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Algorithm for generating irreducible site-occupancy configurations
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Generating irreducible site-occupancy configurations by taking advantage of crystal symmetry is a ubiquitous
method for the acceleration of disordered structure prediction, which plays an important role in condensed
matter physics and material science. Here, we present an algorithm for generating irreducible site-occupancy
configurations, which works for arbitrary parent cells with any supercell expansion matrix, and for any number
of atom types with arbitrary stoichiometry. The algorithm identifies the symmetrically equivalent configurations
by searching the space group operations of the underlying lattice and building the equivalent atomic matrix based
on it. Importantly, an integer representation of configurations can greatly accelerate the speed of elimination of
duplicate configurations, resulting in a linear scale of run time with the number of irreducible configurations
that are finally found. Moreover, based on our algorithm, we write the corresponding code named disorder in
FORTRAN programming language, and the performance test results show that the time efficiency of our disorder
code is superior to that of other related codes (supercell, enumlib, and SOD).
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I. INTRODUCTION

Searching unknown structures is of paramount potential
impact in condensed matter physics and materials science
[1–4]. The high efficiency and accuracy of first-principles cal-
culations in describing the structural thermodynamic stability
[5–7] and other related properties [8–10] has greatly pro-
moted the process of structure prediction; extensive structural
ground state properties calculations become reality. However,
the evaluating of structural relative stabilities based on first-
principles calculations becomes challenging for the issue of
site-occupancy disorder [11–15]; a subset of the structure pre-
diction problem, whose structures are derived from a specific
underlying lattice. The reason is that the underlying lattice is
often a large supercell, which not only increases the computa-
tional load of first-principles, but also the number of structures
derived from it dramatically increases due to combinatorial
explosion. Nevertheless, the efforts have not been stopped and
will never be stopped, as many profound physical and ma-
terial phenomena are observed in disordered structures, and
bring about important applications in fields such as metallic
alloys [16,17], nonstoichiometric materials [18,19] and high-
temperature superconductors [20–23]. Aiming to overcome
this obstacle, several methods have been developed to reduce
the generated atomic configurations [24–27]. In this paper, we
focus on one of those methods, i.e., searching the irreducible
configurations in a complete list of atomic configurations by
taking advantage of crystal symmetry.

Many combinatorially distinct configurations are geometri-
cally identical; they are related by the symmetry operations of
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the underlying lattice. The main idea of searching irreducible
configurations is to generate an exhaustive list of combinato-
rially distinct configurations, then eliminating the duplicates,
i.e., the symmetrically equivalent configurations. Such an idea
is adopted by many existing algorithms [24,28–30], but the
implementations are diverse from each other. In the following,
several representative algorithms for generating irreducible
site-occupancy configurations will be briefly introduced.

The algorithm implemented in SOD software (released in
2007) is one of the excellent representatives [24]. The SOD al-
gorithm identifies the equivalent configurations utilizing space
group operations of the underlying lattice, which are reading
from a database of space group operations. The superiority
of the SOD algorithm lies in its simplicity in concept and
programming. However, it only works for the binary site-
occupancy systems, and the nondiagonal supercell expansion
matrix is forbidden in SOD software, although these short-
comings are caused by programming limitations, not by the
approach itself. In addition, its run time will grow explosively
with the increase of the number of configurations, which
is mainly caused by an algorithmic problem (evitable), and
partly resulted from a combinatorial problem (ineluctable).

Compared with the SOD algorithm, extraordinary progress
is made by the algorithm implemented in enumlib software
(released in 2008) [28]. The enumlib algorithm applies to any
parent cell, arbitrary supercell expansion matrix, and multi-
nary (binary, ternary, quaternary etc.) site-occupancy systems.
For the first version, the enumlib algorithm applies only to
the Bravais lattices, and it does not work at a certain stoi-
chiometry. These problems have been solved in the latter two
extensions [31,32]. The key concept of the enumlib algorithm
is to use the quotient group associated with the underlying
lattice and an integer representation of the configurations to
determine all unique structures. Profiting by this concept,
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the enumlib algorithm is orders of magnitude faster than the
SOD algorithm and realized a linear scale of run time with
the number of irreducible configurations, which is the best
possible scaling for this type of problem.

