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First-principles calculation of higher-order elastic constants
using exact deformation-gradient tensors
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We propose a general and easy-to-use method of the ab initio calculation of the higher-order elastic constants,
which is based on the analytical formulas for the deformation-gradient tensors as functions of the Lagrangian
strain. The method allows for elimination of the truncation errors in the Taylor expansion series of the deforma-
tion gradients and is particularly useful to calculate the fourth-order elastic constants, where large strains have
to be applied. It also facilitates the calculation of the Lagrangian stress, which is helpful in determination of
the strain-stress relations. To demonstrate the application of our approach, we derive the analytic formulas for
the deformation gradients as functions of the Lagrangian strain tensors, which are used in calculations of the
third-order elastic constants in trigonal crystals and the fourth-order elastic constants in cubic crystals. Then,
we perform the ab initio calculations of the fourth-order elastic constants in face-centered-cubic aluminum.
We discuss the results obtained using the strain-energy and strain-stress relations and analyze the errors of
the fourth-order elastic constants which would be incurred when approximating the deformation gradients by
the Taylor polynomials. We show that the relatively small truncation errors in the Taylor expansion series
of the deformation gradients can cause significant deviations of the fourth-order elastic constants. This effect
is larger for the strain-energy method than for the strain-stress approach. We find that in both methods, the
deviations are particularly significant for the C1155, C1266, C4455, C1255, and C1456 elastic constants and are mainly
caused by the truncation errors in the nondiagonal elements of the Taylor expansion series of the deformation
gradients.

DOI: 10.1103/PhysRevB.102.134116

I. INTRODUCTION

In the continuum elasticity theory, the elastic constants
provide a complete description of the elastic response of a
solid [1]. The second-order elastic constants (SOECs) deter-
mine harmonic properties of materials and are used in the
linear strain theory when the crystal energy can be accu-
rately expressed to the second order in the strain, leading
to the linear relationships between strains and stresses. As
the applied deformations increase, the higher-order terms
in the strain start to contribute significantly to the crys-
tal energy and the nonlinear elasticity theory should be
considered [1]. Anharmonicity of the crystal lattice is de-
scribed by the higher-order elastic constants (HOECs) and
is crucial for determination of many physical properties of
solids, including thermal expansion, thermal conductivity, and
electron-phonon and phonon-phonon interactions [1–3]. In
particular, the HOECs play an important role in estimation
of the generalized Grüneisen parameters, the pressure de-
pendence of the SOECs, the intrinsic mechanical strength,
and ductility of materials [4–8]. Furthermore, the third-order
elastic constants (TOECs), which are the lowest order of
the HOECs, are often applied to describe the nonlinear
mechanical effects in nanoscale materials [9–14]. The fourth-
order elastic constants (FOECs) increase the accuracy of
the description of the nonlinear elasticity phenomena and
are particularly important in determination of the structural

phase transitions at high pressures and finite deformations
[15–17].

The HOECs can be determined experimentally using
ultrasonic velocity measurements or theoretically from atom-
istic calculations. The experimental methods rely on the
measurements of the changes in acoustic velocities under
hydrostatic and uniaxial stresses [18,19]. These experiments
are difficult and usually generate large uncertainties in the
obtained results. The difficulties increase with the order of
the HOECs and for the FOECs, there are only few materi-
als for which some experimental values are available [15].
The computational methods based on first-principles calcula-
tions are a feasible alternative for predicting the HOECs in
crystalline solids. They combine the approach of the finite
homogeneous deformations of supercells with the quantum-
mechanical calculations of the total energy and the stresses
[20–28]. The Lagrangian strain formalism is usually used to
determine the HOECs from either the strain-energy or the
strain-stress dependencies. This approach was initially used
to obtain the TOECs and then was extended for the FOECs
[15,21].

In order to obtain the full set of the HOECs from the
first-principles calculations, one has to apply different types of
the Lagrangian strain [20–27]. For each type of strain, a series
of deformed supercells is constructed using the deformation-
gradient tensors. The deformation gradients have commonly
been obtained by truncating an infinite Taylor expansion series
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in the Lagrangian strain [22–26]. The approximating Taylor
polynomials have usually been taken of the third or fourth
order and the influence of the truncation errors on the HOECs
have never been discussed. A different approach has recently
been proposed in the work of Tanner et al. [28], where the par-
ticular types of the deformation gradients have been proposed
via determination of the suitable branches of the infinitesimal
strain tensors. This method leads the complex forms of the La-
grangian strain, which result in long equations for the stresses
and the free energy, even in the case of the TOECs in cubic
crystals [28].

In this work, we propose a general and easy-to-use
method of the ab initio calculation of the HOECs, which
is based on the analytical formulas for the deformation-
gradient tensors as functions of the Lagrangian strain. The
method allows for elimination of the truncation errors in
the Taylor expansion series of the deformation gradients
and is particularly useful to calculate the FOECs, where
large strains have to be applied. It also facilitates the
calculation of the Lagrangian stress, which is helpful in
determination of the strain-stress relations. To demonstrate
the application of our approach, we derive the analytic
formulas for the deformation gradients as functions of
the Lagrangian strain tensors, which are used in calcula-
tions of the TOECs in trigonal crystals and the FOECs
in cubic crystals. Then, we perform the ab initio cal-
culations of the FOECs in face-centered-cubic aluminum
(fcc Al). We discuss the results obtained using the strain-
energy and strain-stress methods and analyze the errors of
the FOECs which would be incurred when approximat-
ing the deformation gradients by the Taylor polynomials.
We show that the relatively small truncation errors in the
Taylor expansion series of the deformation gradients can
cause significant deviations of the FOECs, which makes
our exact analytical formulas for the deformation gradients
important.

