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Localization of light in a three-dimensional disordered crystal of atoms
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We demonstrate that a weak disorder in atomic positions introduces spatially localized optical modes in a
dense three-dimensional ensemble of immobile two-level atoms arranged in a diamond lattice and coupled by
the electromagnetic field. The frequencies of the localized modes concentrate near band edges of the unperturbed
lattice. Finite-size scaling analysis of the percentiles of Thouless conductance reveals two mobility edges and
yields an estimation ν = 0.8–1.1 for the critical exponent of the localization length. The localized modes
disappear when the disorder becomes too strong and the system starts to resemble a fully disordered one where
all modes are extended.
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I. INTRODUCTION

Photonic crystals are periodic arrangements of scattering
units (typically, dielectric spheres or rods) that exhibit fre-
quency ranges (band gaps) for which no optical modes exist
in the infinite structure and light propagation is forbidden
[1,2]. Thus, photonic crystals play the same role for light as
semiconductor crystals do for electrons. They have numerous
promising prospects for applications in optical technologies
and, in particular, for guiding of light [3,4], lasing [5,6], and
quantum optics [7,8].

Photonic crystals exist in nature [9] (e.g., natural opals
[10] or wings of some butterflies [11,12]) or can be fab-
ricated using modern nanofabrication techniques [13–16].
However, neither nature nor humans do a perfect job and
real-life photonic crystals always have some degree of imper-
fection: fluctuating sizes or positions of elementary building
units, vacancies, interstitial or substitution impurities, cracks
[17,18]. Whereas these imperfections do not destroy the band
gap provided that they are not too strong, they introduce an
interesting new feature in the spectrum: spatially localized
optical modes appear in the band gap, especially near its edges
[19]. Localization of eigenmodes of wave equations or of
eigenstates of the Schrödinger equation by disorder is a ubiq-
uitous phenomenon discovered by Anderson [20] and bearing
his name [21,22]. Anderson localization of electromagnetic
waves in general and of light in particular has been predicted
by Anderson himself [23] and by John [24]. Later on, it has
been observed in fully disordered one-dimensional [25,26],
quasi-one-dimensional [27,28], and two-dimensional [29,30]
disordered media whereas observing it in three dimensions
(3D) turned out to be difficult [31,32]. Even though John
proposed a way to facilitate localization of light in 3D by
using disordered photonic crystals instead of fully disordered
suspensions or powders a long time ago [19,33], no clear
experimental realization of this idea has been reported up
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to date. Some signatures of Anderson localization have been
observed in reflection of short optical pulses from a disordered
photonic crystal [34] although the authors did not claim the
observation of Anderson localization.

The idea of facilitating localization of light in 3D by us-
ing a photonic structure with a band gap arises from the
localization criterion following from the scaling [35] and the
self-consistent [36,37] theories of localization [38]:

NEM(ω)D0(ω)�∗
0(ω) � const ∼ 1, (1)

where NEM(ω) is the density of electromagnetic modes
(states), D0(ω) = vE�∗

0(ω)/3 is the “bare” diffusion coeffi-
cient of light (i.e., the value that the diffusion coefficient
would have in the absence of localization effects), vE is the
energy transport velocity [39,40], and �∗

0(ω) is the transport
mean-free path in the absence of localization effects. In a
fully disordered isotropic medium without any short- or long-
range order, NEM(ω) ∼ k(ω)2/vE and we obtain the standard
Ioffe-Regel criterion of localization: k�∗

0 ∼ k� � const ∼ 1,
where k(ω) is the effective wave number, � is the scattering
mean-free path, and we made use of the fact that �∗

0 and � are
of the same order. This criterion corresponds to a very strong
scattering with � shorter than the wavelength of light. If, how-
ever, the density of states NEM(ω) is suppressed with respect
to its value in the fully disordered medium, the criterion (1)
becomes easier to obey. In a photonic crystal, NEM(ω) → 0
near a band edge and hence localized states are expected to
appear for arbitrary weak disorder [33].

Large and dense ensembles of cold atoms constitute a new
experimental platform for the investigation of multiple light
scattering [41–43]. The very good knowledge of the properties
of individual, isolated atoms and the constantly increasing
degree of control of large atomic ensembles make atomic
systems ideal candidates for verifying the existing theoretical
predictions as well as for going beyond them by playing
the role of “quantum simulators” [44,45]. However, whereas
Anderson localization of matter waves in 3D random optical
potentials has been successfully realized [46,47], the some-
what reciprocal situation of light localization by scattering
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on cold atoms turns out to be difficult to implement [48]. In
addition to experimental difficulties of producing cold-atomic
clouds that are large and dense at the same time, theoretical
calculations have pointed out that the vectorial nature of elec-
tromagnetic waves and the dipole-dipole interaction between
nearby atoms may be a fundamental obstacle for Anderson
localization of light [49,50]. Applying a static magnetic field
to suppress the dipole-dipole interactions is a possible way to
circumvent this obstacle [51,52] but strong fields are required
[53]. An easier way toward light localization by cold atoms
may be to arrange atoms in a periodic 3D lattice and enjoy the
relaxation of the localization criterion (1) near an edge of a
photonic band gap.

In this paper, we investigate spatially localized quasimodes
that are introduced in an open 3D diamond atomic lattice of
finite size by a randomness in atomic positions. Randomly dis-
placing the atoms from their positions in the lattice is different
from introducing disorder by randomly removing the atoms,
a situation studied in Ref. [54], and allows for varying the
strength of disorder while keeping the atom number constant.
Thus, we can follow a transition from the perfect photonic
crystal for vanishing disorder to a fully disordered system
for strong disorder. After discussing the impact of boundary
states, we establish that for a moderate amount of disorder
W , two localization transitions exist near edges of a pho-
tonic band gap that the diamond lattice exhibits. A finite-size
scaling analysis of one of these transitions yields the precise
position of the mobility edge and an estimation of the critical
exponent ν of the localization length. Increasing W eventually
leads to the closing of the band gap and the disappearance of
localized states. A relation between the band-gap formation,
Anderson localization, and the near-field dipole-dipole cou-
pling between the atoms is conjectured. Finally, implications
of our results to experiments with cold atoms are discussed.