Although the run time of the enumlib algorithm scales
linearly with the number of irreducible configurations, the
calculation time is far beyond a reasonable limit when the
number of configurations is huge (say millions). Therefore,
the algorithm performance still has the possibility to be further
improved, which has become a reality in supercell software
(released in 2016) [30]. The algorithm implemented in su-
percell is similar in essence to the enumlib algorithm, but its
time efficiency is about ten times that of enumlib algorithm.
However, the supercell algorithm cannot support nondiagonal
supercell expansion matrix, which limits its exploration for
different supercell shapes.

In this paper, we present an implementation for the genera-
tion algorithm of irreducible site-occupancy configurations. In
our algorithm, we enumerate the combination configurations
to represent the combinatorially distinct atomic configura-
tions, and extend it to the multinary site-occupancy systems.
Our algorithm identifies the symmetrically equivalent con-
figurations by an equivalent atomic matrix, while the space
group operations used to build it are searched from the struc-
tural information (only the lattice parameters and atomic
positions are needed) of arbitrary supercell straightforwardly.
As a result, the algorithm is applicable for arbitrary par-
ent cells with any supercell expansion matrix including the
nondiagonal one, which is forbidden in SOD and supercell
softwares. In addition, a linear scale of run time with the
number of irreducible configurations is achieved also, bene-
fitted by the concept of using a series of consecutive integers
to represent the configurations. Most of all, the speed of
eliminating duplicate configurations is greatly accelerated,
due to the efficient conversion algorithm of configurations
to integers, and hence faster than that of the supercell
algorithm.

II. METHODOLOGY

The algorithm for generating irreducible site-occupancy
configurations can be summarized into four critical tasks:
(1) searching space group operations to build the equivalent
atoms matrix, (2) enumerating all atomic configurations based
on combinatorics, (3) eliminating the duplicate configurations
by using symmetries (the most time-consuming procedure),
(4) converting atomic configurations into consecutive integers
to accelerate the third task. In the following, a detailed de-
scription of the algorithm implementation is presented.

A. Searching space group operations

Searching space group operations is a key point for iden-
tifying equivalent atomic configurations. The algorithm for
searching space group operations is based on Spglib: a soft-
ware library for crystal symmetry search [33]. Although the
original algorithm implemented in Spglib is used for the prim-
itive cell, it can be applied to an arbitrary cell with appropriate
modifications. The algorithm of searching space group opera-
tions used here is a simplified and modified version of Spglib.

The space group operation is defined by a 3 × 3 integer
matrix W (rotation part) and a 3 × 1 decimal column vector ω

(translation part). An arbitrary atomic point x on the fractional
coordinates must be sent to another atomic point (or itself) x′
with the same atomic type by one of the valid space group
operations (W ,ω) by x′ = W x + ω.

In the following, a brief outline of the algorithm for
searching all valid space group operations is presented (the
elaborated description is given in Ref. [33]).

1. Searching pure translation operations [See Ref. [33], Step (a)]

The pure translation operations are expressed as (I,ω),
where I is the identity matrix. Generally, the input cell (i.e.,
the underlying lattice) is a nonprimitive cell, so that there are
multiple pure translation operations, (I,ω) will be found, and
the number (Nt ) of pure translation operations is the volume
of the input cell divided by the volume of its primitive cell.

2. Searching lattice point group operations [See Ref. [33], Step (f)]

In this step, all the matrix elements of possible W are
selected from {−1, 0, 1} to satisfy |det(W )| = 1. Afterwards,
the possible W are further screened by the conditions for
metric tensor G, which is defined by G = (a, b, c)T(a, b, c),
where (a, b, c) is the lattice basis vectors. In the spglib, the
basis vectors used to define metric tensor G is that of the
primitive cell. Here, we replace it with that of the input cell
to obtain the space group operations of arbitrary cell.

3. Searching space group operations [See Ref. [33], Step (g)]

For a nonprimitive cell, similar to pure translation opera-
tions, one W will correspond to multiple ω. Thus, the total
number (Ns) of space group operations is the number (Nr) of
its rotation part multiply by the number (Nt) of its translation
part, i.e., Ns = Nr × Nt . In reality, for one W , only one (any
one) corresponding ω needs to be searched out, while the full
space group operations can be obtained by combining pure
translation operations.

