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Possible antiferroelectric-to-ferroelectric transition and metallic antiferroelectricity
caused by charge doping in PbZrO3
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Using linear-response density functional calculations we study how the soft modes at both the zone center and
the zone boundary are influenced by charge doping in cubic PbZrO3. We find (i) upon the electron doping of
n = −0.5 per unit cell, the soft-mode frequency at zone-center � becomes considerably lower than that at the
zone-boundary R, showing that electron doping may turn antiferroelectric PbZrO3 into ferroelectric. (ii) On the
other hand, when the hole is doped into PbZrO3, the soft mode at R or M remains to be the lowest in frequency,
and therefore antiferroelectric instability is robust and persists after hole doping. Since hole doping makes
PbZrO3 metallic, the coexistence of metallicity and antiferroelectricity demonstrates the feasibility of metallic
antiferroelectricity. (iii) Electron doping and hole doping are revealed to impact the atom-atom interaction very
differently. The origin responsible for these charge-doping phenomena is provided.
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I. INTRODUCTION

Antiferroelectrics (AFEs) are of significant importance
both fundamentally and technologically [1,2]. Fundamentally,
it is a long-standing challenge to formulate theoretically the
antiferroelectric phase transitions [1,3,4]. Unlike ferroelectric
phase transition, it is nontrivial to define an order parameter
in AFE phase transformations. Furthermore, AFE materials
exhibit multiple structural instabilities at different regions of
the phonon Brillouin zone [5–7], and the intriguing compe-
tition among different instabilities often leads to unexpected
structure phases and new phenomena [5–10]. Technologically,
AFEs could drastically enhance the energy storage [11,12]
by possessing double hysteresis and high saturated polariza-
tion under external electric fields [13]. Also, antiferroelectric
PbZrO3 can be alloyed with ferroelectric PbTiO3 to form
the morphotropic phase boundary between the rhombohedral
phase and the tetragonal phase of Pb(ZrTi)O3 [14,15], which
is critical in producing the ultrahigh electromechanical re-
sponse caused by polarization rotation [16–18].

Recently, another and separate subject is attracting much
attention in the field of ferroelectricity, that is, charge dop-
ing in ferroelectrics (FEs). Ferroelectricity is caused by the
delicate balance of long-range (LR) and short-range (SR)
interactions [19–21]. Charge doping profoundly reduces the
LR interaction in FEs by effective charge screening, which
may entirely eliminate the polar instability and ferroelectric-
ity [22]. Metallicity and polar distortion thus mutually repel,
and are not anticipated to coexist in the same material [23].
That explains why the coexistence of polar instability and
metallicity, such as in polar metals proposed by Anderson and
Blount [24], is an intriguing phenomenon. Polar metals were
indeed discovered in experiments, where metallic LiOsO3 was
shown to undergo a ferroelectriclike structural transformation
when temperature is lowered [25]. Another common route to

generate polar metals is by charge doping in FEs [26,27].
While the origin of polar metals is still unsettled, previous
studies have pointed to the possibilities of short-range inter-
action [26,28,29], the Jahn-Teller effect [27], the decoupling
of the electron states near the Fermi level from ferroelectric
displacements [30,31], the meta-screening effect [32], and the
charge-induced strong mode-mode coupling [33].

Compared to charge doping in FEs, charge doping in AFEs
is much less understood and potentially more interesting,
since in AFEs there are strong competing structural insta-
bilities at zone boundaries as well as at zone center [5–7],
and the subject on how charge doping affects these multi-
ple instabilities and their competitions is intriguing. Indeed,
many questions of profound relevance remain to be answered
regarding charge doping in AFEs:

(i) How does charge doping alter the antiferroelectricity?
Will it drastically strengthen, or weaken, the AFE instability?

(ii) Is there any interesting possibility that charge doping
may turn antiferroelectricity into ferroelectricity?

(iii) How can charge doping be used to tune the relative
instability of soft modes at different parts of the Brillouin
zone, and thus potentially control the structural phases?

(iv) How does the charge doping alter the atom-atom in-
teraction in AFEs? Answers to these questions not only yield
a better understanding of the charge-doping physics, but also
provide insight on how to engineer AFE materials for better
functionalities.

In this paper we perform first-principles linear response
calculations to investigate how charge doping may alter soft
modes and structural instabilities in (centrosymmetric) cubic
PbZrO3, which is an important and prototypical antiferro-
electric material. Structural instabilities both at the zone
center and at the zone boundary are examined. We find that
doping electrons and doping holes in PbZrO3 have very dif-
ferent effects. Under hole doping, PbZrO3 remains to be
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strongly AFE while being metallic, and thereby the system
becomes a metallic antiferroelectric. On the other hand, elec-
tron doping weakens the antiferroelectricity and enhances
the ferroelectricity. As a consequence, electron doping may
cause an interesting phase transition by turning antiferroelec-
tric PbZrO3 into ferroelectric. We further unveil that charge
doping could significantly change the atom-atom interaction
in PbZrO3. These results show that there is rich and interesting
physics to learn about charge doping in AFEs.