II. THEORETICAL METHOD

In the theory of nonlinear elasticity, local deformation of a
solid body is described by the deformation-gradient tensor J,
which is defined by the Jacobian matrix

Jαβ = ∂xα

∂aβ

, (1)

where aβ and xα are the coordinates of a point in the un-
deformed and deformed configurations, respectively [1]. The
deformation gradient is generally a nonsymmetric matrix
since it takes into account a rigid rotation of a deformed body.
Using J, we define Lagrangian strain tensor η as

η = 1
2 (JT J − I), (2)

where I is the 3×3 identity matrix. The Lagrangian strain is
a symmetric matrix and therefore, it is a rotation-independent
quantity. It is convenient to represent η in the Voigt convention
as a six-dimensional vector (η11 → η1, η22 → η2, η33 → η3,
η23 → η4/2, η13 → η5/2, η12 → η6/2). The elastic constants
are defined by expanding the free-energy density, ρ0E , as a

Taylor series in strain,

ρ0E (η) = ρ0E (0) + 1

2!

6∑
i, j=1

Ci jηiη j + 1

3!

6∑
i, j,k=1

Ci jkηiη jηk

+ 1

4!

6∑
i, j,k,l=1

Ci jklηiη jηkηl + · · · , (3)

where E is the Helmholtz free energy per unit mass, ρ0 is
the mass density of the unstrained material, and Ci j , Ci jk , and
Ci jkl are the SOECs, the TOECs, and the FOECs, respectively.
The Lagrangian stress is defined as the first-order derivative of
ρ0E , with respect to the Lagrangian strain,

ti = ρ0
∂E

∂ηi
= 1

2!

6∑
j=1

Ci jη j + 1

3!

6∑
j,k=1

Ci jkη jηk

+ 1

4!

6∑
j,k,l=1

Ci jklη jηkηl + · · · , (4)

where the Voight convention is used for the Lagrangian stress
tensor (t11 → t1, t22 → t2, t33 → t3, t23 → t4, t13 → t5, t12 →
t6). The tensor of Lagrangian stress t is related to the Cauchy
stress σ and the deformation gradient J via the following
formula:

t = det(J)J−1σ(JT )−1. (5)

In general, the first-principles calculations provide the free-
energy density and the Cauchy stress tensor for deformed
crystal supercells, which are used to determine the elastic
constants either from Eq. (3) or from Eqs. (4) and (5) [26–28].
Homogeneous deformations are applied using the matrices J,
which transform the crystal lattice vectors from the unstrained
configuration ri to the strained configurations r

′
i:

r
′
i = Ji jr j . (6)

In order to perform the ab initio calculations of the HOECs,
it is convenient to determine the deformation gradient J from
the Lagrangian strain η, which can be obtained by inverting
Eq. (2) [22–26]. In general, for a given η, the matrix J is
not unique and the various solutions differ from one another
by a rigid rotation. The lack of a one-to-one transformation
between J and η is not a concern since the free energy and
stresses are invariant under rigid rotations and the deforma-
tion gradient for the system without rotation, J̃, is normally
considered. Since J̃ = J̃

T
, we get from Eq. (2) that

η = 1
2 (J̃

2 − I). (7)

Note that expressing J̃ in terms of the infinitesimal strain, J̃ =
ε + I, one obtains the well-known matrix relation η = ε +
1
2ε2, which was used in Ref. [28] to obtain the strains η for
the given tensors ε. As we have mentioned in the Introduction,
such an approach leads to complex forms of the strains η and
thus it is difficult to apply to the FOECs. Therefore, in the
case of the calculations of the FOECs, Eq. (7) is inverted, as
follows:

J̃ = (2η + I)1/2. (8)
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TABLE I. The types of the strain tensors and the corresponding deformation-gradient tensors for 14 types of strains used to calculate the
TOECs in trigonal crystals.

Strain Deformation gradient Strain-dependent elements

ηA =
⎡
⎣η 0 0

0 0 0
0 0 0

⎤
⎦ J̃A =

⎡
⎣αA 0 0

0 1 0
0 0 1

⎤
⎦ αA = √

1 + 2η

ηB =
⎡
⎣η 0 0

0 η 0
0 0 0

⎤
⎦ J̃B =

⎡
⎣αB 0 0

0 αB 0
0 0 1

⎤
⎦ αB = αA

ηC =
⎡
⎣0 0 0

0 η 0
0 0 0

⎤
⎦ J̃C =

⎡
⎣1 0 0

0 αC 0
0 0 1

⎤
⎦ αC = αA

ηD =
⎡
⎣η 0 0

0 0 η

0 η 0

⎤
⎦ J̃D =

⎡
⎣αD 0 0

0 βD γD

0 γD βD

⎤
⎦ αD = αA

βD = 1
2 (

√
1 + 2η + √

1 − 2η)

γD = 1
2 (

√
1 + 2η − √

1 − 2η)

ηE =
⎡
⎣0 0 0

0 0 0
0 0 η

⎤
⎦ J̃E =

⎡
⎣1 0 0

0 1 0
0 0 αE

⎤
⎦ αE = αA

ηF =
⎡
⎣0 0 0

0 η 0
0 0 η

⎤
⎦ J̃F =

⎡
⎣1 0 0

0 αF 0
0 0 αF

⎤
⎦ αF = αA

ηG =
⎡
⎣0 0 0

0 0 η

0 η 0

⎤
⎦ J̃G =

⎡
⎣1 0 0

0 αG βG

0 βG αG

⎤
⎦ αG = βD

βG = γD

ηH =
⎡
⎣0 η 0

η 0 0
0 0 η

⎤
⎦ J̃H =

⎡
⎣αH βH 0

βH αH 0
0 0 γH

⎤
⎦ αH = βD

βH = γD

γH = αA

ηI =
⎡
⎣0 0 0

0 η η

0 η 0

⎤
⎦ J̃I =

⎡
⎣1 0 0

0 αI βI

0 βI γI

⎤
⎦ αI = 5−√

5
10

√
1 + η(1 − √

5) + 5+√
5

10

√
1 + η(1 + √

5)

βI = 1√
5
(
√

1 + η(1 + √
5) −

√
1 + η(1 − √

5))

