the form shown in
(15). Specializing to the Fibonacci chain, one can show that
the wave function can be expressed in terms of a so-called
height function [48]. The wave function amplitudes for sites
on the even sublattice, i = 2m, can be written as follows:

ψ (2m) = (constant)(−1)m exp[κh(2m)], (19)

where κ = ln(tA/tB). The height function h, which depends
solely on the geometry, can be computed for a given sequence
of hopping amplitudes using the following relations for the
height changes, which can take three values depending on the
value of the hopping amplitudes between the two sites,

δh(2m) =
{0, if t2m−1 = t2m = tA,

−1, if t2m−1 = tA, t2m = tB,

1, if t2m−1 = tB, t2m = tA,

(20)

where δh(2m) = h(2m) − h(2m − 2). A similar structure
holds for the state on the odd sublattice.

To proceed, one next uses the renormalization transforma-
tion of Fibonacci chains, which relates a given chain to the
next generation, to write a recursion relation for the height
function. From this relation, one can deduce that for suffi-
ciently long chains the distribution of h values must tend to
a Gaussian of width proportional to ln L. The multifractal
scaling properties of the E = 0 state can be deduced from
the distribution of h. In particular, for this critical state all
the generalized exponents describing its spatial characteristics
have been computed exactly. The analysis shows that heights

follow a Gaussian distribution with the variance given by [48]

〈h2〉 − 〈h〉2 = 1√
5

ln(L)

ln(τ )
. (21)

Returning to the proximity effect, the OP at the midpoint
is determined by the wave functions u and v at the midpoint
of the chain which both have the form given by (19), differing
only in the values of the prefactor. The changes of values �mid

result from the phason flips that occur when the parameter
φ is varied. From (19) and (21) the resulting distribution
of �mid must therefore be log-normal. This can be seen in
Fig. 7(b). According to (19) the width of this distribution
should increase with the strength of quasiperiodic modulation
as ln(tB/tA).

Although both distributions are log-normal, there is a sig-
nificant difference between the L dependence of the widths in
the Fibonacci chain (FC) as compared to the strongly disor-
dered chain. For the FC, the width of the distribution grows
only logarithmically, much, much more slowly than in the
random case. This is indeed seen numerically as shown in
the inset of Fig. 7(b). In this regard as in many others, the
properties of the quasicrystal are intermediate between those
of the weakly disordered and strongly disordered chains.

VI. CONCLUSION

We have examined the proximity effect in inhomogeneous
normal wires coupled to a superconductor at T = 0, focusing
on three important situations: (I) when the N component is
a weakly disordered crystal, in which wave functions are
extended and perturbative calculations can be performed;
(II) when the disorder is strong enough that the localization
lengths are smaller than the sample size; and (III) when states
are critical, as in the off-diagonal Fibonacci tight-binding
model. Our main results are summarized in Table I. We find,
first, that the typical value of the OP has a power-law decay as
one moves away from the interface when states are extended
or critical. On the other hand, for strongly disordered systems,
where states are localized, the typical OP decays faster, in the
present case as a stretched exponential. For arbitrary positions
of the Fermi energy, away from the special point E = 0 we
expect that a regular exponential decay should be observed.

The OP fluctuations in such systems are large. We have
computed the distribution function of OP values and shown
that they have Gaussian or log-normal shapes. We have pre-
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TABLE I. A summary of the characteristics of the distribution function for �mid when the electronic states in the normal side are (i)
(quasi)extended, as in periodic and weakly disordered systems, (ii) critical, as in quasicrystals, (iii) localized, as in strongly disordered systems.
�̄ and �t refer to the average (arithmetic mean) and typical (geometric mean) values of the distribution.

Electronic states 〈�mid〉 P(�mid ) Variance

Extended/quasiextended (periodic/weak Anderson model) 1/L e− (�−�̄)2
2σ σ 2(�mid ) ∝ 1/L

Critical (Fibonacci chain) 1/Lα 1
�

e− (ln �−ln �t )2

2σ σ 2(ln �mid ) ∝ ln L

Localized (strong Anderson model) e−√
L/ζ 1

�
e− (ln �−ln �t )2

2σ σ 2(ln �mid ) ∝ L

sented arguments to explain the forms of the distributions and
their scaling as a function of sample size and disorder strength
for each of the cases considered.

In the one-dimensional models we considered there are no
mobility edges. However, one can speculate that our results
are more generally applicable in other models where there are
mobility edges. In that case the typical values and the fluctu-
ations of the OP would depend on the spatial characteristics
of the states close to the Fermi level. Lastly, we note that

although results reported here were obtained for the 1D case,
qualitatively similar results could be expected for models in
higher dimensions. This is left for future studies.
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