4. Building equivalent atomic matrix

Building an equivalent atomic matrix will advantageous
to identify the equivalent atomic configurations conveniently
and quickly. A set of atomic points labeled with consecutive
integers are transformed into another set of atomic points by
a space group operation. The labels of the transformed atomic
points constitute one row elements of the equivalent atomic
matrix, while the complete equivalent atomic matrix can be
obtained by traversing all space group operations.

B. Enumerating all atomic configurations

The enumeration of all possible atomic configurations is
based on combinatorics. We first consider an underlying lat-
tice with K atomic positions that can be occupied by N
different types of atoms (the vacancies are deemed as a spe-
cial type of atoms), and the atomic number of each type is
ki(i = 1 . . . N ), satisfying K = ∑N

i=1 ki. The total number (Nc)
of atomic configurations can be obtained by the multinomial
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FIG. 1. The two enumeration ways of binary site-occupancy configurations for K = 6, k1 = 4 (red), k2 = 2 (blue). (a) The first enumeration
way, i.e., enumerating the configurations for the red color, while the blue color is occupying the remaining atomic positions. (b) The second
enumeration way, i.e., enumerating the configurations for the blue color, while the red color is occupying the remaining atomic positions.

coefficient:

Nc(k1, k2, . . . , kN ) = (k1 + k2 + · · · + kN )!

k1!k2! · · · kN !
=

(∑N
i=1 ki

)
!∏N

i=1 ki!
.

(1)
For clarity, we will introduce our algorithm in two steps.

Specifically, we start with a special case, i.e., the binary (N =
2) site-occupancy case, and then, extend it to the general case,
i.e., the multinary (N � 3) site-occupancy case.

1. Binary site-occupancy

The binary site-occupancy is two different types of atoms
occupying K atomic positions. In such a special case, accord-
ing to Eq. (1), the total number of atomic configurations is
expressed as a binomial coefficient:

Nc(k1, k2) = (k1 + k2)!

k1!k2!
= K!

k1!k2!
= Ck1

K = Ck2
K , (2)

where Cm
n = n!

m!(n−m)! .
As mentioned above, our task is enumerating all possible

atomic configurations. The algorithm enumerates all binary
combination configurations to represent the atomic configura-
tions. The binary combination configurations, corresponding
to binomial coefficient Cm

n , are the possible ways to choose
a subset of size m elements, disregarding their order, in an
integer set from 1 to n with n elements. Hereafter, for conve-
nience, we use different colors to represent different types of
atoms, and a list A with Ck1

K rows and k1 columns is adopted to
store the atomic configurations for binary site-occupancy. Ob-
viously, we only need to determine the atomic configurations
of one color, while the others occupy the remaining atomic
positions. Therefore, there are two ways to enumerate atomic
configurations A, as shown in Fig. 1, where an example is for
K = 6, k1 = 4 (red), k2 = 2 (blue). In practice, undoubtedly,
we can enumerate the lesser one of the two colors to reduce
the computational load.

2. Multinary site-occupancy

The multinary site-occupancy is N (N � 3) different types
of atoms occupying K atomic positions. The total number
of possible atomic configurations for the multinary site-
occupancy can be obtained from Eq. (1). Here we rewrite it
as

Nc(k1, k2, . . . , kN ) = K!

k1!k2! · · · kN !

= Ck1
K Ck2

K−k1
Ck3

K−k1−k2
· · ·CkN−1

K−k1−k2−···−kN−2
.

(3)

Its physical meaning is obvious: first let k1 atoms occu-
pying K atomic positions, then let k2 atoms occupying the
remaining K − k1 atomic positions, and so on. Of course, the
order of k1, k2, . . . , kN is irrelevant. This means that we can
decompose the multinary site-occupancy into several binary
site-occupancies.

We represent these binary combination configurations,
corresponding to binomial coefficients in Eq. (3),
as lists B(1), B(2), . . . , B(N−1), with Ck1

K ,Ck2
K−k1

, . . . ,

CkN−1

K−k1−k2−···−kN−2−2 rows and k1, k2, . . . , kN−1 columns. Then,
the multinary combination configurations B can be defined
by simply uniting these binary combination configurations, as
follows:

Bn = B(1)
i ∪ B(2)

j ∪ · · · ∪ B(N−1)
k ,

n ∈ [1, Nc(k1, k2, . . . , kN )], i ∈ [
1,Ck1

K

]
, j ∈ [

1,Ck2
K−k1

]
,

k ∈ [
1,CkN−1

K−k1−k2−···−kN−2

]
.