II. MODEL

We consider N identical two-level atoms arranged
in a diamond lattice. The lattice is a superposition
of two face-centered-cubic lattices (lattice constant a)
with basis vectors e1 = (0, a/2, a/2), e2 = (a/2, 0, a/2),
e3 = (a/2, a/2, 0) and e1 + e, e2 + e, e3 + e, where e =
(a/4, a/4, a/4). A sample of finite size is obtained from the
unbounded lattice by keeping only the atoms inside a sphere
of diameter L and volume V = (π/6)L3 centered at the origin
(see the inset of Fig. 1 for a 3D rendering of the resulting
sample). Disorder is introduced by displacing each atom by
a random distance ∈ [0,Wa] in a random direction, with W
being a dimensionless parameter characterizing the strength
of disorder. The atoms have resonance frequencies ω0 and
resonance widths �0; their ground states have the total angular
momentum Jg = 0 while their excited states have Je = 1 and
are thus threefold degenerate, with the three excited states
having the same energies but different projections Jz = m
(m = 0, ±1) of Je on the quantization axis z. We have already
used such a model of resonant two-level atoms coupled via the
electromagnetic field to study random ensembles of atoms in
our previous work [49] where the Hamiltonian of the system
was given. The model was generalized to include external
dc magnetic [51,52] or electric [55] fields. It has been also
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FIG. 1. (a) Density of states of perfect (W = 0, black) and dis-
ordered (red, green, blue) photonic crystals for different disorder
strengths: W = 0.1 (red), 0.2 (green). The blue line corresponds to a
fully random ensemble of atoms. Averaging is performed over 461,
175, and 82 random configurations for W = 0.1, 0.2, and the fully
random case, respectively. Vertical dashed lines show band edges.
Inset: a 3D rendering of a perfect diamond lattice of atoms. (b) Zoom
on the band gap. Yellow shading shows frequency ranges in which
we find localized quasimodes for W = 0.1.

used to study photonic crystals that we consider here [54,56].
Following these previous works, we will study localization
properties of quasimodes ψm of the atomic system found as
eigenvectors of a 3N × 3N Green’s matrix Ĝ:

Ĝψm = �mψm, m = 1, . . . , 3N. (2)

The matrix Ĝ describes the coupling between the atoms via
the electromagnetic waves (light) and is composed of N × N
blocks of size 3 × 3. A block Ĝ jn gives the electric field
created at a position rn of the atom n by an oscillating point
dipole at a position r j of the atom j ( j, n = 1, . . . , N). It has
elements

Gμν
jn = iδ jnδμν + (1 − δ jn)

3

2

eik0r jn

k0r jn

×
[

P(ik0r jn)δμν + Q(ik0r jn)
rμ

jnrν
jn

(r jn)2

]
, (3)

where P(x) = 1 − 1/x + 1/x2, Q(x) = −1 + 3/x − 3/x2,
r jn = rn − r j , and the indices μ, ν = x, y, z denote the
projections of r jn on the axes x, y, z of the Cartesian

134206-2



LOCALIZATION OF LIGHT IN A THREE-DIMENSIONAL … PHYSICAL REVIEW B 102, 134206 (2020)

coordinate system: rx
jn = x jn, ry

jn = y jn, rz
jn = z jn. The

inverse of the resonant wave number of an isolated atom
k0 = ω0/c provides a convenient length scale by which we
will normalize all other length scales. Here, c is the speed of
light in the free space.

An eigenvector ψm = (ψ1
m, . . . , ψ3N

m )T of the matrix Ĝ de-
scribes the spatial structure of the mth quasimode: ψ

3( j−1)+μ
m

gives the μth component of the electric field on the atom j.
The corresponding eigenvalue �m yields the eigenfrequency
ωm and the decay rate �m/2 of the quasimode: ωm = ω0 −
(�0/2)Re�m and �m/2 = (�0/2)Im�m. Spatial localization
of quasimodes can be quantified by the so-called inverse par-
ticipation ratio (IPR):

IPRm =
N∑

j=1

{
3∑

μ=1

∣∣ψ3( j−1)+μ
m

∣∣2

}2

, (4)

where we assume that the eigenvectors ψm are normalized:

N∑
j=1

3∑
μ=1

∣∣ψ3( j−1)+μ
m

∣∣2 = 1. (5)

It is easy to see that IPRm = 1 for a state localized on a single
atom and IPRm = 1/N for a state that is uniformly delocalized
over all N atoms of the system. Generally, IPRm ∼ 1/M for a
state localized on M atoms.

The spectral distribution of quasimodes can be character-
ized by the density of states (DOS) N (ω) defined in an open
system as [56,57]

N (ω) = 1

3Nπ

3N∑
m=1

(�m/2)

(ω − ωm)2 + (�m/2)2
. (6)

N (ω) is normalized such that the number of states inside an
infinitely narrow frequency interval dω is dN = 3NN (ω)dω.
Thanks to such a normalization, N (ω) converges to a lim-
iting shape corresponding to the infinite crystal as the size
of the crystal increases [56]. Note that in our formalism, the
number of quasimodes is equal to the size 3N of the matrix
Ĝ and hence increases with N for all frequencies, including
those inside the band gap. However, as discussed elsewhere
[56], the quasimodes corresponding to the frequencies inside
the band gap are confined near the crystal boundary and
hence their number grows proportionally to the crystal surface
πL2 ∝ N2/3. This growth is slower than the growth of the
total number of modes and hence the relative weight of these
quasimodes tends to zero in the thermodynamic limit N → ∞
and N (ω) ∝ 1/L [56,58].

In this paper, we will present results for crystals of four dif-
ferent sizes k0L = 30, 40, 50, and 60 composed of N = 2869,
6851, 13 331, and 22 929 atoms, respectively. These numbers
of atoms have been adjusted to maintain the same lattice con-
stant k0a = 3.4 and the same average atomic number density
ρ/k3

0 = 0.2. The lattice constant is chosen small enough for a
band gap to open in the spectrum of the ideal lattice [59] as we
illustrate by DOS calculations shown in Fig. 1 for the perfect
(W = 0) and disordered crystals of size k0L = 50. For disor-
dered lattices, DOS has been averaged over many independent
random atomic configurations using the Monte Carlo method
[60]. DOS inside the band gap is different from zero due to the

finite size of the considered sample [56,58]. We observe that
the band gap narrows when disorder in atomic positions is
introduced (W = 0.1) and closes for strong enough disorder
(W = 0.2). No signature of a band gap is found for a fully
random system in which the atomic positions r j are chosen
randomly inside a sphere without any reference to the periodic
diamond structure. Therefore, it turns out that our disordered
photonic crystal preserves a band gap only for relatively weak
disorder W < 0.2.