γI = 5+√
5

10

√
1 + η(1 − √

5) + 5−√
5

10

√
1 + η(1 + √

5)

ηJ =
⎡
⎣0 0 η

0 η 0
η 0 0

⎤
⎦ J̃J =

⎡
⎣αJ 0 βJ

0 γJ 0
βJ 0 αJ

⎤
⎦ αJ = βD

βJ = γD

γJ = αA

ηK =
⎡
⎣η 0 0

0 η 0
0 0 η

⎤
⎦ J̃K =

⎡
⎣αK 0 0

0 αK 0
0 0 αK

⎤
⎦ αK = αA

ηL =
⎡
⎣0 0 η

0 0 0
η 0 η

⎤
⎦ J̃L =

⎡
⎣γL 0 βL

0 1 0
βL 0 αL

⎤
⎦ αL = αI

βL = βI

γL = γI
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TABLE I. (Continued.)

Strain Deformation gradient Strain-dependent elements

ηM =
⎡
⎣η 0 0

0 0 η

0 η η

⎤
⎦ J̃M =

⎡
⎣δM 0 0

0 γM βM

0 βM αM

⎤
⎦ αM = αI

βM = βI

γM = γI

δM = αA

ηN =
⎡
⎣η 0 η

0 η 0
η 0 0

⎤
⎦ J̃N =

⎡
⎣αN 0 βN

0 δN 0
βN 0 γN

⎤
⎦ αN = αI

βN = βI

γN = γI

δN = αA

Then, the right-hand side of Eq. (8) can be expanded as a
Taylor series in strain,

J̃ = I + η +
∞∑

m=2

Cmηm, (9)

where the Cm coefficients are given by the following recur-
rence relation:

Cm =
{

3−2m
m Cm−1, m > 2

− 1
2 , m = 2

. (10)

Commonly, the deformation gradient J̃ has been approxi-
mated by truncating the Taylor series in Eqs. (9) and (10)
to three or four terms [22–26]. In this work, we propose
to compute analytically the matrix square root occurring in
Eq. (8), which allows for elimination of the truncation error
while using a Taylor series given by Eqs. (9) and (10). Since
η is a real and symmetric matrix, the matrix 2η + I is a
diagonalizable and thus it can be represented as follows:

2η + I = V DV −1, (11)

where D is a diagonal matrix with the eigenvalues as the
diagonal elements and V is an orthogonal matrix with the
eigenvectors as columns. Combing Eqs. (8) and (11), we get

J̃ = V (D)1/2V −1, (12)

which provides the exact deformation-gradient tensor for a
given η. Having the analytic formula for J̃, it is convenient to
introduce a 6×6 matrix S, which determines the relationship
between tensors t and σ in the Voigt configuration, according
to Eq. (5),

t = Sσ = det(J̃)J̃
−1

σ(J̃
T

)−1. (13)

Note that the matrix S is uniquely determined by the tensor η

since there is a one-to-one transformation between J̃ and η.

III. APPLICATION

In order to demonstrate the application of the method pre-
sented above, we derive the analytic formulas for the tensors

J̃ as functions of the tensors η, which are used in calculations
of the TOECs in trigonal crystals and the FOECs in cubic
crystals. Since the obtained tensors J̃ are particularly useful
when large strains have to be applied, we then focus on the
FOECs and calculate their values for fcc Al.

A. TOEC in trigonal crystals and FOEC in cubic crystals

In trigonal crystals, we have 14 independent TOECs and
thus 14 types of strains are applied to calculate the TOECs
using the strain-energy method [22]. In cubic crystals, the set
of FOECs consists of 11 elements and 11 types of strains
are sufficient to determine all the FOECs using the strain-
energy method [15]. In Tables I and II, we present the types
of strains and the corresponding tensors J̃, which are used
to calculate the TOECs in trigonal crystals and the FOECs
in cubic crystals, respectively [15,22]. In both cases, all the
tensors η depend on only one parameter η. The obtained
tensors J̃ are valid when the radicands occurring in the ex-
pressions for the elements of J̃ are non-negative. Thus, we
find that η ∈ [ 1−√

5
4 , 1

2 ] for the TOECs in trigonal crystals and

η ∈ [ 1−√
2

2 , 1
2 ] for the FOECs in cubic crystals.

B. FOEC in fcc aluminum

To illustrate the utility of using the analytic formulas for
the J̃ tensors, we focus on the FOECs in cubic crystals since in
determination of the FOECs, larger strains should be involved
than in the case of the TOECs and thus, the advantage of using
our method over the approach based on the Taylor expansion
series of the J̃ tensors is more pronounced. The FOECs were
calculated for several cubic materials including fcc metals
(Cu, Al, Au, Ag), body-centered-cubic W, and rocksalt MgO,
whereas there is no single set of the FOECs known experimen-
tally so far [15,16,25]. Here, we choose fcc Al, which was one
of four metals studied theoretically in Ref. [15].

We use 11 types of strains, which are listed in Table II. In
every case, the parameter η is varied between −ηmax and ηmax

with step 	ηmax = 0.0025. The parameter ηmax determines
the range of the applied strain to the unit cell and affects the
contribution of the FOECs to the free energy and the stresses.
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TABLE II. The types of the strain tensors and the corresponding deformation-gradient tensors for 11 types of strains used to calculate the
FOECs in cubic crystals.