However, unlike the binary site-occupancy, the combination
configurations defined above are not the atomic config-
urations. Therefore, we need to convert the combination
configurations to the atomic configurations.
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FIG. 2. The enumeration of ternary site-occupancy configurations for K = 6, k1 = 2 (red), k2 = 3 (blue), k3 = 1 (green). (a) The binary
combination configurations for red and blue colors. (b) The conversion of combination configurations to atomic configurations.

Given configuration a, and its corresponding combination
configuration b can be disassembled into

a = a(1) ∪ a(2) ∪ · · · ∪ a(N−1),

b = b(1) ∪ b(2) ∪ · · · ∪ b(N−1).

Moreover, a series of arrays (L(1), L(2), . . . , L(N−1)) with
(K, K − k1, . . . , K − k1 − · · · − kN−2) columns are used to
label the atomic positions, where L(1) is the original atomic
label, L(2) is the atomic label after removing a(1), and the like,
L(N−1) is the atomic label after removing a(1) ∪ a(2) ∪ · · · ∪
a(N−2). Then, the transformation relationship between a and b
can be written as

a(n)
i = L(n)

b(n)
i

, (4)

where, n ∈ [1, N − 1], i ∈ [1, kn], and i is the column index
of a(n) or b(n). Here, we take the ternary site-occupancy as
an example, and specify K = 6, k1 = 2 (red), k2 = 3 (blue),
k3 = 1 (green). For the ternary site-occupancy, we can de-
compose it into two binary site-occupancy, the combination
configurations of them and the resulting atomic configurations
are shown in Fig. 2.

C. Converting configurations to integers

As stated previously, the third task is eliminating the du-
plicate configurations, which is the most time-consuming
procedure. The process of eliminating duplicate configura-
tions can be greatly accelerated by the directly determination
of configuration indexes, which is expressed as a set of con-
secutive integers. In the following, we will show how it is
implemented and explain why it is so efficient.

FIG. 3. The conversion of binary site-occupancy configurations to consecutive integers (indexes) for K = 6, k1 = 4 (red), k2 = 2 (blue).
(a) The atomic configurations and its corresponding indexes. (b) The constructing flow of matrix E. (c) Two specific examples of atomic
configurations to integers.
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FIG. 4. The conversion of ternary site-occupancy configurations to consecutive integers (indexes) for K = 6, k1 = 2 (red), k2 = 3 (blue),
k3 = 1 (green). (a) The atomic configurations and its corresponding combination configurations and indexes. (b) The constructing flow of
matrix E and its submatrices E(1), E(2). (c) Two specific examples of atomic configurations to integers.

1. Binary site-occupancy

For the binary site-occupancy, the configuration in-
dex of arbitrarily atomic configuration can be calculated
by the following procedure. First, we build a matrix D
as follows:

Di j =
{

0,i = 1

Ck1− j
k1− j+i−2,i �= 1

,

where, the number of rows is K − k1 + 1, the number of
columns is k1, i ( j) is the row (column) index, and we define
C0

n = 1. Based on matrix D, another matrix E with the same

size can be obtained, as shown below:

Ei j =
i∑

k=1

Dk j . (5)

Then, given a configuration a, its configuration index m can
be expressed as

m = Ck1
K −

k1∑
j=1

Ei j, (6)
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where i = A−1 j − a j + 1, A−1 is the last configuration in list
A. Again, we specify K = 6, k1 = 4 (red), k2 = 2 (blue) as an
example, and the calculation flow is shown in Fig. 3.

2. Multinary site-occupancy

For the multinary site-occupancy, similar to matrix E [see
Eq. (5)] of the binary site-occupancy, a set of matrices E(n)

corresponding to the nth combination configurations can be
built using the same method. Actually, however, these N − 1
matrices are submatrices of a larger matrix, meaning that
we only need to construct one matrix E whose number of
rows and columns are the maximum of that in matrices E(n).
Afterwards, given configuration a, its configuration index m
can be expressed as

m = Nc − Nc

Ck1
K

k1∑
j1=1

E (1)
i1 j1

− Nc

Ck1
K Ck2

K−k1

k2∑
j2=1

E (2)
i2 j2

− · · · −
kN−1∑

jN−1=1

E (N−1)
iN−1 jN−1

,

where, Nc = K!
k1!k2!···kN ! , in = B(n)

−1 jn
− b(n)

jn
+ 1,n ∈ [1, N − 1].