It is worthwhile to note that DOS N (ω) reflects only the
atomic component of elementary excitations of the system
comprising the atoms and the electromagnetic field. Thus, low
N (ω) does not necessarily correspond to a small number of
excitations at a given frequency ω but can simply mean that
the atomic subsystem is weakly involved and the excitations
look very much like freely propagating photons. This typically
happens far from the atomic resonance, for |ω − ω0| � �0,
where the coupling of light with atoms is inefficient. The
absence of free-field solutions that have no atomic component
for frequencies inside the band gap has been demonstrated
previously [59,61]. A gap in N (ω) thus corresponds to a
gap in the total density of states and a gap in the density
of electromagnetic modes NEM(ω) entering the localization
criterion (1), even though N (ω) 	= NEM(ω).

In addition to DOS N (ω), another interesting quantity is
the local density of states (LDOS) N (ω, r). In a photonic
crystal of finite size, LDOS exhibits rapid spatial variations
within each unit cell of the crystal and slow overall evolution
with the distance to the boundaries [62,63]. Disorder intro-
duces fluctuations of LDOS and the statistics of the latter may
serve as a criterion for Anderson localization [64]. However,
calculation of LDOS for our model would require finding
eigenvectors ψm of the matrix Ĝ which is a much more time-
consuming computational task than finding the eigenvalues
�m that are needed to calculate N (ω) [see Eq. (6)]. Even
though we present some results for ψm in Figs. 2–4 below,
their statistical analysis including the calculation of the aver-
age LDOS 〈N (ω, r)〉 is beyond the scope of this work.

III. LOCALIZED STATES INSIDE THE BAND GAP

It follows from Fig. 1(b) that some quasimodes cross over
the edges of the band gap when disorder is introduced in the
photonic crystal (compare DOS corresponding to W = 0 and
0.1). In order to study the spatial localization properties of
these modes, we show quasimode eigenfrequencies ω and
decay rates � together with their IPR for the perfect dia-
mond crystal and a single realization of the disordered crystal
in Fig. 2. For the perfect crystal [Figs. 2(a) and 2(c)], the
vast majority of the modes both inside and outside the band
gap are extended and have IPR ∼ 1/N . The distribution of
quasimodes on the frequency-decay rate plane changes only
slightly upon increasing the size of the system from k0L = 40
to 60 [compare Figs. 2(a) and 2(c)]. In contrast, the disordered
photonic crystal exhibits some localized modes with appre-
ciable IPR near band edges and in particular near the upper
band edge [see Figs. 2(b) and 2(d)]. These modes have decay
rates (lifetimes) that are significantly smaller (longer) than the
decay rates (lifetimes) of any modes of the perfect crystal. In
addition, the number of such localized modes increases and
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FIG. 2. Eigenvalues of a single realization of the Green’s matrix for perfect [left column, (a) and (c)] and disordered [right column, (b) and
(d)] diamond crystals of two different sizes k0L = 40 (upper row) and 60 (lower row). Each point in the graph corresponds to an eigenvalue
and its grayscale represents the IPR of the corresponding eigenvector, from light gray for IPR = 0 (extended eigenvectors) to black for the
maximum IPR (different for each panel, most localized eigenvectors). Vertical dashed lines show band edges. Only a part of the eigenvalue
spectrum (ω − ω0)/�0 ∈ [−2, 2] is shown.

their decay rates decrease significantly when the disordered
crystal gets bigger [compare Figs. 2(b) and 2(d)]. Such a
combination of spatial localization with small decay rates and
the scaling with the sample size is typical for disorder-induced
quasimode localization [49,65].

In addition to extended modes everywhere in the spectrum,
isolated localized modes appear in the middle of the band
gap of the perfect crystal [see Figs. 2(a) and 2(c)]. Their
IPR ∼ 5 × 10−2 is small but still considerably larger than
1/N ∼ 10−4 expected for extended modes. Such modes do not
disappear and become even more numerous in the disordered
crystal [see Figs. 2(b) and 2(d)]. They differ from the modes
near band edges by their much larger decay rates that are
virtually independent of the crystal size. Our previous work
suggests that all modes in the middle of the band gap of
a photonic crystal are confined near the crystal boundary,
which may explain their IPR ∝ 1/N2/3 � 1/N [56]. In the
presence of disorder, some of these modes may, in addition,
be restricted to a small part of sample surface [66], which
may explain their larger IPR. To confirm this explanation, we
compute the center of mass of a mode ψm as

r(m)
c.m. =

N∑
j=1

r j

[
3∑

μ=1

∣∣ψ3( j−1)+μ
m

∣∣2

]
. (7)

Figure 3 shows that the modes in the middle of the band gap,
including those having large IPR, tend to have the absolute
value of their center of mass rc.m. to be of order of the radius
L/2 of the atomic sample. These modes are therefore confined

at the sample boundary as we have anticipated. The confine-
ment at the boundary explains the relatively large decay rates
of these modes and the weak dependence of decay rates on
the sample size. Although the role of surface modes discussed
above may appear to be important in the calculations pre-
sented in this work, this is due to the relatively small sizes
k0L = 30–60 of considered atomic samples limited by the
computational constraints to which our numerical calcula-
tions are subjected. In the limit of k0L → ∞ relevant for the
analysis of modes localized by disorder in the bulk, surface
modes play no role. In finite samples accessible to numerical
calculations, the impact of surface modes can be minimized
by using a scaling analysis presented in the next section. The
need for a scaling analysis is also due to the absence of a
univocal relation between the decay rate � of a quasimode and
its localization properties. Indeed, some of the black points in
Fig. 3(a) correspond to much larger � than some of the gray
points, showing that the IPR and � are not directly related.
However, a relation can be established between the scaling of
(normalized) � with the sample size L and the spatial local-
ization of quasimodes at a given frequency. Surface states do
not follow the same scaling with the sample size as the modes
localized in the bulk, which provides a way of discriminating
between these two types of modes.