Strain Deformation gradient Strain-dependent elements

ηA =
⎡
⎣η 0 0

0 0 0
0 0 0

⎤
⎦ J̃A =

⎡
⎣αA 0 0

0 1 0
0 0 1

⎤
⎦ αA = √

1 + 2η

ηB =
⎡
⎣η 0 0

0 η 0
0 0 0

⎤
⎦ J̃B =

⎡
⎣αB 0 0

0 αB 0
0 0 1

⎤
⎦ αB = αA

ηC =
⎡
⎣η 0 0

0 −η 0
0 0 0

⎤
⎦ J̃C =

⎡
⎣αC 0 0

0 βC 0
0 0 1

⎤
⎦ αC = αA

βC = √
1 − 2η

ηD =
⎡
⎣η 0 0

0 0 η

0 η 0

⎤
⎦ J̃D =

⎡
⎣αD 0 0

0 βD γD

0 γD βD

⎤
⎦ αD = αA

βD = 1
2 (

√
1 + 2η + √

1 − 2η)

γD = 1
2 (

√
1 + 2η − √

1 − 2η)

ηE =
⎡
⎣η η 0

η 0 0
0 0 0

⎤
⎦ J̃E =

⎡
⎣αE βE 0

βE γE 0
0 0 1

⎤
⎦ αE = 5−√

5
10

√
1 + η(1 − √

5) + 5+√
5

10

√
1 + η(1 + √

5)

βE = 1√
5
(
√

1 + η(1 + √
5) −

√
1 + η(1 − √

5))

γE = 5+√
5

10

√
1 + η(1 − √

5) + 5−√
5

10

√
1 + η(1 + √

5)

ηF =
⎡
⎣0 η η

η 0 η

η η 0

⎤
⎦ J̃F =

⎡
⎣αF βF βF

βF αF βF

βF βF αF

⎤
⎦ αF = 1

3 (
√

1 + 4η + 2
√

1 − 2η)

βF = 1
3 (

√
1 + 4η − √

1 − 2η)

ηG =
⎡
⎣0 0 0

0 0 η

0 η 0

⎤
⎦ J̃G =

⎡
⎣1 0 0

0 αG βG

0 βG αG

⎤
⎦ αG = βD

βG = γD

ηH =
⎡
⎣η η 0

η η 0
0 0 0

⎤
⎦ J̃H =

⎡
⎣αH βH 0

βH αH 0
0 0 1

⎤
⎦ αH = 1

2 (
√

1 + 4η + 1)

βH = 1
2 (

√
1 + 4η − 1)

ηI =
⎡
⎣η 0 0

0 η η

0 η 0

⎤
⎦ J̃I =

⎡
⎣αI 0 0

0 βI γI

0 γI δI

⎤
⎦ αI = αA

βI = αE

γI = βE

δI = γE

ηJ =
⎡
⎣η η η

η 0 η

η η 0

⎤
⎦ J̃J =

⎡
⎣αJ βJ βJ

βJ γJ δJ

βJ δJ γJ

⎤
⎦ αJ = 1

2 (
√

1 + 2η(1 + √
2) +

√
1 + 2η(1 − √

2))

βJ = 1
2
√

2
(
√

1 + 2η(1 + √
2) −

√
1 + 2η(1 − √

2))

γJ = 1
4 (

√
1 + 2η(1 + √

2) +
√

1 + 2η(1 − √
2) + 2

√
1 − 2η)

δJ = 1
4 (

√
1 + 2η(1 + √

2) +
√

1 + 2η(1 − √
2) − 2

√
1 − 2η)

ηK =
⎡
⎣η 0 0

0 η 0
0 0 η

⎤
⎦ J̃K =

⎡
⎣αK 0 0

0 αK 0
0 0 αK

⎤
⎦ αK = αA

For small ηmax, this contribution is small in comparison to
the contribution coming from the SOECs and the TOECs,
while for large ηmax, the fifth- and sixth-order elastic constants
come into play [15,28]. We choose the optimal ηmax = 0.11
for determination of the FOECs in fcc Al by the strain-energy

and strain-stress methods. Note that ηmax <
√

2−1
2 and thus,

the formulas for the J̃ tensors, listed in Table II, can be used.
For each η, the free-energy density ρ0E and the elements

of the tensor t are polynomial functions of a single parameter
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TABLE III. The fourth-degree coefficients in the strain-energy relation [Eq. (3)] and the third-degree coefficients in the strain-stress
relations [Eq. (4)] for 11 types of the strain tensors (the Voight convention) used to calculate the FOECs in cubic crystals.

Strain types Fourth-degree coefficients in the strain-energy relation Third-degree coefficients in the strain-stress relations

ηA = (η, 0, 0, 0, 0, 0) 1
24C1111 t1(η) : 1

6C1111

t2(η) : 1
6C1112

ηB = (η, η, 0, 0, 0, 0) 1
12C1111 + 1

3C1112 + 1
4C1122 t1(η) : 1

6C1111 + 2
3C1112 + 1

2C1122

t3(η) : 1
3C1112 + C1123

ηC = (η,−η, 0, 0, 0, 0) 1
12C1111 − 1

3C1112 + 1
4C1122

ηD = (η, 0, 0, 2η, 0, 0) 1
24C1111 + C1144 + 2

3C4444 t1(η) : 1
6C1111 + 2C1144

ηE = (η, 0, 0, 0, 0, 2η) 1
24C1111 + C1155 + 2

3C4444 t1(η) : 1
6C1111 + 2C1155

t2(η) : 1
6C1112 + 2C1266

t3(η) : 1
6C1112 + 2C1255

ηF = (0, 0, 0, 2η, 2η, 2η) 2C4444 + 12C4455 t1(η) : 8C1456

t4(η) : 4
3C4444 + 8C4455

ηG = (0, 0, 0, 2η, 0, 0) 2
3C4444 t4(η) : 4

3C4444

ηH = (η, η, 0, 0, 0, 2η) 1
12C1111 + 1

3C1112 + 1
4C1122 + 2C1155 + 2C1266 + 2

3C4444

ηI = (η, η, 0, 2η, 0, 0) 1
12C1111 + 1

3C1112 + 1
4C1122 + C1144 + C1155 + 2C1255 + 2

3C4444

ηJ = (η, 0, 0, 2η, 2η, 2η) 1
24C1111 + C1144 + 2C1155 + 8C1456 + 2C4444 + 12C4455

ηK = (η, η, η, 0, 0, 0) 1
8C1111 + C1112 + 3

4C1122 + 3
2C1123

η, according to Eqs. (3) and (4). The values of the FOECs
are calculated from the coefficients of the third- and fourth-
degree terms in the case of the strain-stress method and the
strain-energy approach, respectively. These coefficients are
expressed by the linear combinations of the FOECs and we
present them in Table III. In Appendix A, we present the S
matrices for six types of deformations, i.e., ηA, ηB, ηD, ηE ,
ηF , and ηG, which are used in the strain-stress method. In
Appendix B, we show how the TOECs and the SOECs can
be obtained using the method of least squares.

