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Clean quasi-one-dimensional systems demonstrate Van Hove singularities in the density of states ν and
resistivity ρ, occurring when the Fermi level crosses the bottom of some transversal quantization subband.
However, taking the scattering on impurities into the account should smear the singularities. As we have shown
in our previous work [Phys. Rev. B 99, 035414 (2019)], for the case of clean conducting tubes, the character of
smearing strongly depends on the impurity concentration n. For n � nc, the singularities are simply rounded,
while for n � nc, the initial peak is asymmetrically split into two for the case of attracting impurities, nc being a
crossover concentration. In this work, we extend our consideration to “strips”—quasi-one-dimensional structures
in 2D conductors. Here also for n � nc, an original Van Hove singularity is asymmetrically split into two peaks.
However, in contrast to the tube case, the amplitudes of scattering at impurities depend on their positions and
these peaks are inhomogeneously broadened. The strongest broadening occurs in the left peak, arising, for
attracting impurities, due to the scattering at the quasistationary levels that form a relatively broad impurity band
with a weak quasi-Van Hove feature on its lower edge. Different parts of ρ(ε) are dominated by different groups
of impurities: close to the minimum the most effective scatterers, paradoxically, are the “weakest” impurities
located close to nodes of the electronic wave function. The quasi-Van Hove feature at the left maximum is
dominated by the strongest impurities located close to antinodes.

DOI: 10.1103/PhysRevB.102.134208

I. INTRODUCTION

Clean quasi-one-dimensional systems demonstrate Van
Hove singularities in the density of states ν(ε) and resistiv-
ity ρ(ε) where ε is the dimensionless distance between the
Fermi level and the bottom of the closest one-dimensional
subband [1]. However, scattering at impurities should smear
the singularities. The principal aim of the present work is to
introduce a general frame that allows for finding a resistiv-
ity of various quasi-one-dimensional systems in the vicinity
of Van Hove singularity including different types of tubes,
wires and strips. Physical examples of such systems could be
carbon nanotubes (both single-wall [2,3] and multiwall [4,5]
ones), thin Bismouth wires [6–8], nanoribbons [9,10], or long
constrictions in 2D semiconductor heterostructures [11–13]
produced by gates that confine motion of 2D electrons to one
dimension. The properties of all these systems may be quite
different. However, we will show that at least two important
classes exist—one is topologically equivalent to a single-wall
tube and the other—to a constriction (a strip). Although the
properties of resistivity for systems within these classes are
very similar, there are certain important distinctions between
systems from different classes.
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The role of impurity scattering in a 2D constrictions was
studied both theoretically [14,15] and experimentally [16].
In Refs. [14,15], the strong resonant features in ρ(ε) were
predicted. Also, the shape of these features depends on the
type of impurity—attractive or repulsive—simply because in
the case of the attraction, a quasibound state is formed near
the impurity. However, in Refs. [14,15], the consideration was
given only to the scattering at a single impurity with a certain
position in the strip. As we show in the present work, differ-
ently positioned impurities contribute to the overall scattering
rate differently and for every value of ε, there is a certain
group of impurities that gives a major contribution. Also,
we demonstrate that differently positioned attracting impuri-
ties have different energies of the corresponding quasibound
states. Therefore, instead of a single quasibound state, one
would have an “impurity band,” which has a strong effect on
the scattering under Van Hove singularity.

A. Results of the previous study: the case of tube

In our previous studies [17,18], we have considered a re-
sistivity of a clean conducting tube in a longitudinal magnetic
field. From the geometrical point of view, the tube was sup-
posed to be ideally cylindrical (with a circular cross-section
of radius R) with the symmetry axis z. Some effects of weak
geometrical disorder (e.g., fluctuations of the radius R) were
considered earlier [19]. The magnetic field plays here a role of
an instrument that, due to Aharonov-Bohm effect [20], allows
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for convenient and smooth shifting of the Fermi-level position
EF with respect to the transversal quantization subbands. The
wave length of electrons at the Fermi level is assumed to be
small:

λF � R, (1)

so that at least their transversal motion is quasiclassical. It
should be noted that in the case of carbon nanotubes, this
condition can only be fulfilled if the Fermi level is shifted
away from the conic point due to either the doping or the
applied gate voltage.

Some rare impurities sitting on the surface of the tube
were assumed to be weak and short-range ones, so that the
electronic scattering is isotropic and can be characterized by a
single small constant—a dimensionless amplitude of scatter-
ing λ � 1. The two-dimensional concentration of impurities
n(2)

imp was assumed to be low enough, so that the mean free path
l � R. Note that the opposite case of strong disorder (l � R)
was thoroughly studied both experimentally and theoretically
within the frame of weak localization theory [21–23].

As we have shown in Ref. [17], two different regimes of
Van Hove singularity smearing with respect to the dimen-
sionless impurity concentration n = (2πR)2n(2)

imp are possible.
Namely, there exists a certain crossover concentration

nc = |λ|, (2)

which distinguishes two cases that we discuss below.

1. Relatively high impurity concentration

For n � nc, the scattering can be adequately described
within the Born approximation and the Van Hove singular-
ities are simply rounded at ε ∼ εmin. The width εmin by the
order of magnitude could be found from the condition εmin ∼
τ−1(εmin), where τ−1(ε) is (essentially energy dependent) the
Born scattering rate.

The exact shape of the density of states ν(ε) and
the resistivity ρ(ε), though being well known for strictly
one-dimensional systems (see Refs. [24–27]), for quasi-
one-dimensional systems of interest seems to be still not
well understood. Previously it has been studied (see, e.g.,
Refs. [28,29]) under various versions of self-consistent Born
approximations [30–33]. In Ref. [17], we have also introduced
our own variant of such approximation. In the present paper,
however, we will revisit this problem and derive an analytic
solution for quasi-one-dimensional resistivity, based upon us-
ing the exact strictly-one-dimensional results [25,27].

2. Low impurity concentration

For n � nc, the single-impurity non-Born effects in scat-
tering become essential despite the weakness of scattering
(|λ| � 1). The peak of the resistivity is asymmetrically split
in a Fano-resonance manner (see Refs. [34,35]), however,
with a more complex structure [18]. Namely, for ε > 0, there
is a broad maximum with ρ (+)

max ∼ n|λ| at ε ∼ λ2, while for
ε ∼ n2 � λ2, there is a deep minimum with ρmin ∼ n3. The
behavior of ρ below the Van Hove singularity (at ε < 0) de-
pends on the sign of λ. In case of repulsion, ρ monotonically
grows with |ε| and saturates at ρ0 ∼ λ2n for |ε| � λ2. In
case of attraction, ρ has sharp maximum with ρ (−)

max ∼ n at
|ε| ∝ λ2. The latter feature is due to resonant scattering at

FIG. 1. Two topological classes of quasi-one-dimensional sys-
tems: (a) tubes (cylindrical and deformed), strips (flat and deformed).
The curvilinear coordinate x (0 < x < D) runs along the circumfer-
ence of the cross-section normal to the axis z.

quasistationary bound states that inevitably arise just below
the bottom of each subband for any attracting impurity.

B. Two universal classes of quasi-one-dimensional
systems: tubes and strips

In this paper, we consider only those quasi-one-
dimensional systems, which (i) are made of a smoothly
deformed connected piece of a two-dimensional material (ii)
are geometrically (i.e., without taking impurities into account)
homogeneous along the z axis.

Then we can single out two principal topological sys-
tem classes: (a) circular or smoothly deformed cylinders
[see Fig. 1(a)] and (b) flat or smoothly deformed strips [see
Fig. 1(b)].

One can of course imagine more sophisticated topological
classes with nontrivial self-crossings, but they are much less
likely to be found in the nature. They also can be studied
without any serious complications, if necessary.

Let us introduce curvilinear coordinates z, x where the x
axis is perpendicular to z and locally tangential to the surface
(see Fig. 1). Then, if the local radius of curvature R(x) � λF ,
the Hamiltonian of an electron in the leading adiabatic approx-
imation can be written as a standard two-dimensional one in
these coordinates:

Ĥ0 = − h̄2

2m∗

(
∂2

∂z2
+ ∂2

∂x2

)
, 0 < x < D, (3)

ψ (x, z) = exp(ikz)χm(x), (4)

where D is the perimeter of the cross-section. In particular,
for a cylinder considered in Refs. [17,18], D = 2πR, while
in the case of strip D is its width. Equation (4) is valid for
both classes described above, the only difference being the
boundary conditions for the transversal wave function χ (x) at
x = 0 and at x = D. For the class (a), these are the periodic
ones,

χm(0) = χm(D), χm =
√

1/D exp{2π imx/D}, (5)

where m = 0,±1,±2, . . ., while for class (b), the zero bound-
ary conditions apply.

χm(0) = χm(D) = 0, χm =
√

2/D sin{πmx/D}, (6)
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where m = 1, 2, . . . Within each class the systems differ only
in the length-scale D what can be easily eliminated by proper
choice of units.

Thus it is enough to study only one representative for each
class: say, a cylindrical tube for the class (a) and a flat strip
for class (b). The first part of this task was already done in
Refs. [17,18], so in this paper we will mostly concentrate on
the second one.

In general, we assume the following conditions to be ful-
filled: the condition of low concentration

n ≡ D2n(2)
imp � 1, (7)

the condition of weak scattering

|λ| � 1, (weak impurities), (8)

the quasiclassical condition (large number N of open chan-
nels)

N ≡ D/λF � 1, (9)

and the condition of quasi-one-dimensionality

D � l. (10)

C. Specific physical features of strips

Thus we will focus on a case of “strip”—a clean conduct-
ing constriction of constant width D in a two-dimensional
electron gas. We will see that there is some specifics in the
physics of non-Born effects in a strip that distinguishes the
strip from the cylinder. The origin of the difference is the
different character of the electron eigenfunctions in a strip and
in a cylinder. While in a cylinder, |χm(x)|2 = const depends
neither on x nor on m, in a strip |χm(x)|2 are essentially
inhomogeneous and, therefore, the relevant scattering matrix
elements depend on the position of impurity: They are sup-
pressed for those impurities that are placed close to the nodes
of the transverse wave function χN (x) ∝ sin{πNx/D} of the
resonant subband N and enhanced for those impurities that
are close to antinodes.