II. THEORETICAL METHODS

The structural instability under charge doping is investi-
gated theoretically by determining the properties of the soft
modes throughout the phonon Brillouin zone in cubic PbZrO3.
When a solid is in the unstable centrosymmetric structure
phase, soft modes with imaginary frequencies occur. By com-
paring the soft modes at the zone center (which often lead
to ferroelectricity) and at the zone boundary (which may
lead to antiferroelectricity) in terms of their frequencies, one
may infer which structural instability is likely to prevail [6].
Obviously soft modes alone may not fully determine the struc-
ture phase, since other factors such as strain-mode coupling
and multimode interaction may play roles when the solid is
relaxed according to the soft modes [5,7]. It is also worth
pointing out that soft modes at the zone boundary do not
always lead to antiferroelectricity; for instance, the soft modes
at the zone boundary may lead to the rotation of oxygen
octahedra rather than antiferroelectricity.

We use the density-functional perturbation theory (DFPT)
to calculate the frequencies and phonon eigendisplacements
of lattice vibration [34–36]. When atoms vibrate, the shifts
of atoms induce a deformation potential �V (r) of bare ions,
which is treated as perturbation. The linear response of elec-
tron state �ψi(r) is computed by solving the Sternheimer
equation [34,35]

(Hsc f − εi )|�ψi〉 = −(�Vsc f − �εi )|ψi〉, (1)

where Hsc f is the Kohn-Sham Hamiltonian, εi is the
eigenvalue of Hsc f , �Vsc f (r) = �V (r) + e

∫
�ρ(r′)
|r−r′| dr′ +

dvxc (ρ)
dρ

|
ρ=ρ(r)

�ρ(r) is the first-order correction to the Vsc f (r)

potential, and �εi = 〈ψi|�Vsc f (r)|ψi〉 is the first-order cor-
rection to eigenvalue εi.

We consider a five-atom cubic cell to study soft modes.
An alternative approach is to use the centrosymmetric atom
positions in orthorhombic Pbam structure of

√
2 × 2

√
2 × 2

unit cell with 40 atoms [37]. For the centrosymmetric phase,
two different approaches are equivalent due to the folding
effect of phonon bands [38]. We would also like to point out
that, by doping an electron or hole in a five-atom bulk cell,
the system becomes metallic by construction. There is a pos-
sibility that charge doping might introduce defects, polarons,
or charge density waves, which are not considered here since
they require large supercells.

We add (or remove) a given amount of electron per five-
atom unit cell, denoted as n, to PbZrO3 in order to study
the electron doping (or hole doping), where n is negative
for electron doping and positive for hole doping. n is cho-
sen to range from −0.5 to +0.5 per unit cell. To avoid the

diverging Coulomb energy in a charged system with period-
icity, a compensating uniform charge jellium is added [39].
It should be pointed out that charge doping may alter the
lattice constant and volume of cubic PbZrO3. For each charge-
doping concentration n, we optimize the lattice constant by
minimizing the total energy while constraining the system to
be cubic.

We have also examined whether charge doping will alter
the cubic shape of the five-atom cell by performing calcu-
lations to optimize the cell shape under a given n. More
specifically, we start with an orthorhombic cell, and constrain
atoms to be at centrosymmetric positions (since our purpose
is to investigate the soft modes). Then we optimize the cell
shape using the stress tensor. We find that, for n = −0.5 and
n = +0.5, the cell shape is relaxed to the cubic structure,
which justifies to some extent the optimization of cell volume
while constraining the cubic symmetry.

Technically the first-principles density functional theory
(DFT) within the local-density approximation (LDA) is em-
ployed [40]. Computations are performed using Quantum
Espresso [41,42]. Troullier-Martins pseudopotentials are used
to mimic the effects of core electrons [43]. Details of pseu-
dopotentials were described in Ref. [44]. The cutoff energy
for the plane-wave expansion of single-particle Kohn-Sham
orbitals is 80 Ry, which is tested to be sufficient. Monkhorst-
Pack k-point mesh of 6 × 6 × 6 is used.

III. RESULTS AND DISCUSSIONS

A. Undoped PbZrO3

Since undoped PbZrO3 is technologically important it-
self and is of considerable relevance to readers, we first
describe our calculation results for undoped PbZrO3. For cen-
trosymmetric (cubic) PbZrO3 without doping (i.e., n = 0), our
total-energy calculations yield a lattice constant of a = 4.10 Å
and a bulk modulus of B = 183 GPa. These values agree
well with the previous result of a = 4.12 Å and B = 180
GPa obtained from LAPW calculations [5]. Our theoretical
lattice constant is slightly smaller than the experimental value
(4.15 Å) [45]. The underestimation of our theoretical lat-
tice constant may drive the phonon modes harder, and will
slightly modify the charge carrier concentration that causes
the AFE-to-FE phase transition to be described below. Our
linear-response calculations of cubic PbZrO3 produce a soft-
mode frequency ω� = −138 cm−1 at the zone center � and
ωR = −191 cm−1 at the zone boundary R. Here the imagi-
nary frequencies of soft modes are denoted as negative values
throughout the paper. These frequencies are in accord with the
values ω� ≈ −140 cm−1 and ωR ≈ −199 cm−1, respectively
[6]. Furthermore, in our calculations, the high frequency di-
electric ε∞ constant of undoped PbZrO3 is 6.88 while the
effective Z33 charges are 3.91, 5.92, −2.48, −2.48, and −4.85,
respectively, for Pb, Zr, O1, O2, and O3, where O3 is directly
beneath Zr along the c axis. These Z33 values agree well with
the results in Ref. [46]. Therefore our calculations are rather
reliable.