The calculations of the total energy and the Cauchy
stress tensor have been carried out using the VASP pack-
age which is a plane-wave pseudopotential implementation
of the density functional theory [29,30]. For the exchange-
correlation functional, the generalized gradient approximation
with the Perdew-Burke-Ernzerhof approach has been used
[31]. The Brillouin-zone integrals have been calculated using
35×35×35 Monkhorst-Pack mesh and a cutoff energy for the
plane-wave basis set has been chosen to be equal to 600 eV.
The values of the k-point mesh size and the cutoff energy are
slightly larger than those used in Ref. [15].

First, we discuss the results obtained using the analytic
formulas for the J̃ tensors. In Fig. 1, we show the calculated
dependencies of the ρ0E on the parameter η which are used
to determine the FOECs in the strain-energy method (see
Table III). In Fig. 2, we present the changes in the selected
elements of the tensors t as functions of η which are em-
ployed in the strain-stress method (see Table III). In these
figures, symbols correspond to the calculated ab initio data
while the solid lines represent the fourth- and third-order
polynomial fits. Note that for a clear illustration of the ab
initio results, we only show every fourth computed data point.

In Table IV(a), we present the calculated FOECs, while the
SOECs and the TOECs are show in Table IV(b). In Table IV,
we include the experimental results for the SOECs and the
TOECs taken from Refs. [32–34] and the theoretical results
for the SOECs, the TOECs, and the FOECs obtained in
Ref. [15] using the strain-energy method. We observe that
our SOECs agree very well with the experimental results
presented in the literature. The TOECs obtained using the
strain-stress method show also good agreement with the mea-
sured TOECs while some discrepancies are observed between
the calculated TOECs using the strain-energy method and the
experimental results. A similar situation has recently been re-
ported for the TEOCs in diamond [26]. Finally, we notice that
our FOECs obtained using the strain-energy and strain-stress
methods are consistent with the theoretical results presented
in Ref. [15].

Now, we compare the results obtained using the exact the
J̃ tensors and their Taylor series approximations. To this end,
we discuss the truncation errors δJ̃ in the Taylor expansion
series of the deformation gradients. We calculate δJ̃A − δJ̃K

for the strain-dependent elements of the deformation gradients
J̃A − J̃K , using Eqs. (9) and (10) and the exact formulas listed
in Table II. In Fig. 3, we show the elements of δJ̃C − δJ̃J ,
obtained for η = ηmax, as a function of the degree of the
Taylor polynomial m. The results for the diagonal elements
of δJ̃A, δJ̃B, and δJ̃K are the same as for the element δJ̃C,11

shown in Fig. 3(a). As expected, all strain-dependent elements
of δJ̃C − δJ̃J decrease with increasing m. Interestingly, for a
given m, the nondiagonal elements of δJ̃C − δJ̃J are larger
than the diagonal ones. This applies particularly to δJ̃E ,12,
δJ̃F,12, δJ̃H,12, δJ̃I,23, δJ̃J,12, and δJ̃J,23 which, for a given m, are
approximately one order of magnitude larger than the other
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FIG. 1. The free-energy density ρ0E as a function of the parameter η for the types of deformations used in the strain-energy method
(Table III). Symbols correspond to the calculated ab initio data while the solid lines represent the fourth-order polynomial fits. For a clear
illustration of the ab initio results, every fourth computed data point is shown.

TABLE IV. The FOECs (a), and the SOECs and TOECs (b), calculated for fcc Al using the strain-energy and strain-stress methods.
The SOECs and the TOECs are obtained by the approximation of least squares (Appendix B). Experimental results and other theoretical
calculations are also shown. The unit is in GPa.

C1111 C1112 C1122 C1144 C1155 C4444 C4455 C1266 C1255 C1456 C1123

(a)
10327a 2978a 3589a −680a 4620a 3885a 180a 6465a 87a 410a −1043a

8750b 2989b 3951b −585b 4683b 3918b 198b 4193b 95b 249b −1051b

9916c 2656c 3708c −578c 3554c 3329c 127c 4309c −91c 148c −1000c

C11 C12 C44 C111 C112 C144 C155 C456 C123

(b)
107.0a 59.0a 33.1a −937a −618a 69a −738a −29a 517a

114.3b 59.0b 33.4b −1344b −471b 22b −578b −40b −57b

110.4c 54.5c 31.3c −1253c −426c −12c −493c −21c 153c

106.8d 60.4d 28.3d −1076d −315d −23d −340d −30d 36d

114.0f 62.0f 31.4f −1224e −373e −64e −368e −27e 25e

−1427f −408f −85f −396f −42f 32f

aThis work, the strain-energy method.
bThis work, the strain-stress method.
cReference [15], the strain-energy method.
dReference [32], experimental results (at 298 K).
eReference [33], experimental results (at 298 K).
fReference [34], experimental results (at 80 K).
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FIG. 2. The selected elements of the tensors t as functions of the parameter η for the types of deformations used in the strain-stress method
(Table III). Symbols correspond to the calculated ab initio data while the solid lines represent the third-order polynomial fits. For a clear
illustration of the ab initio results, every fourth computed data point is shown.