Within the Born regime (for relatively high concentration
of impurities n > nc), the only consequence of this fact is
the replacement of the unique scattering amplitude λ existing
in the case of a tube by the averaged one. This replacement
changes only some numerical factors in the final results for
the resistivity and the density of states.

It is not the case for the strongly non-Born regime (n < nc).
Here, as we will see, for any given ε there is a certain spe-
cific group of impurities that scatter the charge carriers most
effectively. In particular, for small ε, this group consists of
“weak” impurities, sitting quite close to the nodes, so that the
bare (Born) scattering amplitudes for them are considerably
suppressed.

Most spectacularly the specifics of a strip is manifested in
case of attracting impurities (λ < 0). Here, a solitary quasis-
tationary level at εqs, existent in a tube, is inhomogeneously
broadened, forming an “impurity band” with relatively sharp
edges. The upper edge of the impurity band lies at εqs = 0
and for electrons with small |ε|, the scattering is dominated
by “weak” impurities that have especially shallow quasista-
tionary levels with small εqs ∼ −|ε|. At the lower edge of the

impurity band, a Van Hove-like feature arises in the resistiv-
ity, with the principal contribution coming from the “strong”
impurities, sitting close to antinodes.

Here one should note that the problem of non-Born scat-
tering of electrons at a pointlike impurity in a strip was
previously studied theoretically in Refs. [14,15]. However, in
Refs. [14,15], the consideration was given only to the case
of scattering at a single impurity with a certain position with
respect to wave-function nodes. In the present paper, we solve
the semiclassical scattering problem for an ensemble of ran-
domly distributed impurities and show that for any given ε a
group of most effective scatterers is selected, that gives a prin-
cipal contribution to the resistivity. Neither the distinguished
role of a certain group of impurities for a certain ε, nor the
formation of an “impurity band” could be obtained within the
approach, used in Refs. [14,15].

II. PRINCIPAL RESULTS

In this section, we will summarize the main results of the
paper.

A. Units and definitions

Throughout the paper, we will use D as a unit for length
and

ED = 2h̄2π2

m∗D2
(11)

as a unit for energy. As reference values for the density of
states ν, the scattering rate τ−1, and the resistivity ρ we will
use their values away from Van Hove singularities, directly re-
lated to the characteristics of the underlying two-dimensional
material

ν0 = π,
1

τ0
= 2n

( λ

π

)2

, ρ0 = 8π

N2e2τ0
. (12)

B. Two sorts of non-Born effects

Clearly, for large enough |ε|, the scattering can be treated
perturbatively. At low |ε|, nonperturbative effects show up.
There are two sorts of these effects: (i) the single-impurity
non-Born effects (they are due to multiple scattering at the
same impurity) and (ii) multi-impurity ones. For relatively
high concentration nc � n � 1, there are the following two
relevant energy scales:

U =
( n

π

)( λ

π

)
, ε

(B)
min ≡

( n

π

)2/3( λ

π

)4/3

� U . (13)

Both the multi-impurity non-Born effects and the single-
impurity ones become essential below the same energy scale,
at |ε| � ε

(B)
min.

For low concentration n � nc, the two different scales are
relevant:

εnB ≡
( λ

π

)2

, ε
(nB)
min ≡

( n

π

)2
� εnB. (14)

Upon lowering of |ε| first the single-impurity effects come
into play at |ε| ∼ ε(nB) and only at |ε| ∼ ε

(nB)
min � ε(nB) they

are accompanied by multi-impurity ones.
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FIG. 2. ρ(ε) dependence near the Van Hove singularity for the
case n � nc = |λ|. Note that all the energies are counted from the
average impurity potential Ū : ε̃ = ε − Ū . For ε̃ < 0, the density of
states in the resonant subband falls off exponentially (Lifshits tail)
while for ε̃ > 0, it decays, according to perturbation theory result,
much slower (as 1/

√
ε̃).

C. High concentration of impurities: exact result
for quasi-one-dimensional systems

For strictly one-dimensional systems, the exact results for
the density of states and for the resistivity are well known (see,
e.g., Refs. [27,32,36]). However, finding these quantities for a
quasi-one-dimensional systems is, in principle, a much more
sophisticated problem.

We show that under condition of high concentration
of impurities (nc � n � 1) the resistivity of quasi-one-
dimensional system may be expressed in terms of the exact
density of states (not the exact resistivity!) of the correspond-
ing strictly one-dimensional one. In the latter problem for
nc � n � 1, the random potential produced by the impurities
can be reduced to the Gaussian one, so that the density of
states could be easily found [25,26]. As a result, we obtain

ρ(ε̃)

ρ0
= ν(ε̃)

ν0
≈ 1 + ε

−1/2
min Y

(
ε − U

εmin

)
, (15)

εmin = ε
(B)
min

{
1 (tube),

(2/3)−2/3 (strip),
(16)

Y (q) = 2√
π

∂

∂q

[∫ ∞

0

dx√
x

exp

(
−xq − x3

12

)]−1

. (17)

The shift U of the Van Hove singularity is nothing else but
the averaged in space potential created by impurities (positive
for repulsing impurities with λ > 0 and negative for attracting
ones with λ < 0). It is the same for both cases of a tube
and a strip, while the width εmin ∼ ε

(B)
min differs in two cases

by numerical factor (2/3)−2/3. Note that the shift is large
compared to the width of the singularity: |U | � εmin. The
shape of ρ(ε) is plotted in Fig. 2.

D. Non-Born effects for a low concentration of impurities:
strip versus tube

As we have shown in Refs. [17,18] for the case of tube,
in the range of the low impurity concentration n � nc and
relatively low energies |ε| � εnB the non-Born effects in the
scattering lead to strong energy-dependent renormalization

of the scattering amplitudes: λ → �̃(ren). In the intermediate
range ε

(nB)
min � |ε| � εnB, the renormalization effects remain

single-impurity ones so that the process may still be described
in terms of the scattering amplitude at each individual impu-
rity: λ → �̃(ren). We show that the same is true also for the
case of a strip, but the renormalization here depends on the
position of the impurity:

�̃
(ren)
i =

√−ε/εnB|λ|(1 − iλ)

signλ
√−ε/εnB − (1 − iλ)2ti

, (18)

where we have introduced

2ti ≡ |χN (xi )|2 =
{ 1 (tube),

1 − cos(2πNxi ) (strip). (19)

For a long enough system, the scattering amplitude enters
the resistivity being effectively averaged over the positions of
impurities:

ρ(ε)

ρ0
= τ0

τnonres(ε)
= − 1

λ2

∫ 1

0
dx Im {�̃(ren)(x, ε)}. (20)

E. Non-Born resistivity: repulsive impurities

For repulsive impurities, the averaging gives the following
asymptotic behavior:

ρ(ε)

ρ0
≈ 1

|λ|
{ 1

2 (ε/εnB)1/4, ε
(nB)
min � ε � εnB

(ε/εnB)−1/2 ε � εnB,
(ε > 0),

(21)

ρ(ε)

ρ0
≈

{ 1
2
√

2
|ε/εnB|1/4, ε

(nB)
min � |ε| � εnB

1, |ε| � εnB
(ε < 0).

(22)

Analytic formulas for arbitrary ε/εnB are given in Sec. X;
they are also plotted in Fig. 3 together with the similar results
obtained for a tube.

FIG. 3. The dependence of resistivity ρ on ε ≡ ε/εnB for both
cases of a tube and a strip (only repulsing impurities, λ > 0). Note
that the maximum for the strip (at ε = 4/3) is lower and broader than
that for the tube (at ε = 1). This is an inhomogeneous broadening
due to the dependence of bare scattering amplitude on the position of
impurity.
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It is interesting that for |ε| � εnB, the scattering is domi-
nated by weak impurities with

|χN (xi )|2 ∼
√

|ε|/εnB. (23)

This paradoxical enhancement of their role is explained by the
resonant scattering at virtual levels arising on the unphysical
sheet of complex energy (see Ref. [37]). Note also that the
resonant character of low-energy scattering leads to slower
(ρ ∝ |ε|1/4) decreasing of resistivity at |ε| → 0, as compared
to the case of tube, where ρ ∝ |ε|1/2.

F. Non-Born resistivity: attractive impurities. Distinguished
role of quasistationary states

Above the Van Hove singularity, for ε > 0, the resistivity
depends only on λ2 and the result (21) is valid for attracting
impurities as well. Below the Van Hove singularity, due to the
presence of quasistationary states, for the attracting case, there
are two distinct ranges of energy.

(1) Outside the impurity band (ε < −4εnB):

ρ(ε)

ρ0
≈

{
8
√

2
( |ε|

εnB

)−3/2
, |λ| � |ε|

εnB
� 1,

1, |ε| � εnB,
(24)

where ε ≡ ε + 4εnB < 0.
(2) Within the impurity band (−4εnB < ε < 0):

ρ(ε)

ρ0
≈ 1

|λ|√2

⎧⎪⎨
⎪⎩

|ε/εnB|1/4, ε
(nB)
min � |ε| � εnB,

4
(ε

εnB

)−1/2

, |λ| � ε

εnB
� 1.

(25)

For any given energy in this range, the resistivity is dominated
by scattering at resonant impurities with such xi that εqs(xi ) ≈
ε. In particular, it means that close to the upper edge of the im-
purity band (at ε → 0), the main contribution to the resistivity
comes from weak impurities that satisfy the condition (23). In
contrast with the repulsive case, the resonant scattering here
is provided not by virtual, but by quasistationary states.

Close to the lower edge, at ε → −4εnB, a two-side Van
Hove-like singularity arises, divergent as |ε|−1/2 from the
side of the impurity band and as |ε|−3/2 from the opposite
side. The width of this singularity is � ≈ 8|λ|εnB. Close to
this singularity the main contribution to resistivity comes from
strong impurities with maximal possible |χN (xi )|2 ≈ 2.