It worths pointing out that, after doped by electron or hole,
PbZrO3 then becomes metallic. In the modern theory of polar-
ization [47,48], the rigorous definition of electric polarization
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FIG. 1. Phonon dispersions of PbZrO3 under three different dop-
ing concentrations: (a) n = 0.0 (undoped, the middle panel), (b) n =
−0.5 (electron doping, the left panel), and (c) n = +0.5 (hole dop-
ing, the right panel). The cubic Brillouin zone and high-symmetry �,
X , M, and R points are shown in the inset.

hinges on the adiabatic connection between ferroelectric state
and paraelectric state via a path in which the system must re-
main to be insulating. The electric polarization, Born effective
charges, and dielectric constant are thus ill-defined in metallic
systems, so is the nonanalytical contribution in the theory of
lattice dynamics [36]. Consequently, the longitudinal-optical
(LO) phonon as well as the longitudinal-optical/transverse-
optical (LO/TO) splitting are not well defined and cannot be
calculated in metallic systems [49]. In order to make a valid
comparison in phonon dispersion between undoped PbZrO3

(which is insulating) and doped PbZrO3 (which is metallic),
we thus should not include the LO/TO splitting in phonon
calculations for undoped PbZrO3. We recognize that, when
metallic heterostructures exhibit a strong anisotropy in Fermi
surface, an interesting scheme was proposed to calculate the
electric polarization [50].

The full-zone phonon dispersion of undoped PbZrO3,
obtained from the linear-response calculations, is given in
Fig. 1(a). The plotted dispersion is along the path � →
X → M → � → R → M, where the reciprocal-space coor-
dinates of the high-symmetry phonon wave vectors are (in
units of 2π

a ) �(0, 0, 0), X (1/2, 0, 0), M(1/2, 1/2, 0), and
R(1/2, 1/2, 1/2).

Figure 1(a) shows that (i) the soft mode at R has the lowest
frequency (−191 cm−1). The soft mode at zone-center � is
significantly higher in frequency (−138 cm−1). This is con-
sistent with the fact that antiferroelectric instability prevails
in undoped PbZrO3 [5,7]. (ii) The soft-mode frequency at M
(−185 cm−1) is comparable with that at R, and the dispersion
of the lowest phonon band is notably flat along the line from
R to M in Fig. 1(a). Furthermore, the lowest-frequency soft-
mode dispersions are rather steep along the M → X , M → �,
and R → � directions. (iii) The whole phonon dispersion in
Fig. 1(a) can be roughly separated into two frequency regions:
one is below 400 cm−1 (which will be denoted as “region I”
and which includes many different phonon bands), and the

other is above 400 cm−1 (which will be denoted as “region
II”).

B. Electron doping

When a concentration of 0.5 electron per unit cell (i.e.,
n = −0.5) is doped into PbZrO3, the phonon dispersion of
electron-doped PbZrO3 is depicted in Fig. 1(b). Electron dop-
ing of n = −0.5 per bulk cell will produce a charge concentra-
tion of 7 × 1021e/cm3. By contrasting the phonon dispersion
of electron-doped PbZrO3 [Fig. 1(b)] with that of undoped
PbZrO3 [Fig. 1(a)], we see several marked differences.

(i) First, Fig. 1(b) shows that, under electron doping of n =
−0.5, the lowest-frequency soft mode in PbZrO3 is located
at the zone-center �. This is in difference with Fig. 1(a) for
undoped PbZrO3 where the lowest-frequency soft mode is at
zone-boundary R.

(ii) Furthermore, the soft modes at R (or M) in Fig. 1(b)
are significantly higher in frequency than at �. The relatively
large frequency difference between � and R signals that, un-
der n = −0.5, the FE instability at � will be dominating in
PbZrO3, while the instability at R or M is only secondary. This
is interesting and it reveals that, under n = −0.5, PbZrO3 may
become ferroelectric (not antiferroelectric). We thus predict a
possibility that electron doping could cause a AFE-to-FE tran-
sition which turns antiferroelectric PbZrO3 into ferroelectric.
Furthermore, we find that the dominance of instability at �

can be further tuned by doping more electrons into PbZrO3.
In-plane strain may also turn PbZrO3 into ferroelectric [8].

(iii) Moreover, in Fig. 1(b), the frequencies of the lattice
vibration in region I vary from −100 to 300 cm−1 under n =
−0.5, which amounts to a frequency range of about 400 cm−1.
This frequency range of region I is considerably reduced, as
compared to the counterpart range of 600 cm−1 in Fig. 1(a)
for undoped PbZrO3 (where frequencies vary from −200 to
400 cm−1 in region I). Therefore, the electron doping alters
both soft modes and nonsoft modes in a significant manner.
It may worth mentioning that the frequency range of phonon
dispersion is relevant since it is related to the strength of
atom-atom interaction, similar to the fact that the bandwidth
in electron band structure is correlated with the strength of
chemical bonding.