FIG. 3. The truncation errors, δJ̃C − δJ̃J , in the Taylor expansion series of the deformation gradients J̃C − J̃J , obtained for η = ηmax, as a
function of m.
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FIG. 4. The FOECs obtained using the strain-energy method with the deformation gradients J̃A − J̃K approximated by their mth-degree
Taylor polynomials (squares) as a function of m. The results obtained using the exact J̃A − J̃K tensors are represented by the solid lines while
the dashed lines illustrate a tolerance of 1% error.

elements of δJ̃C − δJ̃J . Note that for m = 6, all elements of
δJ̃C − δJ̃J are smaller than 0.1%.

In Fig. 4, we present the FOECs (squares) obtained us-
ing the strain-energy method with the deformation gradients
J̃A − J̃K approximated by their mth-degree Taylor polynomi-
als. The results obtained using the exact J̃A − J̃K tensors are
represented by the solid lines while the dashed lines illustrate
tolerance of 1% error. As expected, all FOECs obtained using
the Taylor polynomials converge to the results obtained using
the exact J̃ tensors. We observe that C1122, C1144, C4444, and
C1123 are already within tolerance of 1% error for m = 3. For
C1111 and C1112, one needs m = 4 to achieve the desired toler-
ance. The C1155 and C1266 elastic constants are within relative
errors of 1% for m = 5, while C4455 and C1255 reach these
limits for m = 6. For C1456, even m = 6 is not sufficient to get
the result within tolerance of 1% error. The requirement of
larger values of the m parameter for C1155, C1266, C4455, C1255,
and C1456 originates from significant values of the nondiagonal
elements of δJ̃E , δJ̃F , δJ̃H , δJ̃I , and δJ̃J .

In Fig. 5, we show the FOECs obtained using the
strain-stress method with the deformation gradients J̃A −
J̃K approximated by their mth-degree Taylor polynomials
(squares). Again, the results obtained using the exact J̃A − J̃K

tensors are represented by the solid lines while the dashed
lines illustrate tolerance of 1% error. Like in the case of the
strain-energy method, all FOECs obtained using the Taylor
polynomials converge to the results obtained using the exact J̃
tensors, as expected. The deviations of the FOECs, caused by
the truncation of the Taylor expansion series of the deforma-
tion gradients, are smaller for the strain-stress method than the
strain-energy approach and thus, in the former case, smaller
values of the m parameter are needed to get the results within
relative errors of 1%. One can see that C1111, C1112, C1122,
C1144, C4444, and C1123 are already within tolerance of 1% error
for m = 3. To achieve the desired tolerance, one needs m = 4
for C1155 and C1266, m = 5 for C4455 and C1255, and m = 6 for
C1456. The requirement of larger values of the m parameter
for C1155, C1266, C4455, C1255, and C1456 originates again from
significant values of the nondiagonal elements of δJ̃E , δJ̃F ,
δJ̃H , δJ̃I , and δJ̃J .

IV. CONCLUSIONS

We have presented a general and easy-to-use method of
the ab initio calculation of the HOECs, which is based on
the analytical formulas for the deformation-gradient tensors
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FIG. 5. The FOECs obtained using the strain-stress method with the deformation gradients J̃A − J̃K approximated by their mth-degree
Taylor polynomials (squares) as a function of m. The results obtained using the exact J̃A − J̃K tensors are represented by the solid lines while
the dashed lines illustrate a tolerance of 1% error.

as functions of the Lagrangian strain. The method allows for
elimination of the truncation errors in the Taylor expansion
series of the deformation gradients and is particularly useful to
calculate the FOECs, where large strains have to be applied. It
also facilitates the calculation of the Lagrangian stress, which
is helpful in the implementation of the strain-stress method.
To demonstrate the application of our approach, we have
derived the analytic formulas for the deformation gradients
as functions of the Lagrangian strain tensors, which are used
in calculations of the TOECs in trigonal crystals and the
FOECs in cubic crystals. Then, we have performed the ab
initio calculations of the FOECs in fcc Al. We have discussed
the results obtained using the strain-energy and strain-stress
methods and analyzed the errors of the FOECs which would
be incurred when approximating the deformation gradients
by the Taylor polynomials. We have shown that the rela-
tively small truncation errors in the Taylor expansion series of
the deformation gradients can cause significant deviations of
the FOECs, which makes our exact analytical formulas for
the deformation gradients important. This effect is larger for
the strain-energy method than for the strain-stress approach.
In both methods, the deviations are particularly significant for

the C1155, C1266, C4455, C1255, and C1456 elastic constants and
are mainly caused by the truncation errors in the nondiagonal
elements of the Taylor expansion series of the deformation
gradients.
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APPENDIX A

Below, we present the S matrices in terms of the elements
of the J̃ tensors. They have been obtained for six types of
deformations, i.e., ηA, ηB, ηD, ηE , ηF , and ηG (see Tables II
and III), which we have used to calculate the FOECs applying
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TABLE V. The third- and the second-degree coefficients in the strain-energy relation [Eq. (3)] for the types of the strain tensors, which
have been used in Sec. III to determine the FOECs in cubic crystals.

Strain types Third-degree coefficients in the strain-energy relation Second-degree coefficients in the strain-energy relation

ηA = (η, 0, 0, 0, 0, 0) A = 1
6C111

′
A = 1

2C11

ηB = (η, η, 0, 0, 0, 0) B = 1
3C111 + C112

′
B = C11 + C12

ηC = (η,−η, 0, 0, 0, 0) C = 0
′

C = C11 − C12

ηD = (η, 0, 0, 2η, 0, 0) D = 1
6C111 + 2C144

′
D = 1

2C11 + 2C44

ηE = (η, 0, 0, 0, 0, 2η) E = 1
6C111 + 2C155

′
E = 1

2C11 + 2C44

ηF = (0, 0, 0, 2η, 2η, 2η) F = 8C456

′
F = 6C44

ηG = (0, 0, 0, 2η, 0, 0) G = 0
′

G = 2C44

ηH = (η, η, 0, 0, 0, 2η) H = 1
3C111 + C112 + 4C155

′
H = C11 + C12 + 2C44

ηI = (η, η, 0, 2η, 0, 0) I = 1
3C111 + C112 + 2C144 + 2C155

′
I = C11 + C12 + 2C44

ηJ = (η, 0, 0, 2η, 2η, 2η) J = 1
6C111 + 2C144 + 4C155 + 8C456

′
J = 1

2C11 + 6C44

ηK = (η, η, η, 0, 0, 0) K = 1
2C111 + 3C112 + C123

′
K = 3

2C11 + 3C12

the strain-stress approach:

SA =

⎡
⎢⎢⎢⎢⎢⎣

a 0 0
0 b 0
0 0 b

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

b 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦, (A1)

where a = 1
J̃A,11

and b = J̃A,11;

SB =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 a

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

b 0 0
0 b 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦, (A2)

where a = (J̃B,11)2 and b = J̃B,11;

SD =

⎡
⎢⎢⎢⎢⎢⎣

a 0 0
0 b c
0 c b

0 0 0
2e 0 0
2e 0 0

0 e e
0 0 0
0 0 0

d 0 0
0 f g
0 g f

⎤
⎥⎥⎥⎥⎥⎦, (A3)

where a = (J̃D,22 )
2−(J̃D,23 )

2

J̃D,11
, b = J̃D,11(J̃D,22 )

2

(J̃D,22 )
2−(J̃D,23 )

2 , c =
J̃D,11(J̃D,23 )

2

(J̃D,22 )
2−(J̃D,23 )

2 , d = J̃D,11[(J̃D,22 )
2+(J̃D,23 )

2
]

(J̃D,22 )
2−(J̃D,23 )

2 , e = −J̃D,11 J̃D,22 J̃D,23

(J̃D,22 )
2−(J̃D,23 )

2 ,

f = J̃D,22 and g = −J̃D,23;

SE =

⎡
⎢⎢⎢⎢⎢⎣

a c 0
c b 0
0 0 d

0 0 2i
0 0 2 j
0 0 0

0 0 0
0 0 0
i j 0

e g 0
g f 0
0 0 h

⎤
⎥⎥⎥⎥⎥⎦, (A4)

where a = (J̃E ,22 )
2

J̃E ,11 J̃E ,22−(J̃E ,12 )
2 , b = (J̃E ,11 )

2

J̃E ,11 J̃E ,22−(J̃E ,12 )
2 , c =

(J̃E ,12 )
2

J̃E ,11 J̃E ,22−(J̃E ,12 )
2 , d = J̃E ,11J̃E ,22 − (J̃E ,12)2, e = J̃E ,11,

f = J̃E ,22, g = −J̃E ,12, h = J̃E ,11 J̃E ,22+(J̃E ,12 )
2

J̃E ,11 J̃E ,22−(J̃E ,12 )
2 , i = −J̃E ,12 J̃E ,22

J̃E ,11 J̃E ,22−(J̃E ,12 )
2

and j = −J̃E ,11 J̃E ,12

J̃E ,11 J̃E ,22−(J̃E ,12 )
2 ;

SF =

⎡
⎢⎢⎢⎢⎢⎣

a b b
b a b
b b a

2b 2c 2c
2c 2b 2c
2c 2c 2b

b c c
c b c
c c b

d e e
e d e
e e d

⎤
⎥⎥⎥⎥⎥⎦, (A5)

where a = (J̃F,11+J̃F,12 )
2

J̃F,11+2J̃F,12
, b = (J̃F,12 )

2

J̃F,11+2J̃F,12
, c = −J̃F,12(J̃F,11+J̃F,12 )

J̃F,11+2J̃F,12
,

d = (J̃F,11+J̃F,12 )
2+(J̃F,12 )

2

J̃F,11+2J̃F,12
and e = −J̃F,11 J̃F,12

J̃F,11+2J̃F,12
;

SG =

⎡
⎢⎢⎢⎢⎢⎣

a 0 0
0 b c
0 c b

0 0 0
2e 0 0
2e 0 0

0 e e
0 0 0
0 0 0

d 0 0
0 f g
0 g f

⎤
⎥⎥⎥⎥⎥⎦, (A6)

where a = (J̃G,22)2 − (J̃G,23)2, b = (J̃G,22 )
2

(J̃G,22 )
2−(J̃G,23 )

2 , c =
(J̃G,23 )

2

(J̃G,22 )
2−(J̃G,23 )

2 , d = [(J̃G,22 )
2+(J̃G,23 )

2
]

(J̃G,22 )
2−(J̃G,23 )

2 , e = −J̃G,22 J̃G,23

(J̃G,22 )
2−(J̃G,23 )

2 ,

f = J̃G,22, and g = −J̃G,23.
Note that using the analytical formulas for the tensors J̃A,

J̃B, J̃D, J̃E , J̃F , and J̃G, taken from Table II, one can express
the elements of the above S matrices as functions of one
parameter η ∈ 〈−ηmax, ηmax〉, which is convenient from the
computational point of view.
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TABLE VI. The second- and the first-degree coefficients in the strain-stress relations [Eq. (4)] for the types of the strain tensors, which
have been used in Sec. III to determine the FOECs in cubic crystals.

Strain types Second-degree coefficients in the strain-stress relation First-degree coefficients in the strain-stress relation

ηA = (η, 0, 0, 0, 0, 0) t1(η) : A = 1
2C111 t1(η) :

′
A = C11

t2(η) : B = 1
2C112 t2(η) :

′
B = C12

ηB = (η, η, 0, 0, 0, 0) t1(η) : C = 1
2C111 + 3

2C112 t1(η) :
′

C = C11 + C12

t3(η) : D = 1
2C112 + C123 t3(η) :

′
D = 2C12

ηD = (η, 0, 0, 2η, 0, 0) t1(η) : E = 1
2C111 + 2C144 t1(η) :

′
E = C11

ηE = (η, 0, 0, 0, 0, 2η) t1(η) : F = 1
2C111 + 2C155 t1(η) :

′
F = C11

t2(η) : G = 1
2C112 + 2C155 t2(η) :