These results are plotted in Fig. 4. More detailed analytical
results can be found in Sec. XI.

G. The central dip in resistivity

The above results were obtained under the condition
ε

(nB)
min � |ε|. Inside the range |ε| � ε

(nB)
min , the single-impurity

approximation fails and the coherent interference of scattering
at different impurities becomes essential. In this paper, we do
not discuss the corresponding physics, though it appears to
be quite tractable, again with the aid of exact solutions for
the strictly one-dimensional problem. Such discussion will be
given in a separate publication. Here we only want to stress
that in reality, in contrast with Figs. 3 and 4, the resistivity of
course does not exactly vanish at |ε| → 0, but remains finite
reaching a deep minimum at some |ε| ∼ ε

(nB)
min (see Fig. 5).

FIG. 4. The same as in Fig. 3 for attracting impurities, λ < 0.
Note that for the strip, the left maximum (at ε = −4) is also strongly
broadened compared to that of tube (at ε = −1).

III. STRUCTURE OF THE PAPER

Our paper is organized as follows. In Sec. IV, we remind
well known facts from quantum mechanics of an electron
living on a strip. In Sec. V, we review the Born scattering
at pointlike impurities in a strip (scattering rates in Sec. V A
and the conductivity in Sec. V B). In Sec. VI, we qualitatively
discuss possible limitations for the Born approximation and
corresponding mechanisms of smearing of Van Hove singu-
larity.

Section VII is devoted to exact approach to the smearing of
singularity, relevant in the case of the “high” concentration of
impurities: nc � n � 1. In particular, in Sec. VII A, we estab-
lish a link between the resistivity of a quasi-one-dimensional
system and the density of states of a corresponding strictly
one-dimensional one, and in Sec. VII E, we summarize the
results, obtained for the case of the high concentration.

In Sec. VIII, we switch to the case of low concentration
n � nc and discuss general single-impurity non-Born effects
and corresponding renormalization of scattering amplitudes.
Then, in Sec. IX, we derive expressions for scattering rates
and resistivity, and in Secs. X and XI, we apply the obtained
results to the cases of repulsing and attracting impurities,

FIG. 5. Qualitative sketch of behavior of the resistivity in the
range |ε| � ε

(nB)
min where the single-impurity approximation breaks

down: ρ(ε) does not go ultimately to zero but saturates at some small
but finite value.
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FIG. 6. Conducting strip of width D. Impurities are shown as
stars. 2D electron gas lives between the edges of the strip.

correspondingly. In particular, Sec. XI A deals with the im-
purity band, formed by quasistationary states.

While the previous sections were dealing with the scat-
tering rates of nonresonant states (which are the only
current-carrying ones) in Sec. XII, we evaluate the scattering
rate for resonant states, which is relevant for establishing
the applicability range of our approach. Section XIII is the
conclusion.

IV. AN IDEAL STRIP

The eigenfunctions of electrons in an ideal strip of width D
are given by (4) and (6), while their spectrum is

Emk = h̄2k2

2m∗ + Em, Em = ED

4
m2, (26)

where ED is given by (11) and z is the coordinate along the
strip and 0 < x < D is the distance from one of the strip’s
edges (see Fig. 6).

The integer m is the transverse quantum number, k is
the momentum along the strip, and Em has the meaning of
position of the bottom of mth one-dimensional subband. A
schematic picture of the subbands is shown in Fig. 7.

FIG. 7. Spectrum of an electron in an ideal strip. Subbands of the
transverse quantization are shown. The Fermi level E crosses all the
subbands with m � N .

The density of states in each subband is

νm(E ) =
∫

dk

2π
δ

(
E − Em − k2

2m∗

)

= 2

2π

√
m∗

2(E − Em)
θ (E − Em). (27)

We will measure all energies in the units of ED and all dis-
tances in the units of D:

x → Dx, E − Em → EDεm. (28)

For brevity, we will introduce

ε ≡ εN (29)

with N being the label of the subband closest to the Fermi
level. The partial densities of states in the dimensionless vari-
ables

νm(E ) ≡ νm(ε)

DED
, νm(ε) = θ (εm)√

εm
. (30)

We are interested in semiclassical case when ED � E or
ε0 ≡ E/ED � 1. Under this condition the label N of the reso-
nant state (which is the same as the number of open channels
in the system) is large:

N ≈ 2
√

ε0 � 1. (31)

Then, in the leading semiclassical approximation, the total
density of states

ν(ε) =
∞∑

m=1

νm(ε) ≈ ν0 =
∫ ε0

0

dεm√
εm(ε0 − εm)

= π. (32)

This result is valid for all ε except narrow interval in the
vicinity of ε = 0 point. In the entire range of variation of ε,
one can write

ν(ε) ≈ ν0

(
1 + θ (ε)

π
√

ε

)
. (33)

V. SCATTERING AT POINTLIKE IMPURITIES:
THE BORN APPROXIMATION

Now let us find the scattering rate and the resistivity within
the lowest order in impurity potential, i.e., within Born ap-
proximation. The Hamiltonian of the system reads

H = H0 + V
∑

i

δ(r − ri ), H0 = −∇2/2m∗, (34)

the positions ri of impurities being randomly distributed over
the surface of the strip according to the Poisson distribution
with average 2D density n(2)

imp. The constant V is related to the
dimensionless scattering amplitude by

λ = m∗V/2, |λ| � 1. (35)

In the case of the strip, the scattering matrix elements depend
both on the quantum numbers of scattering states and on the
position of the impurity ri:

V (i)
kk′mm′ = Vkk′mm′ (xi, zi )

= V exp{i(k − k′)zi}χm(xi )χm′ (xi ), (36)

where zi and xi characterize the position of ith impurity.
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FIG. 8. Different groups of impurities with respect to their po-
sitions in the strip; (1) red star: “strong impurity” [close to an
antinode of the transverse wave function sin(πNxi ) shown], (2) blue
star: “weak impurity” (close to a node), and (3) green star: typical
impurity (close neither to nodes nor to antinodes).

As we will see in what follows, the most important scat-
tering processes are those in which both initial and final
states belong to the resonant band: m = m′ = N . Different
impurities have different effectiveness with respect to such
processes. While typical impurities are sitting in some gen-
eral positions, so that Nxi is close neither to integer nor to
half-integer number, there are two special groups of impurities
(see Fig. 8). (1) Weak impurities, sitting close to nodes of the
resonant transverse wave function (Nxi is close to integer).
The scattering at such impurities is suppressed. (2) Strong
impurities, sitting close to antinodes (Nxi is close to half-
integer): these are scattering most effectively. We will see that
these two groups may play distinguished role and give leading
contribution to the resistivity in certain ranges of parameters.

A. The scattering rates

The averaged over the positions of impurities decay rate
for a general state m:

1

τm(ε)
= n

〈∫
dk′ ∑

m′
|Vkk′mm′ (x)|2δ(Em′k′ − Emk )

〉
x

= 1

τ0

∫ 1

0
dx

∑
m′

|χm(x)χm′ (x)|2 θ (εm′ )

π
√

εm′

= 1

ν0τ0

(∑
m′

νm′ + 1

2
νm

)
≈ 1

τ0

(
1 + θ (ε)

π
√

ε

{ 1, for m �= N,

3/2, for m = N .

})
,

where we have used ∫ 1

0
dx(2 sin2(πmx))(2 sin2 πm′x)) =

{ 1, m′ �= m,

3/2, m′ = m,

and the fact that for large N � 1 each individual nonresonant
contribution to the sum is relatively small, while the resonant
one may be large, provided εN ≡ ε � 1. So, we have shown
that within the Born approximation the scattering rate is the
same for all the nonresonant states:

τ0

τm �=N (ε)
= τ0

τnonres(ε)
= ν(ε)

ν0
≈ 1 + θ (ε)

π
√

ε
, (37)

while for the resonant state,

τ0

τN (ε)
= τ0

τres(ε)
≈ 1 + 3θ (ε)

2π
√

ε
. (38)

B. Current-carrying states and the conductivity

To evaluate the conductivity of the strip (per one spin
projection), we can use the Kubo formula:

σ = e2

2π
Tr[v̂zĜ

Rv̂zĜ
A]

= e2

2π

∫
dk

2π

∑
m

(
vz

km

)2

(ε − Ekm)2 + 1/4τ 2
m(ε)

≈ e2
∫

dk

2π

∑
m

(
vz

km

)2
δ(ε − Ekm)τm(ε). (39)

From (39), we immediately see that only nonresonant states
are expected to be current carrying: the resonant state contri-
bution to the current is suppressed by the factor (vz

N )2 ∝ ε �
1. Hence, we can write

σ ≈ e2D(ε)νtr (ε), D(ε) = 1

2
v2

F τnonres = D0
ν0

ν(ε)
, (40)

where D0 = 1
2v2

F τ0 is the two-dimensional diffusion coeffi-
cient, and

νtr (ε) = 2
∫

dk

2π

∑
m

(
vz

km

vF

)2

δ(ε − Ekm) (41)

is the “transport density of states.” In contrast with the stan-
dard density of states, the transport one does not exhibit any
Van Hove singularity at ε → 0: the latter is suppressed by
the factor (vz

km/vF )2. As a result, under the semiclassical
condition ε0 � 1, we can always substitute νtr (ε) ≡ ν0, even
at ε → 0.

Thus, in the Born domain for the resistivity ρ ≡ 1/σ , we
get a simple result:

ρ(ε)

ρ0
= τ0

τnonres(ε)
= ν(ε)

ν0
. (42)

As we see, for ε → 0 the resistivity ρ(ε) diverges. This
divergency is nothing else but the Van Hove singularity. So,
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we conclude that in the range of ε where the perturbation
theory is applicable (i.e., neither the single-impurity non-
Born effects, nor the interference of scattering at different
impurities are relevant) the resistivity of a conducting strip
is described by exactly the same formulas, as the resistivity
of a conducting tube, derived in Refs. [17,18]. One should
only replace the unique scattering time τ of the tube theory by
τnonres of the strip theory.