Meanwhile, for phonons in region II [i.e., when frequencies
are above 300 cm−1 in Fig. 1(b)], we observe that the frequen-
cies in region II under n = −0.5 are notably lower than those
in Fig. 1(a) for undoped PbZrO3. Namely, the frequencies in
region II shift down upon electron doping.

We have also performed calculations for another electron-
doping concentration at n = −0.25. The soft-mode frequen-
cies at high-symmetry �, X , M, and R points for n = −0.25,
in addition to n = −0.5, are given in Table I and are plotted
in Fig. 2. Figure 2 (also Table I) shows that, at n = −0.25,
the soft-mode frequencies ω� , ωR, and ωM are comparable,
and the competition and interplay of these soft modes will
be strong. In addition, Fig. 2 reveals that, for electron dop-
ing (i.e., when n is negative), the soft-mode frequency at
X does not change significantly, while frequencies at R and
M increase drastically as n becomes more negative. As a
consequence, at n = −0.5, the frequency ordering follows the
sequence ω� < ωM < ωX < ωR, and the frequency at R or M
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TABLE I. Phonon frequencies of the lowest soft modes at �,
X , M, and R in PbZrO3 under different doping concentration n. All
frequencies are in units of cm−1.

n ω� ωX ωM ωR

−0.50 −98 −51 −56 −48
−0.25 −111 −48 −116 −122
0.00 −138 −55 −185 −191
+0.25 −147 −47 −220 −223
+0.50 −180 −126 −255 −243

is only about half of that at �, as informed by Table I. The
structural instability caused by ω� at the zone-center � is thus
predominating.

To obtain the microscopic insight on which atoms are re-
sponsible for causing the ferroelectric instability under n =
−0.5, we examine the phonon eigendisplacement of the soft
mode at �. The phonon eigendisplacement |uiα

m 〉 at wave vec-
tor q is related to the phonon eigenvector |εiα

m 〉 by |ul iα
m 〉 =

1√
Mi

|εl iα
m 〉eiq·Rl , where Mi is the mass of atom i, α is the

direction index, m is the mode index, and Rl is a lattice
vector. Since the three Cartesian directions are equivalent
in cubic PbZrO3, we will focus on the soft mode vibrating
along the z axis. We find that, under n = −0.5, the nor-
malized phonon eigendisplacement of the soft mode at � is
(−0.18, 0.11, 0.61, 0.61, 0.46)z in the sequence of Pb, Zr,
O1, O2, and O3 atoms, where subscript z means that the vibra-
tion is along the z axis, and atom O3 is located directly beneath
the Zr atom along the z axis. The eigendisplacement of this
soft mode at � is shown in Fig. 3. From the eigendisplacement
in Fig. 3, we see that Pb and three O atoms are vibrating along
opposite directions, showing that the soft mode is indeed fer-
roelectric. Meanwhile, Zr and O atoms vibrate along the same
direction, and the Zr-O relative motion is thus not responsible
for the ferroelectricity. Therefore, ferroelectricity in PbZrO3

under n = −0.5 is mainly caused by the opposite motions of

FIG. 2. Soft-mode frequencies at high-symmetry �, X , M, and R
points as a function of charge-doping concentration n. n is negative
for electron doping, and positive for hole doping.

FIG. 3. The eigendisplacement of the soft mode at � in electron-
doped PbZrO3 under n = −0.5.

Pb and O. The eigendisplacement further reveals that the soft
mode at � in PbZrO3 under n = −0.5 is a Last mode [51,52],
which differs from BaTiO3 and PbTiO3 where the soft mode
at � is a Slater mode [53] and ferroelectricity predominately
comes from the opposite motion of Ti-O atoms.

To confirm that the AFE-to-FE transition will indeed occur
in AFE PbTiO3 by electron doping, we have performed calcu-
lations by starting with the Pbam structure of antiferroelectric
PbZrO3 with 40 atoms per supercell, doping the system with
four electrons per supercell (which is equivalent to n = −0.5
per bulk cell), and optimizing the atomic positions and cell
shape. Then we use the optimized atomic positions and deter-
mine the relative atomic displacements with respect to those in
the centrosymmetric cubic structure. We find that, after dop-
ing, the average displacements are 0.25, 0.02, and −0.15 Å for
Pb, Zr, and O atoms, respectively. In Pbam structure of AFE
PbZrO3, the supercell is a

√
2 × 2

√
2 × 2 multiple of bulk

cell. The above displacements are along the lattice vector of
length 2

√
2. The results show that (i) the average displace-

ment of Pb atoms is large and nonzero, in contrast to the
AFE structure where the average displacement of Pb atoms
is zero, and (ii) the Pb atoms and the O atoms move along
opposite directions, indicating that antiferroelectric PbZrO3

indeed becomes ferroelectric after electron doping.
The finding of the AFE-to-FE transition by electron doping

in PbZrO3 is interesting. We now provide an explanation to
understand the origin why electron doping causes the tran-
sition. We find that the reason is rather simple, and can
be attributed to the lattice expansion triggered by electron
doping. In Fig. 4 the lattice constant of cubic PbZrO3 as a
function of doping concentration n is depicted, as determined
by LDA optimization of total energy while constraining the
cubic symmetry. Figure 4 reveals that, when electrons are
doped into PbZrO3 (i.e., when n is negative), PbZrO3 expands
and the lattice constant increases. Quantitatively, the lattice
constant (a) is calculated to be 4.100, 4.185, and 4.271 Å,
respectively, for n = 0.0, n = −0.25, and n = −0.50. The
lattice constant is found to expand about 4% from n = 0 to
n = −0.5, which is rather substantial. It is known that larger
cell volume tends to favor ferroelectricity while inhibiting
the antiferroelectric distortion [54]. Furthermore, we have