Similarly to Figs. 2(b) and 2(d), Fig. 3(a) shows that
quasimodes with large IPR appear inside the band gap of the
photonic crystal due to disorder. The spatial structure of these
spatially localized quasimodes is very different from that of
the extended quasimodes with frequencies outside the band
gap, as we illustrate in Fig. 4.
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FIG. 3. Eigenvalues of a single realization of the Green’s matrix
for a disordered diamond crystal of size k0L = 30. Each point in
the graph corresponds to an eigenvalue and its grayscale represents
the IPR (a) or the center of mass rc.m. (b) of the corresponding
eigenvector. The spatial structure of the eigenvectors corresponding
to the two eigenvalues indicated by arrows in (a) is illustrated in
Fig. 4. Vertical dashed lines show band edges. Only a part of the
eigenvalue spectrum (ω − ω0)/�0 ∈ [−2, 2] is shown.

IV. FINITE-SIZE SCALING

The finite-size scaling analysis is a way to access the
behavior of an infinitely large system from the experimen-
tal or numerical data available for finite-size systems only.
It is a common approach for analysis of phase transitions
[60,67] and has been widely used to characterize Anderson
localization transitions in electronic [68–71], optical [52,72],
and mechanical [73,74] systems. Very generally, one chooses
a quantity (let us denote it by �) that is supposed to take
two very different values (say, 0 and ∞) for the infinitely
large system in the two different phases. The behavior of the
quantity � is then studied as a function of sample size L
and regions of the parameter space are identified in which
� increases or decreases with L. A point (for 1D parameter
space), a line (2D), or a surface (3D) separating these re-
gions is identified as a boundary between the two phases at
which � is independent of L. Moreover, it often turns out
that even when the parameter space of the physical system
under consideration is multidimensional, all the parameters
can be combined into a single one that is the only relevant
near the phase transition point. In this situation known as the
“single-parameter scaling” [68], the critical exponents of the

FIG. 4. Visualization of eigenvectors (quasimodes) correspond-
ing to the eigenvalues indicated by arrows in Fig. 3(a). A quasimode
ψm is represented by N red spheres centered at the locations r j

( j = 1, . . . , N) of the N atoms and having radii proportional to the
intensities I j

m = ∑3
μ=1 |ψ3( j−1)+μ

m |2 of the quasimode on the atom.
The quasimode (a) is spatially localized and has a relatively high
IPR whereas the quasimode (b) is spatially extended. Gray spheres in
both panels visualize the spherical region occupied by the disordered
photonic crystal.

transition can be estimated from the behavior of � with L for
finite L.

In the context of Anderson localization, the (dimension-
less) electrical conductance g of a sample of size L was
identified as the most relevant quantity to consider: � = g
[35]. Obviously, the conductance of a 3D metallic cube of side
L in which all the electronic eigenstates are extended, g ∝ L,
grows with L whereas one expects a decreasing conductance
g ∝ exp(−L/ξ ) if the electronic eigenstates are localized at
the scale of localization length ξ and the sample is an (An-
derson) insulator. We thus see that in the limit of L → ∞,
g → ∞ if the eigenstates are extended and g → 0 if they are
spatially localized. In addition, one expects g to be indepen-
dent of L at the critical point [35]. This is, by the way, the
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essence of the Thouless criterion of Anderson localization
g ∼ const [35,75], where “const” is a number of order unity.

The conceptual picture described above needs some adjust-
ments when it comes to its application to the physical reality.
Indeed, in a disordered system, g is a random quantity and
it is not clear how exactly its scaling with the sample size
should be understood [76]. The simplest option of analyzing
its average value 〈g〉 turned out to be not always appropriate
because 〈g〉 may be dominated by rare realizations of disorder
with large g [76,77]. Another, more intelligent guess is to
use the average of the logarithm of g, 〈ln g〉. This indeed
allows to obtain reasonable results [70] but has the weakness
of being somewhat arbitrary as a choice: why 〈ln g〉 and not
〈(ln g)2〉, 〈(ln g)3〉, or the mean value of some other function
of g? Although averaging different functions of g may yield
identical results for the critical properties of the localization
transition in some models [70], it is not so for the model of
point scatterers considered here [65]. This is why studying the
full probability distribution function P(g) instead of statistical
moments of g or ln g is necessary [76,77]. Conductance g
and its probability distribution function P(g) are not the only
quantities that can be used for the scaling analysis of the
Anderson transition. Alternatives include the distribution of
eigenvalue (level) spacings [69] or the multifractal spectrum
[78] as the most prominent examples. Note that although
initially proposed for Hermitian systems [69], the finite-size
scaling of spacings between eigenvalues has been recently
extended to the non-Hermitian case [79,80] and thus can,
in principle, be applied to analyze open disordered systems
as the one considered in this work. However, g and P(g)
still remain the most simple and computationally accessible
quantities to analyze.

Conductance as a ratio of the electric current to the voltage
that causes it is a notion that is proper to electronics and seems
to be impossible to generalize to light. However, Thouless
has noticed that if one divides the typical decay rate �/2 of
quasimodes of an open quantum or wave system by the aver-
age spacing between quasimode frequencies 
ω, the resulting
“Thouless conductance” is equal to the electrical conductance
g for a metal wire: (�/2)/
ω = g [75]. The advantage of
the Thouless definition is that it can be readily generalized to
any waves independent of any electrical currents or potential
differences in the considered physical system. In our open,
finite-size photonic crystal we define

gm = �m/2

〈|ωm − ωm−1|〉 = Im�m

〈|Re�m − Re�m−1|〉 , (8)

where the eigenfrequencies ωm are assumed to be ordered. We
note that in a closed system the matrix Ĝ would be Hermitian
and its eigenvalues real. Then, the denominator of Eq. (8)
would be equal to 1/[3NN (ω)]. However, in the open system
that we consider, the relation between the average spacing
between eigenfrequencies ωm and DOS is only approximate
because the definition of DOS (6) involves decay rates of
quasimodes as well. In practice, we can still approximately
write

gm � �m

2
N (ωm)3N. (9)
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FIG. 5. Probability density of the logarithm of the Thouless con-
ductance g at the critical point of the localization transition for
different sizes of the disordered crystal: k0L = 30 (black), 40 (red),
50 (green), 60 (blue). The numbers of random realizations of the
matrix Ĝ used for different sizes are 2200, 900, 461, and 180, respec-
tively. All eigenvalues within a frequency interval of width 0.01�0

around ω − ω0 = −0.44�0 are used to estimate P(ln g; ω, L). Proba-
bility densities corresponding to different sizes coincide for small g;
the gray shaded area below P(ln g; ω, L) illustrates the notion of qth
percentile ln gq for the fifth percentile q = 0.05. Inset: the distance
D(ω) between probability densities corresponding to k0L = 30 and
60 attains a minimum at the critical point (ω − ω0)/�0 � −0.44. The
step of frequency discretization is 0.01�0 for this figure.