VI. SMEARING OF THE VAN HOVE SINGULARITY
WITHIN THE BORN APPROXIMATION

It is instructive to distinguish two groups of effects nonlin-
ear in the scattering amplitude: (1) single-impurity non-Born
effects, arising due to more accurate (i.e., nonperturbative)
treatment of individual scattering acts; and (2) the multi-
impurity ones, coming from the interference of scattering acts
at different impurities. Upon approaching the Van Hove sin-
gularity the nonlinear effects of both types become stronger.
However, if the concentration of impurities is relatively high,

n � nc = |λ|, (43)

we will show that the multi-impurity effects come into play
earlier than the non-Born single-impurity effects, so that the
latter do not have a chance to show up and effectively can be
neglected (the Born regime). In this section, we will be dealing
only with this Born regime.

A. Shift of the singularity

The strongest of the multi-impurity effects that comes into
play at ε ∼ λn is quite simple. It is just the shift of the resonant
subband by the average potential of impurities:

U =
〈

V
∑

i

δ(r − ri )

〉
ri

= λn

π2
. (44)

It is important to note that an introduction of this shift makes
sense only under condition (43). Indeed, an effective self-
averaging of the potential takes place if the electronic wave
function does not change much on the scale of an interimpu-
rity distance n−1, which means n−1(mU )1/2 ∼ (λ/n)1/2 � 1.
The latter condition is equivalent to (43). Thus, if (43) is
fulfilled, one should first of all renormalize the position of the
Van Hove singularity:

ε → ε̃ = ε − U (45)

and substitute ε̃ instead of ε in the results of the preceding
section.

B. Smoothing of the singularity: qualitative description

The next multi-impurity effect is the smearing of the sin-
gularity due to scattering. This effect becomes essential at
smaller energy scale ε̃ � εmin where the perturbation the-
ory breaks down. The scale εmin can be extracted from the
condition

τ−1
res (εmin) ∼ εmin (46)

when the resonant state become smeared. Note that the cur-
rent carrying nonresonant states become smeared at the same

scale, since, as it follows from (37) and (38),

τ−1
res ≈ (3/2)τ−1

nonres, (47)

within the Born approximation. The divergencies of both
τ−1

nonres(ε) and τ−1
res (ε) are due to the divergency of the density

of final states in the scattering processes.

VII. THE BORN APPROXIMATION: EXACT RESULTS

Electrons with energies |ε̃| � |U | are effectively scat-
tered not by individual impurities, but by fluctuations of the
density of impurities. Typically such fluctuations are con-
stituted by many impurities and, therefore, their distribution
is essentially Gaussian. It is important to note that these
Gaussian fluctuations are universal: in particular, they do not
depend on the character (repulsing or attracting) of individual
impurities.

The latter is not true for rare very large non-Gaussian
fluctuations with |ε̃| � |U |. However, these large fluctua-
tions are not relevant, since the corresponding part of the
spectrum is likely to be dominated not by the far tail
of the resonant band, but by the nonresonant ones (see
below).

Combining the formulas (38) and (46), we get an estimate
for the width of smeared singularity

εmin ∼ (nλ2)2/3,
εmin

U
∼

(λ

n

)1/3

� 1, (48)

so, indeed, under condition (43), the smearing occurs on the
energy scale that is much smaller than the shift of the band.

A. A link to strictly one-dimensional systems

For energies |ε̃| � εmin plane waves exp(ikz) do not pro-
vide any good approximation for the eigenfunctions of an
electron in the resonant band: they should be substituted by
a set of certain nontrivial wave functions ψα (z), depend-
ing of concrete realization of disorder. At the same time,
the plane waves remain valid eigenfunctions for electrons
in the current-carrying nonresonant bands. Then, if we, as
before, neglect the contribution of the resonant band to the
current, the conductivity still can be written in a form (39),
the only modification occurs in the expression for τm(ε)
for m �= N :

1

τm(ε)
= n

〈∫
dk′ ∑

m′ �=N

|Vkk′mm′ (x)|2δ(Em′k′ − Emk )

〉
x

+ n

〈∑
α

|VkαmN (x, z)|2δ(ENα − Emk )

〉
x,z

,

(49)

VkαmN (x, z) = V exp{ikz}ψ∗
α (z)χm(x)χN (x). (50)
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So, the second term in (49) can be rewritten in terms of a density of states νres(ε̃) for strictly one-dimensional system:

1

πτ0

∫ 1

0
dx|χm(x)χN (x)|2

∫
dz

∑
α

|ψα (z)|2δ(ENα − Emk ) = νres(ε̃)

πτ0
. (51)

We would like to stress that in our quasi-one-dimensional
problem the conductivity is expressed through the exact av-
erage density of states of a purely one-dimensional problem,
which is the average of the one-particle Green function (in-
volving two ψ operators). On the other hand, it is well known
that the conductivity should be expressed through the exact
average two-particle Green function (four ψ operators), which
is a much more sophisticated object than the one-particle one.

The explanation for this paradox is as follows. There
are two distinct types of ψ operators in our quasi-one-
dimensional problem: ψnonres for electrons in nonresonant
bands and ψres—for electrons in the resonant band. Since
in our problem the resonant band does not contribute to the
current directly, each term in the conductivity should neces-
sarily contain at least two ψnonres operators. Remaining two
ψ operators may be either both of ψnonres type [that leads
to the first term in (49)], or both of ψres-type [the second
term in (49)]. In this term, the ψres operators enter through
the density of final states in the scattering process. There are
no terms containing four ψres operators since the purely one
dimensional contribution to the current is strongly suppressed.

So, in the Born regime, we again end up with the formula
(42) relating the scattering rate of nonresonant electrons (and,
therefore, the resistivity) to the total density of states

ν(ε̃) ≈ νnonres(ε̃) + νres(ε̃), (52)

where νnonres(ε̃) ≈ ν0, while the relation νres(ε̃) = θ (ε̃)(ε̃)−1/2

is true only for |ε̃| � εmin. At |ε̃| � εmin one should use an
exact expression for νres(ε̃) taken from the theory of strictly
one dimensional disordered systems.

B. Correction to the density of states due
to hybridization of bands

Besides the nontrivial and strong modification of νres(ε̃)
by disorder, there is an additional effect—hybridization be-
tween resonant and nonresonant bands due to the presence of
impurities. As we will see in the next section, the correspond-
ing correction to the nonresonant density of states νnonres is
relatively small in the relevant range of energies and can be
evaluated perturbatively:

νnonres(ε̃) = ν0 + δν(ε̃), δν(ε̃) = ν0
d

d ε̃
δε(ε̃), (53)

where δε(ε̃) is the second order (in V ) correction to the energy
ε̃ of certain nonresonant state arising due to scattering

δε(ε̃) = nλ2

π4
v.p.

∫
ν(ε̃′)d ε̃′

ε̃ − ε̃′ . (54)

For ε̃ < 0 and |ε̃| � ε
(t)
min, the principal contribution to the

integral in (54) comes from the states in the resonant band
with energies ε̃′ > 0 and ε̃′ ∼ |ε̃|, so that the correction can

be estimated as

δν(ε̃) = nλ2

π4

∫ ∞

0

d ε̃′

(ε̃ − ε̃′)2
√

ε̃′ ∼ ν0

(εmin

|ε̃|
)3/2

. (55)

Thus we conclude that for |ε̃| � εmin the relative correction to
the density of states is indeed small.

C. Exact result: the case of a tube revisited

In our previous work [17], we have studied the smear-
ing of the resistivity peak for the case of a tube within the
self-consistent Born approximation. Now we will start from
revisiting the tube case in a more accurate approach exploring
the exact solutions known for the strictly one-dimensional
systems. Under the condition (43), the one-dimensional model
with identical pointlike scatterers randomly distributed on a
line was exhaustively studied in Ref. [27]. It was shown that
the random potential is effectively Gaussian and the density
of states may be evaluated with the help of Fokker-Planck
equation. As a result

ν (t)
res(ε̃) = ν0

(
ε

(t)
min

)−1/2
Y

(
ε̃/ε

(t)
min

)
, (56)

where the superscript (t) stands for “tube,” and

ε̃
(t)
min = (2πτ0)−2/3 =

( n

π

)2/3( λ

π

)4/3

, (57)

Y (q) = 2√
π

∂

∂q

[∫ ∞

0

dx√
x

exp

(
−xq − x3

12

)]−1

. (58)

The asymptotics of (58) at q > 0, q � 1,

Y (q) ≈ 1

π
√

q
(59)

corresponds to the trivial perturbative result, while the asymp-
totics for q < 0, |q| � 1

Y (q) ≈ 4|q|
π

exp
{
−4

3
|q|3/2

}
, (60)

describes the well-known Lifshits tail of the density of states
in one-dimensional system with effectively Gaussian disorder.
It should be noted that (60) is indeed only an intermediate
asymptotics, valid in the range 1 � |q| � (n/λ)1/3, where the
random potential is effectively Gaussian.

As it was argued in Ref. [17], there should be certain bifur-
cation energy ε̃

(t)
bi , such that for all energies ε̃

(t)
bi < ε̃ � 1, the

principal contribution to the density of states comes from the
resonant subband N : νnonres(ε̃) � νres(ε̃). Let us demonstrate
that this statement is valid also for the exact solution.

The bifurcation point ε̃
(t)
bi can be roughly defined as the

energy, at which the contribution to the density of states
coming from the resonant band becomes equal to that of the
nonresonant ones:

ν (t)
nonres

(
ε̃

(t)
bi

) = ν (t)
res

(
ε̃

(t)
bi

)
. (61)
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As a first step, let’s suppose that∣∣ε̃(t)
bi

∣∣ � ε
(t)
min, (62)

(it will be verified soon). Then, according to (55), ν (t)
nonres(ε̃)

differs from ν0 only slightly, and the condition (61) takes the
form

ν0 = ν0
(
ε

(t)
min

)−1/2
Y

(
q(t)

bi

)
, (63)

ε̃
(t)
bi = ε

(t)
minq(t)

bi , q(t)
bi ≈ −

(3

8

)2/3

ln2/3
(
1/ε

(t)
min

)
. (64)

We want to remind here again that the result (64) [as well
as (60)] is valid under condition ε

(t)
min � |ε̃(t)

bi | � U , which is
equivalent to

1 � ln
(
1/nλ2

) �
( n

λ

)1/2
. (65)

In particular, the first inequality in (65) justifies our assump-
tion (62).