134118-4



POSSIBLE ANTIFERROELECTRIC-TO-FERROELECTRIC … PHYSICAL REVIEW B 102, 134118 (2020)

FIG. 4. LDA-optimized lattice constant a (solid squares, using
the left vertical axis) and calculated bulk modulus B (empty circles,
using the right vertical axis) of PbZrO3 as a function of charge-
doping concentration n.

computed the phonon frequencies for n = −0.5 while keeping
the lattice constant to be the same as undoped PbZrO3, and
we find that the soft-mode frequencies ω� = −83 cm−1 and
ωR = −122 cm−1. In other words, if the lattice constant is
artificially assumed to be unchanged, the AFE instability will
remain to be predominating at n = −0.5. Therefore, the lattice
expansion caused by electron doping is indeed responsible for
turning antiferroelectric PbZrO3 into ferroelectric.

We next attempt to explain why electron doping may
cause the frequency width of the phonon bands in region I
to shrink, as observed in the above by comparing Fig. 1(b)
with Fig. 1(a). For this purpose we recognize that the width
of phonon bands is related to the atom-atom interaction, sim-
ilar to the fact that the width of electron bands is related to
electron-electron interaction. The width of the phonon bands
in region I can be attributed to the decrease in interatomic
interaction induced by electron doping. To confirm this, we
calculate the bulk modulus of cubic PbZrO3 at its optimized
lattice constant under different electron-doping concentra-
tions, since bulk modulus is related to the overall strength
of interatomic interaction. The bulk modulus of PbZrO3 is
plotted as the empty circles in Fig. 4, showing that when
n is negative, the bulk modulus declines substantially, from
183 GPa at n = 0 to 136 GPa at n = −0.5. Therefore we
find that the atom-atom interaction is indeed weakened by
electron doping, which leads to the reduction of the frequency
width of phonon bands in region I. Furthermore, for lattice
vibration in region II [with frequencies larger than 300 cm−1

in Fig. 1(b)], these vibrations mainly originate from oxygen
atoms, and the weakening of atom-atom interaction shall also
lower the frequencies in region II, which is consistent with the
calculation results in Fig. 1(b) as compared to Fig. 1(a).

Meanwhile we notice that the bandwidth of region II in
Fig. 1(b) is slightly larger than in Fig. 1(a). One possible rea-
son that the electron doping slightly enlarges the bandwidth of
region II is the following. In region II the maximum phonon
frequency ωmax is located at R, while the minimum frequency
ωmin is located at M as shown in Fig. 1(b). The difference

between ωmax and ωmin determines the phonon bandwidth. By
examining the phonon eigendisplacements, we find that, at
ωmax, the phonon eigendisplacements are identical for n = 0
and for n = −0.5 due to symmetry. However, at ωmin, there is
a weaker participation of Zr at n = −0.5 (with a Zr amplitude
of merely 0.018) than at n = 0 (with a Zr amplitude of 0.102).
The weaker participation of Zr at n = −0.5 may be explained
by the fact that part of the doping electrons occupy the Zr
site, which causes an additional Coulomb repulsion between
Zr and O atoms. The repulsion lowers the frequency ωmin in
Fig. 1(b), and makes the phonon bandwidth larger in Fig. 1(b)
than in Fig. 1(a).

C. Hole doping

The phonon frequencies at high-symmetry �, X , M, and
R points under two different hole doping concentrations (i.e.,
n = +0.25 and n = +0.5) are given in Table I and are plotted
in Fig. 2. First we need to point out that, under hole doping of
n = +0.25, PbZrO3 becomes metallic, since the Fermi level
is located within the valence bands and there is mobile hole
available. Table I shows that, under n = +0.25, the soft-mode
frequency at R continues to be much lower than that at �, and
the AFE instability continues to dominate, which is similar
to the undoped case of n = 0. This similarity indicates that
PbZrO3 remains to be antiferroelectric under hole doping. Our
calculations thus reveal that metallicity and antiferroelectric-
ity coexist in hole-doped PbZrO3, or in other words, PbZrO3

under n = +0.25 is a metallic antiferroelectric. It is likely
that “metallic antiferroelectrics” may stimulate widespread
interest in the future as “metallic ferroelectrics.”