Using this definition instead of Eq. (8) would barely mod-
ify the results following from the finite-size scaling analysis
below because neither 〈|ωm − ωm−1|〉−1 nor N (ω) exhibit
singularities at the localization transition points.

In a disordered photonic crystal, the Thouless conduc-
tance defined by Eq. (8) is a random quantity and at fixed
scatterer density ρ and disorder strength W , its statistical
properties can be characterized by a probability density func-
tion P(ln g; ω, L). Here, we choose to work with ln g instead
of g because g varies in a rather wide range. The probability
density is parametrized by the frequency ω of the quasimodes
and the sample size L. We estimate P(ln g; ω, L) for different
ω around the upper edge of the band gap observed in Fig. 1
by numerically diagonalizing many independent random real-
izations of the matrix Ĝ for different sizes L of the disordered
photonic crystal. Figure 5 shows the results for W = 0.1 and a
particular frequency ω = ω0 − 0.44�0 for which the so-called
Cramér’s distance between probability density functions cor-
responding to the smallest and largest L is minimized (see the
inset of Fig. 5). The Cramér’s distance is

D(ω) =
∞∫

−∞
d (ln g)

∣∣P(
ln g; ω, L = 30k−1

0

)

− P
(

ln g; ω, L = 60k−1
0

)∣∣2
. (10)

Interestingly, the frequency ω for which D(ω) is mini-
mal also corresponds to the frequency for which distributions
P(ln g; ω, L) corresponding to different L tend to coincide
for small g (see the main panel of Fig. 5). Following our
previous work [65], we identify this relative L independence
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of P(ln g; ω, L) as a signature of a critical point of a localiza-
tion transition (also called a mobility edge). The probability
density of conductance near the transition from extended to
localized states has been extensively studied in the past for
both quasi-1D [81,82] and 3D [83–85] disordered systems
without band gaps. For small g, our P(ln g; ω, L) exhibits
a tail decreasing to zero as g → 0 in agreements with the
previous prediction [84]. However, in contrast to the expec-
tations [83–85], our P(ln g; ω, L) does not have a smooth,
size-independent shape for large g. We attribute this fact to the
following reason. The realistic physical model of two-level
atoms arranged in a diamond lattice that we consider may
exhibit other physical phenomena in addition to the eigen-
mode localization near band edges. These phenomena may
be due, for example, to the collective interaction between
atoms (subradiance [86–88] and superradiance [89,90]) or to
the specific structure of their spatial arrangement (potential
topological phenomena [91,92]). Without having any relation
to quasimode localization, these phenomena may cause some
particular features of P(ln g; ω, L) and exhibit some L de-
pendence. Some of these features may disappear in the limit
of k0L → ∞ but it is impossible to claim such a disappear-
ance from our calculations performed for finite k0L = 30–60,
which are likely to be insufficient to clearly observe the behav-
ior expected in the limit of k0L → ∞. For example, we see
from Fig. 5 that P(ln g; ω, L) exhibits a pronounced peak at
ln g � 5. The peak shifts to larger g and reduces in magnitude
as L increases. This peak corresponds to superradiant states
with short lifetimes which always exist in a finite-size system
but which have a statistical weight decreasing with L. It is
likely that the peak would vanish in the limit of L → ∞ which
is, however, inaccessible for our calculations.

We will use the small-g part of P(ln g; ω, L) that becomes
L independent at ω � ω0 − 0.44�0 (see Fig. 5) to quantify
the localization transition. The finite-size scaling analysis of
P(ln g; ω, L) can be conveniently performed by analyzing its
percentiles ln gq [93]. The qth percentile ln gq is defined by a
relation

q =
∫ ln gq

−∞
P(ln g; ω, L)d (ln g) (11)

illustrated in Fig. 5 for q = 0.05 (fifth percentile). Indepen-
dence of the small-g part of P(ln g; ω, L) of L implies that ln gq

should be L independent for small q as well. Visual inspection
of Fig. 5 suggests that q = 0.05 is more or less the maximal
value of q for which the L independence of P(ln g; ω, L) can
be assumed. For larger q, the dashed vertical line in Fig. 5
would shift to the right and enter into the range of ln g in which
P(ln g; ω, L) corresponding to different L are clearly different.
The gray shaded area q on the left from the dashed line would
then be ill defined.

We have computed and analyzed the percentiles ln gq for
q = 0.01–0.05 and present the results for q = 0.05 in Fig. 6.
The results for smaller q are similar but exhibit stronger
fluctuations and larger error bars due to poorer statistics. As
discussed above, crossings between ln gq corresponding to
different L are potential signatures of localization transitions.
Figure 6(a) suggests that there are two pairs of such cross-
ings, a pair near the lower edge of the band gap and another
pair near the upper edge. Figures 6(b) and 6(c) zoom on the

corresponding frequency ranges. Let us discuss the behavior
with increasing the frequency ω. First, a transition to localized
states can be identified around (ω − ω0)/�0 � −1.015 where
a common crossing of ln gq corresponding to k0L = 40, 50,
and 60 takes place. The line corresponding to k0L = 30 does
not pass through this common crossing point, most probably
because this sample size is insufficient to observe the expected
large-sample behavior. ln gq remains a decreasing function
of L for (ω − ω0)/�0 � −1.015 and up to (ω − ω0)/�0 �
−0.97. This is consistent with the appearance of states local-
ized in the bulk of the disordered crystal at frequencies near a
band edge (see Figs. 2 and 3). The states with frequencies in
the middle of the band gap, −0.97 � (ω − ω0)/�0 � −0.57
in Fig. 6(a), appear as relatively localized according to their
IPR in Figs. 2 and 3 but show a scaling behavior that identifies
them as extended (i.e., ln gq grows with L). This is consistent
with their surface nature: indeed, surface states are restricted
to the boundary of the sample and hence the number of atoms
on which they have significant amplitudes grows as L2 instead
of L3 for extended states in the bulk. Thus, they have larger
IPR as compared to the extended states in the bulk, but this
IPR still decreases with L (as IPR ∝ 1/L2 instead of 1/L3).
This decrease is reflected in the growth of ln gq shown in
Fig. 6(a). A second band of localized states arises near the
upper edge of the band gap, for −0.57 � (ω − ω0)/�0 �
−0.44.