So, we conclude that the contribution of the nonresonant
bands is essentially unperturbed in the relevant domain |ε̃| >

|ε̃(t)
bi |. As a result, the total density of states and the resistivity

of a tube can be written as

ν (t)(ε̃)

ν0
= ρ (t)(ε̃)

ρ0
≈ 1 + (

ε
(t )
min

)−1/2
Y

(
ε̃/ε

(t)
min

)
(66)

with high accuracy in the entire range of energies ε̃. This
dependence is plotted in Fig. 2.

D. Exact results: the case of a strip

Evaluation of the density of states in the case of strip is
very similar to that in the case of tube. For the energies above
the bifurcation point the density of states is dominated by
the states from the resonant subband and its smearing is also
controlled by scattering processes in which both initial and
final states belong to the resonant subband. It means that the
smearing depends on τ (s)

res (ε), but not on τ (s)
nonres(ε) (the super-

script (s) stands for “strip”). In this sense, the problem is very
similar to that of the tube, the only difference is an additional
factor 2/3 in the definition (38) of τ (s)

res , as compared to τ (t).
This difference, however, can be removed by the redefinition
of the energy scale:

ε
(t)
min = (2πτ0)−2/3 −→ ε

(s)
min = (4πτ0/3)−2/3. (67)

After the rescaling the scattering rate and the density of states
can be expressed in terms of the very same function Y (q),
which appeared in the results for the tube [see (58)–(60)]. It
also can easily be demonstrated that, exactly as in the case
of tube, the nonresonant contribution to the density of states
remains equal to ν0 for all negative ε̃ in the range |ε̃| > |ε̃bi|.
As a result

ν (s)(ε̃)

ν0
= ρ (s)(ε̃)

ρ0
≈ 1 + (

ε
(s)
min

)−1/2
Y

(
ε̃/ε

(s)
min

)
, (68)

ε̃
(s)
min = (4πτ0/3)−2/3 =

( 3n

2π

)2/3( λ

π

)4/3

. (69)

So, the difference in the resistivities of a tube and a strip
is only in different numerical factors entering characteristic
energy scales ε̃

(t)
min and ε̃

(s)
min.

FIG. 9. ρ(ε) dependence for the case n � nc = |λ|. The resis-
tivity is comprised of smeared (at the scale of εmin ∼ (nλ2)2/3) and
shifted (by the value of Ū ∝ nλ) Van Hove singularities.

E. A summary of general features of resistivity in the Born case

In general, the energy profile of the resistivity of a
quasi-one-dimensional system with the “relatively high” con-
centration (that is, for |λ| � n � 1) of weak short-range
impurities consists of a set of shifted and smeared Van Hove
singularities (see Fig. 9).

Each individual singularity (shown in Fig. 2) is character-
ized by four distinct ranges. (1) Relatively smooth right slope
of a shifted singularity:

ρ(ε) ≈ ρ0

π (ε − U )1/2
, ε − U > 0,

|ε − U |
ε̃min

� 1. (70)

(2) Smeared core of the singularity:

ρ(ε) ∼ ρmax ∼ ρ0

πε̃
1/2
min

,
|ε − U |

ε̃min
� 1. (71)

(3) Exponentially steep left slope of a shifted singularity:

ρ(ε) ≈ 4ρ0

πε̃
1/2
min

|ε − U |
ε̃min

exp

{
−4

3

∣∣∣∣ε − U

ε̃min

∣∣∣∣
3/2

}
, (72)

ε − U < 0, 1 � |ε − U |
ε̃min

< |qbi|. (73)

(4) Left plateau:

ρ(ε) ≈ ρ0. (74)

The relevant energy scales U (shift of the peak) and ε̃min

(its width) are given by (44), (57), and (69). For the tube and
the strip cases, these scales differ only in numerical prefactor.
Logarithmically large parameter qbi is defined in (64).

VIII. SINGLE IMPURITY NON-BORN EFFECTS:
GENERAL RESULTS

In this section, we turn to the discussion of single-impurity
non-Born effects in resistivity of quasi-one-dimensional sys-
tems. The importance of non-Born effects in the systems
with a singularity in the density of states was first discovered
already in 60’s in Refs. [38–42] in the context of superconduc-
tors. In our recent paper [17], we have studied the very same
problem of the non-Born effects in resistivity of conducting
tube. We have shown that for n � nc one should account for
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non-Born renormalization of scattering amplitude �(ren):

�(ren) = �

1 + �g̃(ε)
. (75)

Here, g̃(ε) is the difference between 2D and quasi-1D Green
functions of ideal system. This formula holds down to |ε| ∼
n2, where the scattering amplitude (75) is strongly sup-
pressed, so that the multi-impurity effects become dominant
and single-impurity approximation fails.

The result (75) was obtained in Ref. [17] by a solution of
Dyson equation for scattering amplitude. Here we will intro-
duce a more robust method that allows for description of non-
Born scattering in general quasi-one-dimensional systems.
Moreover, this approach can be conveniently generalized to
take into account the essentially quantum multi-impurity ef-
fects and, therefore, to obtain the behavior of ρ(ε) in the
domain |ε| � n2. The latter generalization, however, will be
described in a separate publication. In this paper, we concen-
trate at the special effects that are absent in the case of a tube
and exist in the case of a strip. These effects arise already in
the energy range |ε| � n2, where the single-impurity effects
are still dominant and the semiclassical approach is sufficient.

For the case of pointlike impurities, the general depen-
dence of matrix elements on m and k is as follows:

V (i)
m1k1,m2k2

≡ V (i)
m1,m2

eizi (k1−k2 ), (76)

V (i)
m1,m2

= λ

π2
χm1 (xi )χ

∗
m2

(xi ). (77)

In order to evaluate the scattering rates for the current-
carrying nonresonant states m �= N , we may consider the
corresponding self-energies �mk (ε):

τ−1
mk = −2Im {�mk}. (78)

Within the Drude approximation the self-energy is additive
with respect to different impurities; also it depends on k only
through the total energy:

�mk =
∑

i

�
(i)
mk, �

(i)
mk ≡ �(i)

m

(
E = εm + k2

2m∗

)
. (79)

The self-energy can be expressed in terms of diagonal matrix
elements of renormalized scattering operator:

�(i)
m = Ṽ (i)(ren)

m,m . (80)

Thus our next task should be to evaluate Ṽ (i)(ren)
m,m .

To perform this evaluation, we should single out the tran-
sitions involving states within the resonant band and take
them into account nonperturbatively, while the transitions be-
tween nonresonant states can be treated perturbatively. For
this purpose, it is convenient to introduce a composite per-
turbative amplitude for transition between two nonresonant
states |m1, k1〉, and |m2, k2〉 due to scattering at an impurity
i:

Ṽ (i)
m1,m2

= V (i)
m1,m2

+ V (i)
m1,N

G(res)
ε (zi, zi )V

(i)
N,m2

= λ̃i

π2
χm1 (xi )χ

∗
m2

(xi ), (81)

λ̃i = λ
{

1 + λi

π2
G(res)

ε (zi, zi )
}
, (82)

λi ≡ λ|χN (xi )|2. (83)

The first term in the right-hand side of (82) describes the direct
transitions between two nonresonant states, while the second
term describes composite scattering processes with excursions
to the resonant subband. Scattering processes that occur dur-
ing the latter excursions are treated nonperturbatively in terms
of the exact Green function G(res)

ε (z, z′) for the purely one
dimensional motion of an electron in the field of a single
impurity.

Now, to take into account multiple scattering processes,
we should consider the following series for the renormalized
matrix elements:

Ṽ (i)(ren)
m1,m2

= Ṽ (i)
m1,m2

+
∑
m �=N

Ṽ (i)
m1,mg(m)

ε (0)Ṽ (i)
m,m2

+
∑

m,m′ �=N

Ṽ (i)
m1,mg(m)

ε (0)Ṽ (i)
m,m′g(m′ )

ε (0)Ṽ (i)
m′,m2

+ . . . ,

(84)

where

g(m)
ε (0) =

∫
dk

2π

{
εm − k2

(2π )2
+ i0

}−1

= − π i√
εm

(85)

is the free one-dimensional Green function in the mth sub-
band. The summation in (84) runs over m, m′ �= N because
all excursions to the resonant subband are already taken into
account by the second term in (82).

The series (84) can be summed with the help of the Dyson
equation

Ṽ (i)(ren)
m1,m2

= Ṽ (i)
m1,m2

+
∑
m �=N

Ṽ (i)
m1,mg(m)

ε (0)Ṽ (i)(ren)
m,m2

. (86)

It is convenient to introduce a renormalized coupling constant
�̃

(ren)
i according to

Ṽ (i)(ren)
m1,m2

= �̃
(ren)
i

π2
χm1 (xi )χ

∗
m2

(xi ), (87)

so that the scattering rate can be directly expressed through it:

τ−1
mk = − 2

π2

∑
i

|χm(xi )|2Im
{
�̃

(ren)
i

}

= − 2n

π2

〈|χm(xi )|2Im
{
�̃

(ren)
i

}〉
xi

= − 2n

π2

∫ 1

0
dx|χm(x)|2Im

{
�̃(ren)(x, ε)

}
, (88)

where we have used that the coupling constant �̃
(ren)
i =

�̃(ren)(xi, ε) depends on i only through the transverse coor-
dinate of impurity xi.