Therefore, we need to convert the atomic configuration a into
the corresponding combination configuration b, and it is not
difficult to realize by the inverse process of Eq. (4). In addi-
tion, one can notice that when N = 2, the above formula will
degenerate into the binary site-occupancy case [see Eq. (6)].
Finally, we specify K = 6, k1 = 2 (red), k2 = 3 (blue), k3 = 1
(green) as an example, and the calculation flow is shown in
Fig. 4.

D. Eliminating duplicate configurations

Our algorithm used to eliminate duplicate configurations
is illustrated by a flowchart as shown in Fig. 5. The pre-
processing algorithm (the red frame) involves the obtaining
of space group operations, equivalent atomic matrix, all bi-
nary combination configurations, and matrix E. Afterwards,
a parent-loop (the blue frame) traversing all atomic configu-
rations, and a subloop (the green frame) traversing all space
group operations are performed. In the parent-loop, if the
atomic configuration has been eliminated, then skip it directly,
otherwise add it to the list I (represents the irreducible config-
urations), and enters the subloop. In the subloop, the space
group operation, including rotation, translation, and permuta-
tion, maps a configuration a to another configuration (or itself)
a′. If the configuration a′ has been eliminated, then skip it
again, otherwise eliminate it. Obviously, the key point of the
above process is how to eliminate the atomic configuration,
and how to know a configuration has been eliminated. This
is achieved by a logical list U corresponding to the atomic
configurations one-by-one. At the beginning, all elements in
U are setting to “TRUE”, which means that all configurations
have not been eliminated. If a configuration needs to be elim-
inated, set the corresponding element in U to “FALSE”. All
in all, the fast conversion of configurations to integers plays a
pivotal role for the improvement of algorithm performance.

FIG. 5. The algorithm flowchart of eliminating duplicate
configurations.

III. ALGORITHM PERFORMANCE AND SUPERIORITY

Based on aforementioned algorithm, we write the corre-
sponding code named as disorder in FORTRAN programming
language [34]. After that, an example is given to test the
algorithm performance, and compared with those algorithms
implemented in supercell, enumlib, and SOD softwares.
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TABLE I. The calculation results of disorder (this work), supercell, emumlib, and SOD codes for all combinatorially distinct stoichiome-
tries in a 2 × 2 × 2 fcc lattice. The reported run time of the four codes is a real time on Intel® Xeon® E5-2678 processor, and only one thread
is used during the test.

Run time (sec)

Stoichiometries Total configurations Irreducible configurations disorder supercell enumlib SOD

1:31 32 1 0.0218 13.354 0.0745 0.0681
2:30 496 5 0.0207 13.542 0.1517 0.0899
3:29 4960 14 0.0226 13.746 0.3102 0.5776
4:28 35960 71 0.0385 13.565 1.0856 21.173
5:27 201376 223 0.0812 13.721 3.2949 451.29
6:26 906192 874 0.2459 14.304 12.447 10248
7:25 3365856 2706 0.7622 16.553 39.866 > 2 days
8:24 10518300 8043 2.2275 23.266 119.01 /
9:23 28048800 20123 6.9478 36.764 300.72 /
10:22 64512240 45497 18.398 65.990 701.43 /
11:21 129024480 88716 41.692 116.29 1377.3 /
12:20 225792840 154379 81.531 191.36 2333.6 /
13:19 347373600 234803 137.11 286.38 3559.0 Crashed
14:18 471435600 318348 209.04 379.59 4857.5 Crashed
15:17 565722720 379926 283.44 454.09 5836.6 Crashed
16:16 601080390 404582 306.24 473.10 6123.4 Crashed
Cumulative 2248023842 1658311 1087.7 2125.7 25264 /