Furthermore, several observations of important relevance
can be made from Fig. 2 about hole doping. As hole-doping
concentration increases from n = 0 to n = +0.25 and finally
to n = +0.5 in Fig. 2, we see (i) the soft-mode frequencies
at R, M, and � become more negative, and therefore we
find that, as a general rule, hole doping tends to enhance the
structural instability which includes the AFE instability at R
as well as the FE instability at �. (ii) As n increases, ωM

decreases slightly faster than ωR. As a result, at n = +0.5,
ωM becomes the lowest-frequency soft mode. (iii) In Fig. 2,
the soft-mode ordering in terms of frequency, at n = +0.5 of
hole doping, is ωM < ωR < ω� < ωX , which is different from
the ordering sequence ω� < ωM ≈ ωX ≈ ωR at n = −0.5 of
electron doping, showing that electron doping and hole doping
produce very different effects.

It is no surprise that hole doping and electron doping
should generate different effects. In PbZrO3, the states at the
low conduction bands are mainly contributed by Pb 6s orbitals
and Zr 4d orbitals, while the states at the upper valence bands
are mainly contributed by O 2p orbitals [5]. Therefore, the
doped electrons will largely stay at Pb and Zr sites, and in
contrast, the doped holes will largely stay at the O sites, which
in turn produces dissimilar impact on how atoms interact with
the others.

The full-zone phonon dispersion of PbZrO3 under n =
+0.5 of hole doping is depicted in Fig. 1(c). Figure 1(c) shows
that (i) the soft-mode frequency at R (also M) is significantly
lower than at other phonon wave vectors (such as at �), con-
firming that the dominating structural instability is at R (and
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M) under hole doping. (ii) Near zone-center �, several phonon
bands anticross with each other, for instance, at frequencies
of about −125 and +150 cm−1, leading to the characteristic
waterfall-like phonon dispersion. The waterfall-like disper-
sion is caused by the mode-mode interaction [55,56]. (iii) By
comparing Fig. 1(c) with Fig. 1(a), we see that hole doping
increases significantly the frequencies in region II. Mean-
while, the width of phonon bands in region I is comparable
in Fig. 1(c) and in Fig. 1(a).

We next examine how hole doping may alter the atom-
atom interaction. We realize that there are two competing
factors by which hole doping may influence the interaction
among atoms. As the first competing factor, we find that hole
doping shrinks the lattice constant. To illustrate this, we plot
the optimized lattice constant under different amount of hole
doping in Fig. 4. Figure 4 reveals that, when n is positive,
lattice constant is reduced from a = 4.100 Å at n = 0.0 to a =
3.977 Å at n = +0.50, telling us that the interatomic distances
are considerably shortened by the hole doping. This will
increase the short-range (SR) atom-atom interaction. As the
second competing factor, we recognize that the hole doping
may weaken the long-range (LR) interaction, since the doping
allows mobile holes to be available in the valence bands,
which will screen the LR Coulomb interaction. Competition
between the enhanced SR interaction and the weakened LR
interaction in hole-doped PbZrO3 breaks the delicate balance
which previously exists in undoped PbZrO3, and the new
balance makes PbZrO3 under hole doping an interesting topic
to tune the microscopic interaction in AFEs. To examine how
the total (SR + LR) interaction is affected by hole doping,
we compute the bulk modulus under different hole-doping
concentration n, and the result is shown by the dash line in
Fig. 4. Figure 4 reveals that, when n increases from 0 to +0.5,
the bulk modulus increases from 183 to 215 GPa. Therefore,
the total (SR + LR) interaction among atoms in PbZrO3 is
significantly enhanced by hole doping.

We have also calculated the band structure of PbZrO3

under n = +0.5. The obtained band structure is shown in
Fig. 5(c), in comparison with those of undoped system
[Fig. 5(a)] and under electron doping of n = −0.5 [Fig. 5(b)].
For undoped PbZrO3, we find that it has a direct band gap of
2.37 eV at X [Fig. 5(a)], which is close to the band gap of
2.34 eV obtained from LAPW calculations [5]. Under elec-
tron doping of n = −0.5, the band gap of PbZrO3 becomes
indirect between CBM at X and VBM at M, and the indirect
gap is 2.14 eV [Fig. 5(b)]. Under hole doping of n = +0.5, the
band gap is found to be 2.67 eV and is direct at X [Fig. 5(c)].

IV. CONCLUSIONS

We have performed first-principles linear response calcu-
lations to investigate the influence of electron doping and
hole doping on the structural instability in technologically
important antiferroelectric PbZrO3. Our main findings are
summarized as follows.

(i) Electron doping is shown to possibly turn antiferroelec-
tric PbZrO3 into ferroelectric. The transition occurs around
n = −0.25. The origin of this AFE-to-FE transition is simple,
and it results from the lattice expansion induced by elec-
tron doping. The lattice expansion causes the soft mode at

FIG. 5. Electronic band structures of PbZrO3 under three differ-
ent doping concentrations: (a) n = 0.0 (undoped, the middle panel),
(b) n = −0.5 (electron doping, the left panel), and (c) n = +0.5
(hole doping, the right panel). The Fermi energy is set to be zero
in each band structure.

the zone-center � to possess a significantly lower frequency
than at zone boundary, which disfavors the antiferroelectric
distortion at the zone boundary and favors the ferroelectricity
at the zone center.