In terms of �̃
(ren)
i , we can rewrite the Dyson equation (86)

as

�̃
(ren)
i = λ̃i

{
1 + gε(ri, ri )�̃

(ren)
i

}
, (89)

gε(ri, ri ) =
∑
m �=N

g(m)
ε (0)|χm(xi )|2, (90)

so that its solution is

�̃
(ren)
i = λ̃i

1 − gε(ri, ri )λ̃i
. (91)
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Having in mind that the resonant term m = N is excluded
from the summation in (90), in the semiclassical approxima-
tion (N � 1) we can relate gε(r, r′) to the Green function of
a free two-dimensional electron and obtain

gε(ri, ri ) ≈ −i, �̃
(ren)
i = λ̃i

1 + iλ̃i
. (92)

Now, substituting (82) to (92) and using λ � 1, we finally
obtain the renormalized scattering amplitude

�̃
(ren)
i = �

{
1 + �i

π2Qi + �∗
i

}
, (93)

Qi = [
G(res)

ε (zi, zi )
]−1 − λi/π

2, (94)

where

� = λ

1 + iλ
≈ λ − iλ2, �i = �|χN (xi )|2. (95)

� being the complex scattering amplitude for an electron in
an infinite plane. Note that it satisfies the two-dimensional
version of the optical theorem (see Ref. [37]):

Im � = −|�|2. (96)

We have to stress again that the result (93) is only valid
within the single-impurity approximation which is correct in
the semiclassical range of energies n2 � ε.

Now we proceed with evaluating λ̃i. Generally speaking,
G(res)

ε (z, zi ) satisfies the following equation:

{
− d2

(2π )2dz2
+

∑
j

λ j

π2
δ(z − z j ) − ε

}
G(res)

ε (z, zi )

= −δ(z − zi ), (97)

where the summation runs over all impurities. However, in
this paper, we restrict our consideration by the single-impurity
approximation, which allows to consider only one impurity
and discard all the terms in the sum except one with j = i.
This approximation is only justified under the semiclassical
condition, when the typical wave lengths λ

(1D)
F ∼ ε−1/2 of

one-dimensional electron wave functions within the resonant
band are much shorter than the typical distance z ∼ n−1 be-
tween impurities. So, the semiclassical condition λ

(1D)
F � z

can be written as

|ε| � ε
(nB)
min ∼ n2. (98)

In Sec. XII, we will show that the same condition also arises
from the requirement τ−1

res � ε, which means that the corre-
sponding states are well-defined. Thus, in the energy range
(98), Eq. (97) may be rewritten as

{
− d2

(2π )2dz2
+ λi

π2
δ(z) − ε

}
G(res)

ε (z, 0) = −δ(z), (99)

where zi was chosen at the origin (zi = 0). Note that the
minus sign appeared at the right hand side due to the standard

definition Ĝ = (ε − Ĥ )−1. The solution of (99) leads to

Gε(z, 0) = πe2π i
√

ε|z|

i
√

ε − λi/π
, Gε(0, 0) = π

i
√

ε − λi/π
,

(100)

λ̃i = iλ
√

ε

i
√

ε − λi/π
, Qi = i

√
ε/π − 2λi/π

2. (101)

Now, using (101) we can rewrite the result (93) in the form

�̃
(ren)
i = �̃(ren)(ε, ti ) =

√−ε|λ|(1 − iλ)√−ε sgnλ − (1 − iλ)2ti
, (102)

where ti is defined by (19) and we have introduced

ε = ε/εnB (103)

for brevity.
We see that the single impurity non-Born scattering effects

are most spectacular for ε � 1 since for ε → 0 �̃(ren) → 0.
Thus, if one compares εnB with εmin from the Sec. VI B, the
following criterion for the single-impurity non-Born effects
to come into play earlier than the multi-impurity ones can be
obtained:

ε
(B)
min < εnB or n < nc. (104)

In what follows, we will concentrate on the non-Born case
n < nc.

Now, taking imaginary part of both sides of (18) and ex-
panding it up to the second order in λ, we obtain

−Im
{
�̃

(ren)
i

} ≈

⎧⎪⎨
⎪⎩

2ti
√

ε|λ|
ε+4t2

i
− λ2 ε

(
4t2

i −ε

)(
4t2

i +ε

)2 (ε > 0),

−λ2ε

(2ti+sgn λ
√−ε)

2+4t2
i λ2

(ε < 0).
(105)

Formulas (105) and (88) determine the scattering rate for any
current-carrying state, characterized by the energy ε and the
subband index m.

For |εi| � 1 both upper and lower lines in (105), as ex-
pected, are reduced to the trivial 2D result: Im {�̃(ren)

i } = −λ2.
However, the second term in the upper line of (105) (propor-
tional to λ2) starts to dominate over the first one only at very
large εi � λ−2 � 1, i.e., away from the Van Hove singularity,
where the contribution of the resonant subband is already
irrelevant. In what follows, we will mainly stick to the most
interesting case εi � 1 when one can discard the second term
in the upper line of (105) and write

− Im {�̃(ren)(ε, t )}

≈
{

2ti
√

ε|λ|
ε+4t4 (ε > 0),

−λ2ε

(2t+sign λ
√−ε)

2+4t2λ2
(ε < 0).

(106)

Similar to the case of tube (see Ref. [17]), for λ < 0 the
expression (105) has a sharp maximum at ε = ε

qs
i where

ε
qs
i = −(λi/π )2 = −4t2

i εnB. (107)

Actually, a formal expansion of (18) up to the second order
in λ leads to a result divergent at ε → ε

qs
i . However, more ac-

curate calculations give rise to an additional term 4t2
i λ2 in the

denominator of lower-line formula (106). This modification
regularizes the divergency.
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As we have shown in Ref. [17], this ε
qs
i is nothing else

but the energy of a quasistationary state that is formed near
any attractive impurity in any quasi-one-dimensional system.
What is essentially new in the strip case, compared to the tube
one—here the energy ε

qs
i is not unique, but depends on the

position of impurity xi. This dependence, as we will see soon,
leads to inhomogeneous broadening of the resonant peak.

IX. NON-BORN SCATTERING RATE AND RESISTIVITY:
GENERAL RESULTS

Now we are prepared to write down explicit expressions
for scattering rates of current-carrying nonresonant states τ−1

m
and the resistivity ρ with the help of (106) and (88):

τ0

τm(ε)
= − 1

λ2
Im

∫ 1

0
dx|χm(x)|2Im {�̃(ren)(x, ε)}

= − 1

λ2

∫ 1

0
dx(1 − cos(2πmx))Im {�̃(ren)(x, ε)}.

(108)

It is easy to understand that the second, m-dependent term
in (108) vanishes after integration over x. Indeed, �̃(ren)(x, ε)
depends on x only in the form of combination cos 2πNx. It
means that the integrand of (108) can be written as a Fourier
series

∞∑
l=0

(1 − cos(2πmx))Al cos(2π lNx) (109)

with certain coefficients Al . The only term in this series that
survives the integration over x is A0, and it is m-independent!
Thus we conclude that τm ≡ τnonres(ε) does not depend on m,
and it is true not only within the Born approximation but also
beyond. Then

ρ(ε)

ρ0
= τ0

τnonres(ε)
= − 1

λ2

∫ 1

0
dxIm {�̃(ren)(x, ε)}. (110)

Since the integrand of (110) is periodic function of x with
period 1, it is more convenient to perform the averaging in
terms of variables ti instead of xi. For the case of strip, using
explicit expression

ti = sin2(πNxi ), (111)

we arrive at

ρ(ε)

ρ0
= − 1

πλ2

∫ 1

0

dt√
t (1 − t )

Im
{
�̃(ren)(ε, t )

}
(112)

and substituting (106) to (110), we obtain

ρ(ε)

ρ0
=

{ 1
|λ|F1(ε), ε > 0,

F2(ε, λ), ε < 0,
(113)

where

F1(ε) =
∫ 1

0

√
ε

ε + 4t2

2tdt

π
√

t (1 − t )
=

(√
1 + 4/ε − 1

2(1 + 4/ε)

)1/2

,

(114)

F2(ε, λ) =
∫ 1

0

−ε

(sgn λ
√−ε + 2t )2 + 4t2λ2

dt

π
√

t (1 − t )
.

(115)

Functions F1(ε) and F2(ε, λ) are evaluated in Appendix. The
second term in the denominator in (115) originates from the
similar term in (105), it is only essential for attracting im-
purities (λ < 0) and only in the vicinity of quasistationary
resonance. For repulsing impurities, this term can be alto-
gether neglected; in this case, a separate dependence of F2 on
λ vanishes: F2(ε, λ) → F2(ε).

X. NON-BORN RESISTIVITY: REPULSING IMPURITIES

In this section, we will analyze the general results obtained
above for the case of repulsive impurities, λ > 0. For ε > 0
we find (see Appendix A)

ρ(ε)

ρ0
= 1

λ

(√
1 + 4/ε − 1

2(1 + 4/ε)

)1/2

≈ 1

λ

{
ε1/4/2, for ε � 1,

1/
√

ε, for ε � 1.
(116)

As we have already mentioned in the previous section, for λ >

0 the formula for F2 is simplified and for ε < 0 we obtain (see
Appendix B1)

ρ(ε)

ρ0
≈ F2(ε, 0)

= (−ε)1/4(1 + (−ε)1/2)

(2 + (−ε)1/2)3/2
≈

{ 1
2
√

2
(−ε)1/4, for |ε| � 1,

1, for |ε| � 1.

(117)

The maximum

ρ (+)
max

ρ0
= 1

2
√

2λ
(118)

is reached at ε = 4
3εnB. Thus the maximum of the resistivity,

observed at ε > 0, in the case of strip is somewhat broadened,
compared to that in the case of tube. The overall ρ(ε) depen-
dence for repulsing impurities is shown in Fig. 3 for both cases
of a tube and a strip.

A. Paradox: weak impurities scatter more
effectively than strong ones!

It is important to note a different (compared to the case
of tube) law ρ ∝ |ε|1/4 (116), (117) of vanishing ρ(ε) at
|ε| → 0 for both signs of ε. For the tube, the analogous law
is ρ ∝ |ε|1/2. To elucidate the reason for this difference let
us analyze the integral over t in (114). While for |ε| � 1,
the entire interval 0 < x < 1 (or t ∼ 1) contributes to this
integral, for |ε| � 1, the main contribution comes from small

t ∼
√

|ε| � 1. (119)

It means that scattering at “weak” impurities, situated close to
nodes of the transversal wave function of the resonant band,
turns out to be more effective than scattering at the strong
ones, sitting close to antinodes. How it can possibly be?