The example is based on a face-centered cubic (fcc) parent
lattice, as many structures of intermetallic compounds are
derived from it. The point group of the fcc lattice is Oh, with
48 point group operations (rotation parts of space group oper-
ations), which is the highest symmetry. Moreover, the volume
of the fcc unit cell (4 atoms) is 4 times of its primitive cell
(1 atoms), which means that the fcc unit cell possesses 4 pure
translation operations. For an fcc unit cell, therefore, the total
number of space group operations is 48 × 4 = 192 (48 rota-
tions and 4 translations). In our example, a 2 × 2 × 2 supercell
(32 atoms) is adopted to test the algorithm performance. This
is a challenging test, because its 48 × 4 × 8 = 1536 space
group operations (48 rotations and 4 × 8 translations) is really
high.

We enumerate all combinatorially distinct stoichiometries
for binary site-occupancy and present the calculation results
(containing total configurations, irreducible configurations
and run time) in Table I. One can see that all four codes,
including disorder (this work), supercell, enumlib, and SOD,
give the same number of total and irreducible configurations,
which proves the correctness of our algorithm. However, the
run time of the four codes is different: the run time of SOD
code grows sharply with the increase of the number of ir-
reducible configurations, but that of other three codes grow
slowly.

For the convenience of comparing the run time of disorder,
supercell, and enumlib codes, we plot the run time as a func-
tion of the number of irreducible configurations, as shown in
Fig. 6. One can notice that a linear relationship between run
time and the number of irreducible configurations appeared
when the number of irreducible configurations is greater than
a critical value, for all the three codes. Such a critical value
depends on the ratio of preprocessing time to total time: a
linear scale emerged when the ratio is small enough, i.e.,
the preprocessing time is negligible compared with the total

time. The large critical value of supercell is owing to its long
preprocessing time primarily, while the small critical value of
enumlib is mainly due to its long total time. For our disorder
code, both the total time and preprocessing time are relatively
small, so that its critical value is between that of enumlib
and supercell. Moreover, we can see that our disorder code
has the lowest run time throughout the stoichiometric range
(see Fig. 6), and the cumulative run time (see last row of
Table I) of disorder is 18 minutes, about half that of supercell

FIG. 6. The run time of disorder, supercell, and enumlib codes
as a function of the number of irreducible configurations in a
2 × 2 × 2 fcc lattice. One can see that the disorder code (this
work) has the lowest run time in the whole range of the number of
irreducible configurations.
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TABLE II. The comparison of disorder (this work), supercell, emumlib and SOD codes. The performance is the cumulative time of all
combinatorially distinct stoichiometries in a 2 × 2 × 2 fcc lattice.

disorder supercell enumlib SOD

Public release 2020 2016 2008 2007
Version / v1.2 v2.0.4 v0.47
Released date / 23-05-2019 23-09-2019 01-02-2019
Programming language FORTRAN C++ FORTRAN FORTRAN
Nondiagonal supercell expansion matrix Yes No Yes No
Arbitrary number of atom types (i.e., the multinary systems) Yes Yes Yes No
Performance 18 min 35 min 7 h /

(35 minutes) and less than one twenty-third that of enumlib
(7 h), which indicates the high efficiency of our algorithm. As
a summary, a brief comparison of disorder, supercell, enumlib
and SOD codes are presented in Table II.

IV. SUMMARY

We have developed an algorithm for generating irreducible
site-occupancy configurations. The algorithm processes the
multinary site-occupancy problem by decomposing it into
several binary site-occupancies. Afterwards, based on com-
binatorics, the algorithm enumerates all binary combination
configurations, and converts them to atomic configurations.
In the procedure of eliminating duplicate configurations, the
algorithm identifies the duplicate configurations by an equiv-
alent atomic matrix, which is built from the space group
operations of the underlying lattice. In our algorithm, the

space group operations are searched from the structural in-
formation of the underlying lattice directly, and works for
an arbitrary parent cell with any supercell expansion matrix.
Most importantly, an efficient conversion of configurations to
integers is adopted to accelerate the process of eliminating
duplicate configurations, and finally realized a linear scale of
run time with the number of irreducible configurations, which
is proved by the performance testing in a 2 × 2 × 2 fcc lattice.
Moreover, the results also indicate that the time efficiency of
the algorithm is greatly superior to other algorithms with the
same or different time complexity.
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