(ii) Microscopically, ferroelectricity in PbZrO3 under elec-
tron doping n = −0.5 is associated with the opposite motions
of Pb and O atoms. In contrast, the off-center displacements of
Zr and O atoms are along the same direction. In other words,
the soft mode which causes ferroelectricity in electron-doped
PbZrO3 is the Last mode, which differs from PbTiO3 and
BaTiO3 where the soft mode is largely the Slater mode.

(iii) We further reveal that, under hole doping, antiferro-
electricity persists and is robust in PbZrO3. Since hole doping
makes the system metallic, our calculations thus suggest that
it is possible for hole conductivity (metallicity) and antifer-
roelectricity to coexist in the same system. The interplay of
metallicity and antiferroelectricity in PbZrO3 is an interesting
new subject.

(iv) Electron doping is shown to weaken the atom-atom
interaction as demonstrated by the significant reduction in the
bulk modulus. In contrast, the hole doping increases the bulk
modulus, and may cause a new balance in atomic interaction
by enhancing the short-range interaction and weakening the
long-range interaction.

These results show that there is rich and interesting physics
to emerge by charge doping in antiferroelectrics. We hope that
this study will stimulate more theoretical and experimental
interest in this research field.

ACKNOWLEDGMENTS

This work was partially supported by the Office of Naval
Research. Computations were performed on the computing
facilities provided by the Arkansas High-Performance Com-
puting Center, supported by NSF.

134118-6



POSSIBLE ANTIFERROELECTRIC-TO-FERROELECTRIC … PHYSICAL REVIEW B 102, 134118 (2020)

[1] K. M. Rabe, Functional Metal Oxides (Wiley-VCH, Berlin,
2013).

[2] M. E. Lines and A. M. Glass, Principles and Applications
of Ferroelectrics and Related Materials (Clarendon, Oxford,
1979).

[3] C. Kittel, Phys. Rev. 82, 729 (1951).
[4] P. Toledano and M. Guennou, Phys. Rev. B 94, 014107 (2016).
[5] D. J. Singh, Phys. Rev. B 52, 12559 (1995).
[6] P. Ghosez, E. Cockayne, U. V. Waghmare, and K. M. Rabe,

Phys. Rev. B 60, 836 (1999).
[7] J. Iniguez, M. Stengel, S. Prosandeev, and L. Bellaiche, Phys.

Rev. B 90, 220103(R) (2014).
[8] S. E. Reyes-Lillo and K. M. Rabe, Phys. Rev. B 88, 180102(R)

(2013).
[9] A. K. Tagantsev, K. Vaideeswaran, S. B. Vakhrushev, A. V.

Filimonov, R. G. Burkovsky, A. Shaganov, D. Andronikova,
A. I. Rudskoy, A. Q. R. Baron, H. Uchiyama, D. Chernyshov,
A. Bosak, Z. Ujma, K. Roleder, A. Majchrowski, J.-H. Ko, and
N. Setter, Nat. Commun. 4, 2229 (2013).

[10] B. K. Mani, S. Lisenkov, and I. Ponomareva, Phys. Rev. B 91,
134112 (2015).

[11] X. Hao, J. Adv. Dielectr. 3, 1330001 (2013).
[12] X. Tan, C. Ma, J. Fredrick, S. Beckman, and K. G. Weber,

J. Am. Ceram. Soc. 94, 4091 (2011).
[13] G. Shirane, E. Sawaguchi, and Y. Takagi, Phys. Rev. 84, 476

(1951).
[14] B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross,

and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).
[15] B. Noheda, D. E. Cox, G. Shirane, S.-E. Park, L. E. Cross, and

Z. Zhong, Phys. Rev. Lett. 86, 3891 (2001).
[16] S.-E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
[17] A. Garcia and D. Vanderbilt, Appl. Phys. Lett. 72, 2981 (1998).
[18] H. Fu and R. E. Cohen, Nature (London) 403, 281 (2000).
[19] W. Cochran, Adv. Phys. 9, 387 (1960).
[20] R. E. Cohen, Nature (London) 358, 136 (1992).
[21] R. E. Cohen and H. Krakauer, Phys. Rev. B 42, 6416 (1990).
[22] L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrody-

namics of Continuous Media (Elsevier Butterworth-Heinemann,
Boston, 2004).

[23] T. H. Kim, D. Puggioni, Y. Yuan, L. Xie, H. Zhou, N. Campbell,
P. J. Ryan, Y. Choi, J.-W. Kim, J. R. Patzner, S. Ryu, J. P.
Podkaminer, J. Irwin, Y. Ma, C. J. Fennie, M. S. Rzchowski,
X. Q. Pan, V. Gopalan, J. M. Rondinelli, and C. B. Eom, Nature
(London) 533, 68 (2016).

[24] P. W. Anderson and E. I. Blount, Phys. Rev. Lett. 14, 217
(1965).

[25] Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P.
Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, M. Arai, Y.
Shirako, M. Akaogi, N. Wang, K. Yamaura, and A. T. Boothroy,
Nat. Mater. 12, 1024 (2013).

[26] N. A. Benedek and T. Birol, J. Mater. Chem. C 4, 4000 (2016).
[27] X. He and K.-J. Jin, Phys. Rev. B 94, 224107 (2016).
[28] H. J. Xiang, Phys. Rev. B 90, 094108 (2014).