The physical reason is the following. For small t , charac-
teristic for weak impurities, the scattering of slow particles
with small ε ∼ t2 is strongly enhanced due to the resonance
at virtual level, lying at ε = −4t2 on the unphysical sheet
of the Riemann surface of complex ε. As a result, for given
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ε the most efficient scatterers are weak impurities with t ∼√
ε/2. Thus the scattering at the impurities with large bare

�i � √|ε| turns out to be suppressed stronger than scattering
at those with moderately small

�i ∼
√

|ε| � 1. (120)

Thus we arrive at paradoxical and exciting conclu-
sion: though for small |ε| � 1 the scattering is generally
suppressed, the residual weak scattering is dominated by pre-
sumably ineffective impurities, that sit relatively close to the
nodes, at distances xi ∼ λF |ε|1/4 � λF (λF ∼ 1/N being the
Fermi wavelength, or the distance between the neighboring
nodes) and have, therefore, anomalously small bare scattering
amplitudes. As one of the consequences, the resistivity of a
strip vanishes with |ε| → 0 slower than the resistivity of a
tube.

XI. NON-BORN RESISTIVITY: ATTRACTING IMPURITIES

Above the Van Hove singularity, for ε > 0 the scattering
rate depends only on λ2, so that the case of attracting impu-
rities does not differ from that of the repulsing ones and the
resistivity for ε > 0 is described by the formula (116). Below
the Van Hove singularity, for ε < 0, however, there are some
impressive effects, specific for the attractive impurities. They
are mostly due to the presence of quasistationary states.

A. Quasistationary states: “impurity band”

As we have shown in Refs. [17,18], in a quasi-one-
dimensional system each attracting impurity forms a quasista-
tionary state below each subband of transverse quantization.
These states arise for arbitrary weak attraction, without a
threshold. Moreover, for weak attraction, the quasistationary
states are even better defined than for strong one: the quality
factor (i.e., the ratio of the energy to the decay rate) increases
with decreasing strength of attraction. The quasistationary
states are manifested as poles of the renormalized scattering
amplitude in the complex ε plane.

In contrast to the case of cylinder, to each impurity i in
a strip corresponds its own value of the scattering ampli-
tude �i ≈ (λ − iλ2)2t2

i , so that energies of the quasistationary
states are different at different impurities:

εqs(t ) = 4t2(−1 + 2iλ), εqs = εqsεnB. (121)

Let’s forget for a while about small imaginary part of εqs; we
will easily restore it in a due time. We see that values of εqs

are confined in a sort of “impurity band” that spans an inter-
val of energies −4 < εqs < 0. Since xi is a random variable
homogeneously distributed between 0 and 1, the “density of
quasistationary states,” i.e., the distribution function for εqs, is

P(εqs) =
∫ 1

0

dt

π
√

t (1 − t )
δ[εqs + 4t2]

= θ (−εqs)θ (εqs + 4)

2π

(2 + √−εqs)1/2√
(−εqs)3/2(4 + εqs)

. (122)

Thus outside the impurity band, for ε < −4 the scattering is
only possible to usual states of continuous spectrum, while
within the impurity band, for −4 < ε < 0, in principle, both

continuum and quasistationary states may serve as final states
of scattering processes. In fact, we will see that quasistation-
ary states dominate everywhere in this range, except narrow
interval at the edge of the impurity band, at ε = −4, with a
width

� ∼ Im εqs ∼ |λ| (123)

being of order of the decay rate for the quasistationary states.

B. Scattering outside the impurity band.

Since there are no quasistationary states in the energy range
ε < −4, here we can simply put λ = 0 in (115). The corre-
sponding integral is evaluated in Appendix B2 [see (B4)] and
we get

ρ(ε)

ρ0
≈ F2(ε, 0) = (−ε)1/4(

√−ε − 1)

(
√−ε − 2)

3/2

≈
{

8
√

2[−(ε + 4)]−3/2, for −(ε + 4) � 1,
1, for |ε| � 1.

(124)

C. Scattering within the impurity band

For any given energy in the range −4 < ε < 0, the leading
contribution to the resistivity comes from the scattering on
resonant impurities with such ti that εqs(ti ) ≈ ε. In contrast
with the previous case, to avoid divergency, here we have
to take into account the imaginary part of εqs(t ). The corre-
sponding calculations are presented in Appendix B3, resulting
in (B7):

ρ(ε)

ρ0
= F2(ε, λ) = 1

|λ|
( √−ε

2 − √−ε

)1/2

≈ 1

|λ|√2

{
(−ε)1/4, for |ε| � 1,

4(4 + ε)−1/2, for 4 + ε � 1.

(125)

D. Van Hove-like feature at the edge of impurity band:
scattering at strongest impurities

Combining (124) and (125), we arrive at

ρ(ε)

ρ0
=

{
8
√

2[−(ε + 4)]−3/2, for 4 + ε → −0,
2
√

2
|λ| (4 + ε)−1/2, for 4 + ε → +0.

(126)

Thus, at the lower edge of impurity band, at ε = −4, the resis-
tivity has an asymmetric (formally divergent) peak, somewhat
similar to the Van Hove singularity.

This entire feature is nothing else, but the inhomo-
geneously broadened (due to the dispersion of scattering
amplitudes λi for different impurities) peak of the resonant
scattering, which in the case of cylinder (where all λi are
identical) was manifested as a sharp line (see Refs. [17,18]).

The Van Hove-like singularity in resistivity (126) reflects
just the divergency of the density of quasistationary states
P(ε) at the edge of the impurity band. Since min εqs = −4
is reached for t = 1, we see that scattering near the peak is
dominated by strongest impurities, sitting near the antinodes
of transversal wave-function.

This Van Hove-like singularity at |ε| → 4 is indeed
smeared in the range |ε + 4| � |λ|, where the contributions
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of both types of final states—the continuum and the quasista-
tionary states—are comparable. To elucidate this mixing one
should treat the integral in Eq. (115) more accurately, without
using an approximate formula (B6). As a result of calculations
(see Appendix B4), we obtain

ρ(ε)

ρ0
= F2(ε, λ) = 1√

2

(√
a2 + 1 − a

|λ|3(a2 + 1)

)1/2

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8
√

2

[−(ε + 4)]3/2
, for 8|λ| � −(ε + 4) � 1,

2
√

2

|λ|(4 + ε)1/2
, for 8|λ| � 4 + ε � 1,

(127)

where a = −(ε + 4)/8|λ|. Naturally, the asymptotics of (126)
and (127) overlap at |λ| � |ε + 4| � 1. The function F2

reaches its maximum F (max)
2 = 33/4

2
√

2|λ|3/2 at a = −3−1/2, so that
the maximal resistivity

ρ (−)
max

ρ0
= 33/4

2
√

2|λ|3/2
(128)

is reached at ε = −4(1 − 2|λ|√
3

). The width of this maximum
� ∼ |λ| � 1.

Thus we conclude that the left peak of resistivity (that
exists only for attracting impurities) is higher than the right
one: its height is proportional to |λ|−3/2 instead of |λ|−1. On
the other hand, due to the inhomogeneous broadening, it is
lower than it would be in the case of cylinder: |λ|−3/2 instead
of |λ|−2.

E. Low-energy scattering at weak impurities

In contrast with the case of lower edge of the impurity band
(at ε → −4), the divergency of P(ε) at the upper edge (i.e., at
ε → 0) does not lead to divergency of ρ(ε). The divergency
of P(ε) appears to be not strong enough to overcome the
tendency for Im �(ren) to vanish due to non-Born screening.
As a result, for attracting impurities ρ(ε) still goes to zero at
ε → −0, but for all energies ρ(ε) is much larger than that in
the case of repulsing impurities: ρattr (ε) � ρrep(ε). The strong
resonant scattering at quasistationary states with low binding
energies εqs ≈ ε gives additional large factor |λ|−1 in ρ(ε)
dependence at ε < 0, |ε| � 1:

ρ(ε)

ρ0
= τ0

τnonres(ε)
≈ |ε|1/4

√
2

{1/|λ|, for λ < 0,
1/2, for λ > 0. (129)

Here we stress again that the scattering at |ε| � 1 (for both
ε > 0 and ε < 0) is dominated by weak impurities, sitting
close to nodes of the transversal wave functions.

XII. DECAY RATES FOR RESONANT STATES AND
BREAKDOWN OF SINGLE-IMPURITY APPROXIMATION

What is the boundary energy ε
(nB)
min below which the

above theory breaks down due to effects of multi-impurity
scattering?

The current carrying nonresonant states themselves have
large kinetic energy (εm � N in our units) so that the semi-

classical condition for them τ−1
nonres � εm is granted. However,

for correct evaluation of the resistivity ρ(ε) we need reliable
expressions for the scattering rates τ−1

nonres(ε) of these states.
As we have seen in previous sections, intermediate resonant
states with kinetic energies ε′ ∼ |ε| play crucial role in these
scattering processes. Thus we should require that not only
the nonresonant states, but also resonant ones with relevant
energies are well defined: τ−1

res (|ε|) � |ε|.
So, we have to evaluate the scattering rate τ−1

res (ε′) for the
states in the resonant band with kinetic energy ε′ ∼ |ε| > 0.
Therefore ε

(nB)
min should be found from the estimate

τ−1
res

(
ε

(nB)
min

) ∼ ε
(nB)
min . (130)

The same criterion we have already used in the Born case,
when n � nc (see Sec. VI B), and it has led us to the result
ε

(B)
min ∼ (nλ2)2/3 there. However, in the Born case, τ−1

res (ε′) ≈
(3/2)τ−1

nonres(ε
′) and we did not have to make a separate calcu-

lation for τ−1
res (ε′). In the present non-Born regime, as we will

see, τ−1
res (ε′) � τ−1

nonres(ε
′) for ε′ � εnB and such a separate

calculation is necessary. For brevity in the rest of this section,
we will write simply ε instead of |ε| having in mind that thus
defined ε is necessarily positive.

