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Different types of ordering phenomena may occur during phase transitions, described within the universal
framework of the Landau theory through the evolution of one, or several, symmetry-breaking order parameters
η. In addition, many systems undergo phase transitions related to an electronic instability, in the absence of
symmetry breaking and eventually described through the evolution of a totally symmetric order parameter q
linearly coupled to volume change. Analyzing the coupling of a non-symmetry-breaking electronic instability,
responsible for volume strain, to symmetry-breaking phenomena is of importance for many systems in nature
and here we show that the symmetry-allowed qη2 coupling plays a central role. We use as a case study the
rubidium manganese hexacyanoferrate Prussian blue analog, exhibiting phase transitions with hysteresis that
may exceed 100 K, and based on intermetallic charge transfer (CT). During the phase transition, the intermetallic
CT described through the evolution of q is coupled to cubic-tetragonal ferroelastic symmetry breaking described
through the evolution of η. In this system, the symmetry-breaking and non-symmetry-breaking deformations
have similar amplitudes but the large volume strain is mainly due to CT. We analyze both the ferroelastic and the
CT features of the phase transition within the frame of the Landau theory, taking into account the qη2 coupling,
stabilizing concomitant CT, and Jahn-Teller distortion. The results show that the phase transition and its wide
thermal hysteresis originate from the coupling between both processes and that the elastic coupling of each
order parameter with the volume strain is responsible for the qη2 coupling. The phase diagrams obtained with
this model are in good qualitative agreement with various experimental findings and apply to diverse families
of materials undergoing Mott transition, spin-crossover, neutral-ionic transition, etc., for which isostructural
electronic instability driving volume strain can couple to symmetry-breaking or not, create phase transition lines,
and drive cooperative phenomena.
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I. INTRODUCTION

Phase transitions in materials are responsible for the emer-
gence of physical properties, which is one of the main topics
in condensed-matter physics, and understanding their origin is
of central interest for material science. The Landau theory of
phase transitions [1] is a universal concept describing, through
the evolution of a symmetry-breaking order parameter (OP)
η, various types of ordering phenomena like ferromagnetic,
ferroelectric, ferroelastic, or other types of structural and/or
electronic orders. In addition, many systems do not fit in this
scheme as they may undergo phase transitions related to an
electronic instability in the absence of symmetry breaking.
For example, this is the case of some charge-transfer (CT)
systems, spin-crossover materials, and Mott or insulator-metal
transitions systems [2–13]. These non-symmetry-breaking
phase transitions may be described through the evolution of
an order parameter q, related to an electronic instability, which
transforms as the identity representation and is consequently
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responsible for a volume strain vs due to the relative change
of the bonding or antibonding nature of the electronic dis-
tribution. Different types of instabilities may couple during
phase transitions. In addition to multiferroic materials, where
different types of orders compete [14], there are other systems
for which the non-symmetry-breaking change of electronic
state may couple to a symmetry-breaking structural distor-
tion. In this case, the symmetry-allowed qη2 coupling term
of lowest order plays a central role, as experimentally or
theoretically explained in a few cases [15–21]. In this pa-
per, we use the Landau theory approach to underline the key
role of the volume strain related to a non-symmetry-breaking
electronic instability q, which may couple to a symmetry-
breaking instability η. We show that the qη2 coupling of
elastic nature increases the hysteresis regime of bistability.
The variety of phase diagrams obtained with this model can
apply to diverse systems undergoing non-symmetry-breaking
and symmetry-breaking instabilities that may occur simulta-
neously or sequentially.

As a case study, we investigate the phase transition in
rubidium manganese hexacyanoferrate (RbMnFe) Prussian
blue analog (PBA). The materials belong to the family
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FIG. 1. Structures of the MnIIFeIII HT phase (F 4̄3m), and MnIIIFeII LT phase (F 4̄2m). Mn, N, C, Fe, and Rb are shown in green, light blue,
black, orange, and purple respectively. The conventional I 4̄m2 LT space group is equivalent to the F 4̄2m for which the (aLT , bLT , cLT ) cell
corresponds to the HT one. The representation of the electronic configurations in the LT and HT phases show that the Oh ligand field stabilizes
the MnII state, while the MnIII state is stabilized by JT distortion splitting occupied dz2 [2] and unoccupied dx2 − y2 [2] orbitals.