Our results for ln gq(ω, L) around (ω − ω0)/�0 � −0.44
are smooth and have sufficiently small error bars to allow
for a quantitative analysis of the transition from localized to
extended states. We apply the finite-size scaling procedure
to analyze small-q percentiles of g in the framework of the
single-parameter scaling hypothesis [93]. The latter postulates
that in the vicinity of the localization transition point, ln gq

is a function of a single parameter L/ξ (ω), where |ξ (ω)| is
the localization length on the one side from the mobility edge
ωc and the correlation length on the other side: ln gq(ω, L) =
Fq[L/ξ (ω)]. Assuming that the divergence of ξ (ω) at the
transition is power law, we represent ξ (ω) as

ξ (ω) =
[

m∑
j=1

Ajw
j

]−ν

(12)

near w = (ω − ωc)/ωc = 0. Here, Aj are constants and ν is
the critical (localization length) exponent. We thus can write

ln gq(ω, L) = Fq[L/ξ (ω)] = Fq[ψ (ω, L)] (13)

with a scaling variable

ψ (ω, L) =
[ L

ξ (ω)

]1/ν

= L1/ν

m∑
j=1

Ajw
j . (14)

Finally, the scaling function Fq(ψ ) is expanded in Taylor
series:

Fq(ψ ) = ln g(c)
q +

n∑
j=1

Bjψ
j, (15)

where ln g(c)
q is the critical value of ln gq independent of L.

Fits of Eq. (15) to the numerical data are performed with
ωc, ln g(c)

q , ν, Aj ( j = 1, . . . , m), and Bj ( j = 1, . . . , n) as free
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FIG. 6. (a) Fifth percentile ln gq=0.05 of the Thouless conductance as a function of frequency ω for four different sizes k0L of the disordered
photonic crystal. Very large error bars in the range (ω − ω0)/�0 ∈ (−0.58, −0.54) are not shown. Vertical dashed lines show the band edges.
(b), (c) Zoom on the spectral ranges in which ln gq=0.05 drops near the lower and upper band edges, respectively. (d) Finite-size scaling analysis
of the localization transition taking place at ω = ωc � ω0 − 0.44�0 where curves corresponding to different crystal sizes cross in a single point
{(ωc − ω0)/�0, ln g(c)

q }. Solid lines represent a joint polynomial fit of Eq. (15) with m = n = 3 to the numerical data, dashed lines show their
extrapolation beyond the range of data ln gq ∈ [ln g(c)

q − δ(ln gq ), ln g(c)
q + δ(ln gq )] used for the fit. δ(ln gq ) = 2 for this figure. The inset shows

the best-fit values of the critical exponent ν for q = 0.01–0.05 with errors bars corresponding to the standard deviation, the gray area showing
the 95% confidence interval, and the dashed horizontal line indicating the average of ν over q.

fit parameters. The orders m and n of the expansions (14) and
(15) are chosen large enough to ensure that the χ2 statistics

χ2 = 1

Ndata

Ndata∑
j=1

{
Fq[ψ (ω j, L)] − ln g( j)

q
}2

σ 2
j

(16)

is of the order 1. Here, Ndata is the number of data points
{ω j, ln g( j)

q } and σ j are statistical errors of ln g( j)
q shown by

error bars in Fig. 6. We only fit the numerical data in
the range ln gq ∈ [ln g(c)

q − δ(ln gq), ln g(c)
q + δ(ln gq)] around

the critical value ln g(c)
q estimated in advance by looking

for the minimum of the sum of squares of differences between
points corresponding to different L.

A joint fit to the numerical data corresponding to four dif-
ferent values of L and q = 0.05 is shown in Fig. 6(d). It yields
ωc = −0.4401 ± 0.0003 and ν = 0.94 ± 0.02 as the best-fit
parameters. We repeated the fits for other values of q in the
range from 0.01 to 0.05 with the same frequency resolution
0.005�0 as in Fig. 6(d) [see the inset of Fig. 6(d) for the best
fit ν] and with a twice finer resolution and δ(ln gq) = 1 instead
of δ(ln gq) = 2 in Fig. 6(d). In addition, we varied the orders
m and n of the series expansions (14) and (15) from 1 to 3
and introduced an additional, irrelevant scaling variable [71].
All fits yield consistent values of (ωc − ω0)/�0 in the range
[−0.441, −0.436]. The best-fit values of the critical exponent

are more scattered but remain in the range ν = 0.8–1.1, with
large uncertainties up to 20% for the narrower data range
δ(ln gq) = 1.

V. DISCUSSION

Whereas the position of the mobility edge found from the
finite-size scaling analysis agrees well with the estimation fol-
lowing from the analysis of P(ln g; ω, L) (see Fig. 5), the value
of the critical exponent ν turns out to be well below νAM �
1.57 found numerically for the Anderson model (AM) in the
3D orthogonal symmetry class and believed to be universal
for disorder-induced localization transitions in 3D systems
in the absence of any particular symmetry-breaking mecha-
nisms [71]. Cold-atom experiments mimicking the so-called
quasiperiodic kicked rotor model indeed yielded values of ν

compatible with νAM [94], but ν � 1 significantly different
from νAM were reported in low-temperature electron transport
experiments in doped semiconductors [95,96]. Recently, val-
ues of ν � 1 have been also found in numerical simulations
and attributed to the differences between the physics of real
materials and that of the paradigmatic Anderson model and,
in particular, to the hybridization of conduction and impurity
bands [97]. In our optical problem, the impurity band (i.e.,
the modes appearing in the band gap due to disorder W 	= 0)
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is not clearly separated from the band of propagating modes
(i.e., the modes in the bands of the perfect crystal) either (see
Fig. 1). This may be a reason for the value of the critical
exponent ν different from νAM. Other possible reasons may
include a strong anisotropy of optical properties of a photonic
crystal near a band edge due to the fact that the first modes that
become allowed upon crossing a band edge propagate only in
certain directions and, of course, the vector nature of light of
which the full impact on Anderson localization still remains
to be understood.