[29] G. Giovannetti and M. Capone, Phys. Rev. B 90, 195113 (2014).
[30] D. Puggioni, G. Giovannetti, M. Capone, and J. M. Rondinelli,

Phys. Rev. Lett. 115, 087202 (2015).
[31] D. Puggioni and J. M. Rondinelli, Nat. Commun. 5, 3432

(2014).
[32] H. J. Zhao, A. Filippetti, C. Escorihuela-Sayalero, P. Delugas,

E. Canadell, L. Bellaiche, V. Fiorentini, and J. Iniguez, Phys.
Rev. B 97, 054107 (2018).

[33] Z. Yimer and H. Fu, Phys. Rev. B 101, 174105 (2020).
[34] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 (2001).
[35] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861

(1987).
[36] X. Gonze, Phys. Rev. A 52, 1096 (1995).
[37] H. Fujishita, Y. Ishikawa, S. Tanaka, A. Ogawaguchi, and S.

Katano, J. Phys. Soc. Jpn. 72, 1426 (2003).
[38] P. Yu and M. Cardona, Fundamentals of Semiconductors

(Springer, Berlin, 2001).
[39] Y. Yao and H. Fu, Phys. Rev. B 84, 064112 (2011).
[40] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);

W. Kohn and L. J. Sham, ibid. 140, A1133 (1965).
[41] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S.
Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo,
G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and
R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502
(2009).

[42] https://www.quantum-espresso.org.
[43] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993

(1991).
[44] H. Fu and O. Gulseren, Phys. Rev. B 66, 214114 (2002).
[45] E. Sawaguchi, J. Phys. Soc. Jpn. 7, 110 (1952).
[46] W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev.

Lett. 72, 3618 (1994).
[47] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).
[48] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[49] A. Raeliarijaona and H. Fu, Phys. Rev. B 92, 094303

(2015).
[50] A. Filippetti, V. Fiorentini, F. Ricci, P. Delugas, and J. Iniguez,

Nat. Commun. 7, 11211 (2016).
[51] J. T. Last, Phys. Rev. 105, 1740 (1957).
[52] J. Hlinka, J. Petzelt, S. Kamba, D. Noujni, and T. Ostapchuk,

Phase Trans. 79, 41 (2006).
[53] J. C. Slater, Phys. Rev. 78, 748 (1950).
[54] M. Fornari and D. J. Singh, Phys. Rev. B 63, 092101 (2001).
[55] P. M. Gehring, S. E. Park, and G. Shirane, Phys. Rev. Lett. 84,

5216 (2000).
[56] J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C. A. Randall, and S. J.

Zhang, Phys. Rev. Lett. 91, 107602 (2003).

134118-7

https://doi.org/10.1103/PhysRev.82.729
https://doi.org/10.1103/PhysRevB.94.014107
https://doi.org/10.1103/PhysRevB.52.12559
https://doi.org/10.1103/PhysRevB.60.836
https://doi.org/10.1103/PhysRevB.90.220103
https://doi.org/10.1103/PhysRevB.88.180102
https://doi.org/10.1038/ncomms3229
https://doi.org/10.1103/PhysRevB.91.134112
https://doi.org/10.1142/S2010135X13300016
https://doi.org/10.1111/j.1551-2916.2011.04917.x
https://doi.org/10.1103/PhysRev.84.476
https://doi.org/10.1063/1.123756
https://doi.org/10.1103/PhysRevLett.86.3891
https://doi.org/10.1063/1.365983
https://doi.org/10.1063/1.121514
https://doi.org/10.1038/35002022
https://doi.org/10.1080/00018736000101229
https://doi.org/10.1038/358136a0
https://doi.org/10.1103/PhysRevB.42.6416
https://doi.org/10.1038/nature17628
https://doi.org/10.1103/PhysRevLett.14.217
https://doi.org/10.1038/nmat3754
https://doi.org/10.1039/C5TC03856A
https://doi.org/10.1103/PhysRevB.94.224107
https://doi.org/10.1103/PhysRevB.90.094108
https://doi.org/10.1103/PhysRevB.90.195113
https://doi.org/10.1103/PhysRevLett.115.087202
https://doi.org/10.1038/ncomms4432
https://doi.org/10.1103/PhysRevB.97.054107
https://doi.org/10.1103/PhysRevB.101.174105
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevLett.58.1861
https://doi.org/10.1103/PhysRevA.52.1096
https://doi.org/10.1143/JPSJ.72.1426
https://doi.org/10.1103/PhysRevB.84.064112
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1088/0953-8984/21/39/395502
https://www.quantum-espresso.org
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.66.214114
https://doi.org/10.1143/JPSJ.7.110
https://doi.org/10.1103/PhysRevLett.72.3618
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.92.094303
https://doi.org/10.1038/ncomms11211
https://doi.org/10.1103/PhysRev.105.1740
https://doi.org/10.1080/01411590500476438
https://doi.org/10.1103/PhysRev.78.748
https://doi.org/10.1103/PhysRevB.63.092101
https://doi.org/10.1103/PhysRevLett.84.5216
https://doi.org/10.1103/PhysRevLett.91.107602