The evaluation of scattering rate for states within the reso-
nant band technically may be performed in a way very similar
to that which we have used in Sec. IX for current-carrying
nonresonant states. Both rates are governed by the same renor-
malized scattering amplitude �̃(ren)(x, ε), the only difference
is the change of the prefactor |χm(x)|2 → |χN (x)|2 in formula
(88). This modification, however, turns out to have very seri-
ous consequences for ε � 1.

1

τres(ε)
≡ 1

τN (ε)

= −2
∑

i

Im
{
�

(i)
N (ε)

} = −2
∑

i

Im
{
Ṽ (i)(ren)

NN

}
,

(131)

τ0

τres(ε)
= − 1

λ2

∫ 1

0
dx|χN (x)|2Im

{
�̃(ren)(x, ε)

}

= − 1

πλ2

∫ 1

0

2tdt√
t (1 − t )

Im
{
�̃(ren)(ε, t )

} = F̃1(ε)

|λ| ,

(132)

where

F̃1(ε) =
∫ 1

0

√
ε

ε + 4t2

(2t )2dt

π
√

t (1 − t )

= √
ε

(
1 −

√
1 + √

1 + 4/ε

2(1 + 4/ε)

)
. (133)

The expression for F̃1(ε) differs from expression (114) for
F1(ε) by an extra factor 2t in the integrand. The evaluation of
function F̃1(ε) for general ε > 0 is performed in Appendix A.
We actually need only its behavior at ε � 1:

F̃1(ε) ≈ √
ε, (134)
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so that, for ε � εnB, we obtain

1

τres(ε)
= 1

τ0

π
√

ε

λ2
= 2n

π

√
ε � 1

τnonres(ε)
. (135)

This drastic difference in behavior of τ−1
res (ε) and τ−1

nonres(ε)
at ε � 1 can be explained in the following way. In contrast
with the integral (114) that converges at t ∼ √

ε � 1, the
integral (133), due to additional factor 2t , converges at t ∼ 1.
Physically, it means that while the scattering of nonresonant
states is dominated by weak impurities, for the scattering of
resonant states weak impurities do not play any distinguished
role: all typical impurities contribute to scattering of resonant
states equally. It also explains why the result (135) does not
differ from similar result obtained in Ref. [17] for the case of
tube, where all the impurities were equivalent.

Substitution of (135) to criterion (130) gives ε
(nB)
min ∼ n2

which is also in accord with the case of tube. Now we can
conclude that the results obtained in Secs. VIII–XI are valid
in the energy range

|ε| � ε
(nB)
min . (136)

In the range |ε| � ε
(nB)
min , however, the behavior of ρ(ε) can be

studied with the help of some generalized approach. It takes
into account multi-impurity effects, though only for scattering
within the resonant band and is based upon using some exact
results from the theory of strictly one-dimensional systems.
These results will be discussed elsewhere.

XIII. CONCLUSION

In our previous paper on the role of non-Born effects in re-
sistivity of metallically conducting tubes [17], we have shown
that there exists certain crossover concentration of impurities
nc and studied the non-Born effects for both n � nc and n �
nc. In this paper, we have modified our approach to refine the
results of Ref. [17] and—most important—extended it to the
case of “strips”—constrictions in two-dimensional systems.
Although the role of non-Born effects in scattering at a single
impurity with a certain position in a strip was previously
studied in Refs. [14,15], in the present work, we have shown
that differently positioned impurities scatter charge carriers
differently and found that for a given ε a certain specific group
of impurities that mostly contribute to the overall scattering
rate is selected.

For n � nc, we were able to find the resistivity ρ(ε) in
the entire range of ε. For |ε| � ε

(B)
min this is a trivial Born

approximation result, while in the range |ε| � ε
(B)
min, the non-

perturbative problem was solved due to the possibility of
reduction to evaluation of the exact strictly one-dimensional
density of states. The latter was studied already long ago [25]
with the use of Gaussian character of random potential at
n � nc. The results for repulsing and attracting impurities are
identical; the cases of a tube and a strip are very similar: only
some numerical coefficients differ.

For n � nc, we have found the resistivity in the energy
range |ε| � ε

(nB)
min . The obtained result is a perturbative one

only for |ε| � εnB, while for ε
(nB)
min � |ε| � εnB strong non-

Born renormalization of scattering was taken into account. It
was feasible because in this range of energies only the single-

impurity renormalizations are relevant, the multi-impurity
ones come into play only at |ε| � ε

(nB)
min . The results for tube

and for strip differ from each other quite substantially, because
of the position dependence of scattering amplitudes of differ-
ent impurities in the strip case. Also the difference between
cases of repulsing and attracting impurities is dramatic.

The range of parameters n � nc, |ε| � ε
(nB)
min , where the

multi-impurity renormalization of scattering dominates, was
not studied in the present paper. However, it seems to be
important because just in this range the resistivity reaches its
minimum. An approach to this problem will be discussed in a
separate publication.
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APPENDIX A: EVALUATION OF FUNCTIONS
F1(ε) AND F̃1(ε)

To perform the integration in (114), (115), (133), we note
that F1, F2, F̃1 can be presented as contour integrals around
the cut between t = 0 and t = 1 on the Riemannian surface of
complex t . In particular, we have

F1(ε) = 2
√

ε

π

∫ 1

0

t1/2(1 − t )−1/2dt

(ε + 4t2)

=
√

ε

π

∮
cut [0,1]

t1/2(1 − t )−1/2dt

(ε + 4t2)

=
√

ε

2
Re

{
i√

t0(1 − t0)

}
=

(√
1 + 4/ε − 1

2(1 + 4/ε)

)1/2

,

(A1)

where

t0 = i
√

ε/2 (A2)

is the position of the integrand’s pole in the upper half-plane
of complex t . This pole is responsible for the virtual bound
state, causing the resonant enhancement of slow electrons,
mentioned in Sec. X A.

In a similar manner,

F̃1(ε) = 2
√

ε

π

∮
cut [0,1]

t3/2(1 − t )−1/2dt

(ε + 4t2)

= √
εRe

{
i

√
t0

1 − t0

}
+ √

ε

= √
ε

{
1 −

√
1 + √

1 + 4/ε

2(1 + 4/ε)

}
≈

{√
ε, ε � 1

3
2
√

ε
, ε � 1.

(A3)

Note that the results (A1) and (A3) are valid for both repulsing
and attracting impurities (i.e., for either signs of λ), the only
necessary requirement being ε > 0.
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APPENDIX B: EVALUATION OF FUNCTION F2(ε, λ)

For ε < 0, the pole of the integrand in the leading approx-
imation in λ is

t0 = −sgn λ
√−ε/2 (B1)

and lies on the real axis. In particular, it may occur directly
on the cut, provided λ < 0 and −4 < ε < 0. It would lead to
formal divergency of F2(ε, λ → −0). Just in order to remove
this divergency, we have taken into account the additional
term in the denominator of (115) which leads to a shift of z0

away from the real axis:

t0 → √−ε(1 ± i|λ|)/2. (B2)

Note that initially the pole t0 was the second order one. Taking
into account additional small term leads to splitting it into two
first order poles.

1. Repulsing impurities

For λ > 0, the imaginary part of t0 may be neglected, so
we have t0 = −√−ε/2 < 0 and

F2(ε, λ) ≈ F2(ε, λ → +0)

= 1

2π

∮
cut [0,1]

t−1/2(1 − t )−1/2dt

(1 + 2t/
√−ε)

2

= −iε

4

(
d

dt

√
1

t (1 − t )

)
t0

= −iε

8

⎛
⎝ 2t0 − 1√

t3
0 (1 − t0)3

⎞
⎠

= (−ε)1/4(1 + √−ε)
(
2 + √−ε

)−3/2
. (B3)

2. Attracting impurities, outside the impurity band, ε < −4

For ε < −4, the pole (B1) lies outside the cut even for λ <

0. Thus, for λ < 0, we can simply put λ → −0 and obtain the
relevant result by a substitution

√−ε → −√−ε in (B3):

F2(ε, λ) ≈ F2(ε, λ → −0)

= (−ε)1/4
(√−ε − 1

)(√−ε − 2
)−3/2

. (B4)

3. Attracting impurities, within the impurity band, −4 < ε < 0

Here, to obtain a finite result we have to take into account
the additional term in the denominator of (115) or, equiva-

lently, the imaginary part of t0, so that for λ < 0 and −4 <

ε < 0 the function F2(ε, λ) is a function of two dimensionless
variables: one cannot put λ → −0, but has to keep it finite.
Then (115) can be rewritten in a form

F2(ε, λ) = 1

π

∫ 1

0

t−1/2(1 − t )−1/2dt

(1 − 2t/
√−ε)

2 − 4t2λ2/ε

≈ 1

π

−ε

4

∫ 1

0

t−1/2(1 − t )−1/2dt

(
√−ε/2 − t )

2 − ε|λ|2/4
, (B5)

where the second term in the denominator was substituted by
its value at resonance: −4t2λ2/ε → λ2. Since |λ| � 1, it is
possible to write

1

(
√−ε/2 − t )

2 − ελ2/4
≈ 2π√−ε|λ|δ

(√−ε/2 − t
)

(B6)

and get

F2(ε, λ) ≈ 1

|λ|
( √−ε

2 − √−ε

)1/2

. (B7)

4. Attracting impurities, near the edge of the impurity
band, |ε + 4| � 1

Both the results (B7) and (B4) formally diverge as ε →
−4, so they are apparently not applicable in the narrow vicin-
ity of ε = −4, namely, for |ε + 4| � 8|λ|. In this range, we
should write

F2(ε, λ) ≈ 1

π

∫ 1

0

t−1/2(1 − t )−1/2dt

[1 − t − (ε + 4)/8]2 + λ2

≈ 1

|λ|3/2
�

(
−ε + 4

8|λ|
)
, (B8)

where

�(a) = 1

π

∫ −∞

∞

dφ

(φ2 + a)2 + 1
= −Im

{
1√

a + i

}

=
(√

a2 + 1 − a

2(a2 + 1)

)1/2

. (B9)
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