To determine the precise value of ν and to obtain a better
estimation of its uncertainty, more accurate calculations are
required. Unfortunately, such calculations are difficult to per-
form using our approach. Indeed, the approach is based on
the diagonalization of large 3N × 3N non-Hermitian matrices
Ĝ and has an advantage of yielding the whole spectrum of
a single realization of an open disordered system at once.
The downsides of this are that (i) the approach does not
allow for focusing on a particular frequency range at a lower
computational cost and (ii) studying large systems (N � 104)
is computationally expensive. Because the localization tran-
sition takes place in a narrow frequency range, only a small
fraction of eigenvalues obtained by the numerical diagonal-
ization of Ĝ is actually used for the estimation of ν. Indeed,
in Fig. 6(d) we have chosen to analyze the behavior of ln gq

within an interval ln g(c)
q ± 2, which restricts the number of

eigenvalues of Ĝ used in the calculations of ωc and ν to less
than 1% of the total number of eigenvalues. Narrowing the in-
terval of considered ln gq only decreases the fraction of useful
eigenvalues whereas expanding this interval and using more
eigenvalues would correspond to leaving the critical regime
and hence is not desirable. Thus, significantly increasing the
statistical accuracy of calculations requires large amounts of
computations. Although this drawback of our approach is gen-
eral and complicates the analysis of fully random ensembles
of atoms as well [52,65], its impact is amplified here by the
particular narrowness of the frequency range in which the lo-
calization transition takes place and the low DOS in this range.
Indeed, for scalar waves in a random ensemble of point scat-
terers studied in Ref. [65], ln gq=0.05 grows from ln g(c)

q=0.05 − 1

to ln g(c)
q=0.05 + 1 in a frequency range δω/�0 � 0.08 whereas

in the photonic crystal studied here the same growth takes
place within δω/�0 � 0.02 [see Fig. 6(d)]. In addition, DOS
of the fully random system has no particular features in the
transition region, whereas in the photonic crystal, the local-
ization transition takes place near a band edge where DOS
is quite low [see Fig. 1(b)]. These factors limit the statistical
accuracy of our numerical data and make the high-precision
estimation of ν a heavy computational task.

The frequency range in which the quasimodes are localized
can be broadened and DOS in this range can be raised by
increasing the strength of disorder W . However, the space for
increase of W without closing the gap and losing localization
altogether is rather limited. As we show in Fig. 1, the gap
closes already for W = 0.2, and this closing is accompanied
by the disappearance of states localized due to disorder. We
illustrate this in Fig. 7(a) where the fifth percentile of con-
ductance is shown as a function of frequency for W = 0.2
and the same sizes L of the disordered photonic crystal as

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4
2.0

2.5

3.0

3.5

4.0

−2 −1 0 1 2

2.5

3.0
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4.0

FIG. 7. Fifth percentile ln gq=0.05 of the Thouless conductance as
a function of frequency ω for different diameters L of a disordered
crystal with disorder strength W = 0.2 (a) and a fully disordered
spherical ensemble of resonant atoms (b). The average number den-
sity of atoms is the same as in the photonic crystal analyzed in
Fig. 6. Vertical dashed lines show band edges of the ideal crystal.
The absence of crossings between curves corresponding to different
L confirms the absence of localization transitions in these systems.

in Fig. 6. Contrary to the latter figure, no crossings between
lines ln gq(ω, L) occur in Fig. 7(a), signaling the absence of
localization transitions. Moreover, the values of ln gq(ω, L)
in Fig. 7(a) are rather high: ln gq(ω, L) > 2 for all ω. This
means that at any frequency, less than 5% of g values ob-
tained for different atomic configurations are smaller than
exp(2) ≈ 7, which is incompatible even with the “weakest”
form of the Thouless localization criterion requiring that some
typical value of g [〈g〉, exp(〈g〉), median g, etc.] is less than 1.
Finally, another signature of the absence of localization is the
monotonous growth of ln gq with L at all frequencies, indicat-
ing that most probably, ln gq → ∞ in the limit of L → ∞, as
it should be for spatially extended modes.

Further increase of the strength of disorder W beyond W =
0.2 does not modify the situation qualitatively as the behavior
of the system gets closer to that of a fully random ensemble
of atoms studied previously [49]. The fully random limit is
illustrated in Fig. 7(b) that exhibits the same characteristic
features as Fig. 7(a) (absence of crossings between different
curves, large values of ln gq, and its monotonous growth with
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L) and hence confirms the previously discovered absence of
the localization of light in the fully random system [49].

The presence of localization only at weak disorder
highlights the important differences between localization phe-
nomena in disordered crystals and fully random media. As
it has been largely discussed in the literature starting from
the pioneering works of John [19,33,38], the localization in
a photonic crystal takes place due to an interplay of order
and disorder in contrast to the localization in a fully ran-
dom medium that is due to disorder only. Whereas localized
states may appear in a 3D random medium only when the
strength of disorder exceeds some critical value, even a weak
disorder introduces spatially localized modes in the band gap
of a disordered photonic crystal and the notion of critical
disorder does not exist. However, the possibility of reaching
localization at arbitrary weak disorder is counterbalanced by
the narrowness of frequency ranges inside the band gap in
which the density of states is large enough to allow for ob-
servation of the localization of light in an experiment or a
numerical simulation. Increasing disorder widens the relevant
frequency ranges but also tends to close the band gap and
hence to suppress the “order” part of the interplay between
order and disorder. A compromise is reached at some interme-
diate disorder strength that is sufficient to significantly affect
wave propagation at frequencies near band edges but not large
enough to close the band gap. For the atomic crystal consid-
ered in this work, such a compromise seems to be reached
around W = 0.1 for which the band gap remains open (see
Fig. 1) while localized states become visible (see Fig. 2).