of cyanobridged metal complexes exhibiting switching of
physical properties controlled by various external parameters
including temperature, pressure, light or electric fields
[9,22–26], resulting from coupled intermetallic CT and
structural reorganizations. These bistable PBAs, with general
composition RbxMn[Fe(CN)6](x+2)/3 · zH2O, undergo a
CT-based thermal phase transition [27,28] between a high-
temperature (HT) cubic phase MnII(S = 5/2)FeIII(S = 1/2)
and a low-temperature (LT) tetragonal phase MnIII(S = 0)
FeII(S = 0) (Fig. 1). The associated thermal hysteresis,
probed by magnetic measurements (Fig. 2), may reach up to
138 K for some systems. This phase transition involves two
types of instabilities: the nonsymmetry-breaking CT and the
ferroelastic distortion. On the one hand, the CT bistability was
theoretically described in terms of the Slichter-Drickamer or
Ising models [29,30] which did not account for the ferroelastic
symmetry-breaking. On the other hand, the cubic-tetragonal
ferroelastic distortion was deeply investigated in many
systems [31–36], and especially the associated volume
and tetragonal distortion strains. For RbMnFe, periodic DFT
methods provided also a correct description of the equilibrium
structures of the different electronic configurations [37].
However, there are several properties of RbMnFe, like the
change of magnetic susceptibility or the ferromagnetic order
at low temperature [38], that can only be explained by taking
into account both the ferroelastic distortion, responsible for
magnetic anisotropy, and the CT, responsible for the change of
spin state. The CT process induces an important volume strain
(10%), mediated by the cyanobridges through the lattice,
responsible for cooperative phase transitions, also observed

for non-symmetry-breaking CT-based phase transitions
[4–10,39]. Our analysis sheds light on the interpretation
of experimental data on the sample RbMn[Fe(CN)6]
[27,40–42], and shows that both the non-symmetry-breaking
CT (q) and ferroelastic symmetry-breaking distortion (η)
must be considered on an equal footing.

The paper is organized as follows. In Sec. II we discuss
experimental fingerprints of the phase transition in RbMnFe
in terms of the symmetry-breaking structural distortion and

FIG. 2. χMT vs T plot characterizing the CT-based phase tran-
sition between the MnIII(S = 2)FeII(S = 0) LT phase and the HT
MnII(S = 5/2)FeIII (S = 1/2) phase, revealing a ≈73-K-wide ther-
mal hysteresis.
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the non-symmetry-breaking CT process. In Sec. III we present
the Landau theory of the ferroelastic and the CT instabilities,
and their symmetry-allowed qη2 coupling, with a compre-
hensive analysis of the phase diagrams, and show that this
coupling opens a phase-transition line and broadens the ther-
mal hysteresis. In Sec. IV we discuss both theoretical and
experimental results and the important role of the elastic
coupling for RbMnFe materials. In Sec. V we conclude the
work and the interest of our generic phase diagram, which
can apply for describing various types of systems, for which
the coupling between non-symmetry-breaking electronic in-
stability and symmetry-breaking structural order is the key for
explaining the emergence of functions.

II. EXPERIMENTAL STUDY OF THE RbMnFe PBA

RbxMn[Fe(CN)6](x+2)/3 · zH2O, exhibits bistability be-
tween two phases with different structural and electronic
configurations (Fig. 1) [28]. The high-temperature (HT)
phase with a high entropy forms a FCC lattice with
metals in Oh ligand fields and an electronic configura-
tion MnII(S = 5/2)FeIII(S = 1/2). The low-temperature (LT)
phase is tetragonal, as Jahn-Teller (JT) distortion stabilizes
the MnIII(S = 2)FeII(S = 0) state with empty Mn(dx2 − y2)
orbital, with metals being in D4h ligand fields [43]. Various
techniques described the occurrence of Fe-to-Mn CT-based
phase transition from LT to HT phases at thermal equilibrium,
or under light irradiation [23,44,45].

As a case study, we discuss the experimental finger-
prints of the phase transition for the RbMn[Fe(CN)6] system.
The thermal dependence of its χMT product (molar mag-
netic susceptibility χM and temperature T) is shown in
Fig. 2 [27,40–42]. Upon warming, the χMT value charac-
teristic of the MnIII(S = 2)FeII(S = 0) LT state increases
around Tu = 304 K to reach a value characteristic of the
MnII(S = 5/2)FeIII(S = 1/2) state. Upon cooling from the
HT phase the χMT value suddenly drops around Td = 231 K,
resulting in a wide thermal hysteresis loop (Tu − Td = 73 K).
Similar first-order phase transitions were observed for various
chemical compositions, and the Rb concentration acts as a
chemical control of the hysteresis width, which reaches up to
138 K for Rb0.64Mn[Fe(CN)6]0.881.7H2O. The χMT evolution
is usually described through the thermal population of the
fraction γ of the MnIIFeIII HT state or the order parameter q:

γ = NMnII FeIII

NMnII FeIII + NMnIII FeII

and q = NMnII FeIII − NMnIII FeII

NMnII FeIII + NMnIII FeII

.