′
G = C12

t3(η) : H = 1
2C112 + 2C144 t3(η) :

′
H = C12

ηF = (0, 0, 0, 2η, 2η, 2η) t1(η) : I = 2C144 + 4C155 t1(η) :
′
I = 0

t4(η) : J = 4C456 t4(η) :
′
J = 2C44

ηG = (0, 0, 0, 2η, 0, 0) t4(η) : K = 0 t4(η) :
′

K = 2C44

APPENDIX B:

In order to obtain the TOECs and the SOECs from the
strain-energy and strain-stress dependencies calculated for
determination of the FOECs (Figs. 1 and 2), we apply the
method of least squares. In Table V, we present the third- and

the second-degree coefficients in the strain-energy relation
[Eq. (3)] for the types of the strain tensors which have been
used in Sec. III to determine the FOECs. These coefficients
are expressed by the linear combinations of the TOECs and
the SOECs, respectively. In Table VI we show the second-
and the first-degree coefficients in the strain-stress relations

TABLE VII. The coefficients obtained using the method of least squares for the TOECs and the SOECs in the strain-energy and the
strain-stress approaches.

a b c d e f g h i j k

C111

(
118
41

)
a

(
56
41

)
a 0a

(
52
41

)
a

(
84
41

)
a

(
8
41

)
a 0a

(−12
41

)
a

(−44
41

)
a

(−8
41

)
a 0a(

163
248

)
b

(−37
248

)
b

(
13
62

)
b 0b

(
127
248

)
b

(
77

124

)
b

(−23
124

)
b

(−73
248

)
b

(−27
124

)
b 0b 0b

C112

(−30
41

)
a

(
8
41

)
a 0a

(−16
41

)
a

(−29
41

)
a

(
7
41

)
a 0a

(
10
41

)
a

(
23
41

)
a

(−7
41

)
a 0a

( −37
248 )b

(
51
248

)
b

(
29
62

)
b 0b

(−41
248

)
b

(−19
124

)
b

(
25
124

)
b

(
47

248

)
b

( −3
124

)
b 0b 0b

C144

(−11
82

)
a

(−4
41

)
a 0a

(
8
41

)
a

(−6
41

)
a

(−7
82

)
a 0a

(−5
41

)
a

(
9

41

)
a

(
7

82

)
a 0a

( −9
248 )b

( −1
248

)
b

(−3
62

)
b 0b

(
47
248

)
b

(−13
124

)
b

( −9
124

)
b

(
55

248

)
b

(
11

124

)
b 0b 0b

C155

(−17
246

)
a

(−31
246

)
a 0a

(−10
123

)
a

(
15
246

)
a

(−11
123

)
a 0a

(
11
82

)
a

( −1
123

)
a

(
11
123

)
a 0a

( −9
992 )b

( −1
992

)
b

( −3
248

)
b 0b

(−77
992

)
b

(
49
496

)
b

(
53
496

)
b

(−69
992

)
b

(
73
496

)
b 0b 0b

C456

(
1

246

)
a

(
29

984

)
a 0a

(−17
984

)
a

( −3
164

)
a

(
23
246

)
a 0a

(−15
984

)
a

( −7
492

)
a

(
31

984

)
a 0a

0b 0b 0b 0b 0b 0b 0b 0b 0b
(

1
4

)
b 0b

C123

(
31
41

)
a

(−52
41

)
a 0a

(
22
41

)
a

(
45
41

)
a

(−25
41

)
a 0a

(−24
41

)
a

(−47
41

)
a

(
25
41

)
a 1a(

37
496

)
b

(−51
496

)
b

(−29
124

)
b 1b

(
41
496

)
b

(
19
248

)
b

(−25
248

)
b

(−47
496

)
b

(
3

248

)
b 0b 0b

C11

(
590
4083

)
a

(
206
1361

)
a

(
1742
4083

)
a

(
136
1361

)
a

(
136
1361

)
a

(−182
1361

)
a

(−182
4083

)
a

(
436
4083

)
a

(
436
4083

)
a

(
44

4083

)
a

(
28

1361

)
a(

8
31

)
b

(−1
31

)
b

(
7
31

)
b

(−2
31

)
b

(
8
31

)
b

(
8
31

)
b

(−1
31

)
b

(−1
31

)
b 0b 0b 0b

C12

(−281
4083

)
a

(
8

1361

)
a

(−1148
4083

)
a

( −74
1361

)
a

( −74
1361

)
a

(
59

1361

)
a

(
59

4083

)
a

(
83

4083

)
a

(
83

4083

)
a

(−104
4083

)
a

(
305
1361

)
a(−1

31

)
b

(
4
31

)
b

(
3
31

)
b

(
8
31

)
b

(−1
31

)
b

(−1
31

)
b

(
4
31

)
b

(
4
31

)
b 0b 0b 0b

C44

( −91
8166

)
a

( −41
2722

)
a

(−241
8166

)
a

(
39

2722

)
a
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(
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(
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(
85
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)
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(
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(
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( −16
1361

)
a

0b 0b 0b 0b 0b 0b 0b 0b 0b
(

1
4

)
b

(
1
4

)
b

aThe strain-energy method.
bThe strain-stress method.
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[Eq. (4)] for the types of the strain tensors which have been
used to determine the FOECs. Again, these coefficients are
expressed by the linear combinations of the TOECs and the
SOECs, respectively. Since we have 11 linear combinations of
the TOECs and also 11 linear combinations of the SOECs, we
apply the method of least squares to obtain the approximated
values of six TOECs and three SOECs. As a result, we get

Ci jk = aA + bB + cC + dD + eE + f F + gG + hH

+ iI + jJ + kK, (B1)

Ci j = aÁ + bB́ + cĆ + dD́ + eÉ + f F́ + gǴ + hH́

+ iÍ + jJ́ + kḰ, (B2)

where the coefficients denoted by uppercase letters are shown
in Tables V and VI while lowercase letters represent the coef-
ficients listed in Table VII.
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