The disappearance of localized modes with the increase of
disorder strength W allows for an additional insight about the
reasons behind the absence of Anderson localization of light
in a completely random 3D ensemble of point scatterers. In-
deed, recent work [55,98] has confirmed the initial suggestion
[49] that the resonant dipole-dipole coupling between scatter-
ers impedes the formation of spatially localized optical modes
in 3D. This explanation seems to be supported by the fact that
localized modes do arise in a photonic crystal where the dis-
tance 
r between any two scatterers (atoms) is always larger
than a certain minimal distance (a

√
3/4 for a diamond crystal

with a lattice constant a considered in this work) and hence
the strength of the dipole-dipole coupling between scatterers
that scales as 1/
r3 is bounded. The increase of W enhances
chances for two atoms to be closer, the minimum possible
distance between atoms being equal to (

√
3/4 − 2W )a in our

model. The probability for two neighboring atoms to get in-
finitely close because of disorder becomes different from zero
for W �

√
3/8 � 0.22. This estimation of disorder strength

for which dipole-dipole interactions should become partic-
ularly strong is reasonably close to the approximate value
W � 0.2 for which localized modes disappear [see Fig. 7(a)]
and the band gap closes (see Fig. 1). The closeness of the
two values suggests a relation between the near-field dipole-
dipole interactions, the photonic band gaps, and the spatial
localization of optical modes although the exact nature of this
relation still remains to be established. Although our analysis
supports the arguments based on Eq. (1) and suggesting that
the underlying crystalline structure facilitates the localization
phenomenon due to the suppression of DOS near band edges,
it also highlights the importance of yet another feature of

a crystal: the existence of a minimal distance between two
scattering units (atoms or, more generally, “particles”). At
the same time, the impact of the crystalline structure of the
atomic lattice on the spatial localization of optical modes does
not reduce to keeping neighboring atoms far apart from each
other. One of the consequences of the crystalline structure
is the fact that in our photonic crystal, the localized modes
are redshifted with respect to the atomic resonance frequency
(ω < ω0) in contrast to the blueshifted localized modes that
arise in a fully disordered ensemble of atoms in a strong
magnetic field [51,52].

A final remark concerns the spatially extended quasi-
modes in the middle of the band gap, corresponding to large
ln gq=0.05 � 2 between (ω − ω0)/�0 � −0.97 and −0.57 in
Fig. 6. As we have illustrated already in Fig. 3, most of these
quasimodes are bound to the surface of the crystal. Their
statistical weight is thus expected to decrease with L roughly
as the surface-to-volume ratio 1/L, which tends to zero when
L → ∞ but remains significant in our calculations restricted
to rather small L. Nevertheless, we clearly see from Figs. 6(a)–
(c) that the frequency range in the middle of the band gap,
where ln gq=0.05 takes large values ln gq=0.05 � 2 and remains
a globally growing function of L, shrinks as L increases. No
transition point where curves ln gq corresponding to different
L cross can be identified around (ω − ω0)/�0 � −0.97 or
−0.57, which is especially clear in Fig. 6(b) whereas is less
obvious in Fig. 6(c) due to much stronger fluctuations of the
numerical data. We note that the above picture of surface
modes playing less and less important role as L increases is
certainly only a rough approximation to the complete explana-
tion of the evolution of the spectrum in the middle of the band
gap. Nontrivial features that are already seen from our results
and call for explanation include the nonmonotonous behavior
of ln gq with L near the high-frequency end of the interval
−0.97 � (ω − ω0)/�0 � −0.57 [note the red line that crosses
the green line around (ω − ω0)/�0 � −0.7 in Fig. 6(a)]
and much stronger fluctuations around (ω − ω0)/�0 � −0.57
than around (ω − ω0)/�0 � −0.97 [compare Figs. 6(c) and
6(b)]. Unfortunately, a study of these puzzling features is
difficult to perform using our numerical method because it
mobilizes significant computational power to obtain the full
spectrum of the system of which only a very small fraction
[i.e., a small number of eigenvalues �m of the matrix (3)] fall
in the band gap where the density of states is low.

VI. CONCLUSIONS

We performed a thorough theoretical study of the local-
ization of light in a 3D disordered photonic crystal made of
two-level atoms. The atoms are first arranged in a diamond
lattice with a lattice constant a and are then slightly displaced
in random directions by random distances up to Wa. We show
that spatially localized quasimodes appear near edges of the
band gap of the ideal crystal when the disorder strength is
W = 0.1 or smaller. W = 0.2 or larger leads to the closing of
the band gap and the disappearance of localized states. The
finite-size scaling analysis of the transition between extended
and localized states near the high-frequency edge of the band
gap suggests that the critical (localization-length) exponent of
the transition ν is in the interval 0.8–1.1, which is different
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from νAM � 1.57 corresponding to the Anderson transition of
the 3D orthogonal universality class to which the investigated
transition might be expected to belong because of the absence
of any particular symmetry-breaking mechanisms and, in par-
ticular, the preserved time-reversal symmetry.

From the practical standpoint, arranging atoms in a dia-
mond lattice may be a realistic alternative to subjecting them
to strong magnetic fields in order to reach the localization
of light in cold-atom systems. Indeed, atomic lattices can be
readily designed by loading atoms in optical potentials created
by interfering laser beams with carefully adjusted phases and
propagation directions [99,100]. Some degree of disorder may
arise in such lattices due to experimental imperfections; ways
to create additional, controlled disorder have been largely
explored in recent years [45]. Calculations presented in this
work provide quantitative estimates for disorder strengths and
frequency ranges for which localized quasimodes should ap-
pear in lattices of cold atoms featuring a Jg = 0 → Je = 1
transition. Examples of appropriate chemical elements for
vapors of which laser-cooling technologies are readily

available include strontium (Sr) or ytterbium (Yb). Multiple
scattering of light in large ensembles of Sr atoms has been
already reported [101] and high atomic number densities have
been reached in experiments with Yb [102]. In addition, some
of our conclusions may hold for atomic species with more
complicated level structure, which may be easier to manipu-
late and control in an experiment (e.g., rubidium). This opens
a way toward the experimental observation of phenomena
reported in this work.
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