NMnII FeIII and NMnIII FeII denote the number of sites in each
CT state and γ = q+1

2 . In the fully MnIIFeIII phase q = 1,
while in the fully MnIIIFeII phase q = −1 (Fig. 2).

X-ray- and neutron-diffraction studies revealed important
structural changes of the 3D polymeric network during the
CT-based phase transition [40,46]. The space group of the
HT cubic phase is F 4̄3m (Z = 4) with a lattice parameter
aHT ≈ 10.56 Å. A symmetry breaking occurs in the LT phase,
with a tetragonal cell usually described in the conventional
space group I 4̄m2 (Z = 2aLT

′ = bLT
′ ≈ 7.09 Å and cLT ≈

10.52 Å). Here, we use the equivalent and nonconventional

FIG. 3. (a) Thermal evolution of the lattice parameters between
HT and LT phases. The solid lines mark the average values in each
phase. The vertical arrows refer to structural changes corresponding
to non-symmetry-breaking (nsb � q) and the symmetry-breaking
(sb � η) components. (b) Volume change scaled to 1−q

2 (right axis).
(c) Thermal evolution of the ferroelastic distortion 2√

3
(ezz − exx ) ∝

(arbitrarily scaled to 1).

F 4̄2m cell, for which the lattice vectors correspond to the
ones of the HT lattice. The lattice vectors (Fig. 1) of the
F 4̄2m (Z = 4) and I 4̄m2 space groups are related by aLT =
(aLT

′ − bLT
′) and aLT = (aLT

′ + bLT
′), with aLT ≈ 10.02 Å.

Figure 3 shows the evolution of the lattice parameters for
RbMn[Fe(CN)6] [40]. The ferroelastic distortion from cubic
F 4̄3m to tetragonal F 4̄2m space groups result in a splitting
of the lattice parameter aHT into aLT and cLT . The structural
instability occurs at the � point of the Brillouin zone and the
symmetry-breaking OP η belongs to the unique bidimensional
E representation of the 4̄3m point group. However, during the
phase transition these nanocrystals do not exhibit the expected
formation of the 3 domains, where the tetragonal axis may
point along aHT , bHT or cHT axis equivalent in the high
symmetry phase. This is characterized by the fact that in the
low-temperature phase there is not splitting of the Bragg peak
measured on an oriented film [46].

For the cubic-tetragonal phase transitions [33,36,47] two
strain parameters are involved:

(i) the ferroelastic cubic-tetragonal distortion strain corre-
sponding to the symmetry-breaking OP η ∝ 1√

3
(2ezz − exx −

eyy) = 2√
3
(ezz − exx ), monitoring deviation from the cubic
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FIG. 4. The structural deformations at the atomic scale within
the unit cell. In the HT phase the six Mn-N bonds are equivalent,
while in the LT phase there are four short (ds ≈ 1.89 Å along x and
y) and two long (dl ≈ 2.29 Å along z) bonds. The splitting �Mn-N
of the bond lengths relates to symmetry-breaking components (�η)
and the jump �〈Mn-N〉 of the average bond length to non-symmetry-
breaking components q (�γ ).

symmetry [Fig. 3(a)] of the LT lattice [35,48], with the to-
tal deformations measured during the phase transition exx =
aLT −aHT

aHT
, ezz = cLT −aHT

aHT
;

(ii) the volume strain vs(T ) = VLT (T )−VHT (T )
VHT (T ) .

The indexes “HT” refer to the value of the HT parameters
extrapolated at low temperature by a linear fit as suggested
by the thermal evolution. For purely ferroelastic phase tran-
sitions, the single symmetry breaking does not contribute
to vs in a first approximation, as the first-order components
of the spontaneous strain tensors’ distortion correspond to
vs = exx + eyy + ezz = 0. Figure 3(b) shows the large vol-
ume jump (vs ≈ 0.1) during the phase transition between
the HT and LT phases. It corresponds to an average varia-
tion of the lattice parameter �a = aHT − ac = 0.37 Å, with
ac = (2aLT + cLT )/3. The amplitude of this non-symmetry-
breaking distortion is similar to the symmetry-breaking
ferroelastic distortion, splitting of the lattice parameters with
cLT − aLT = 0.54 Å. Therefore, both symmetry-breaking and
non-symmetry-breaking deformations must be considered on
an equal footing. This deformation of the lattice translates in
the structural deformations within the unit cell, as observed
upon warming for example (Fig. 4). The structural analysis
evidenced the splitting of the six Mn-N bonds, equivalent in
the HT phase, into four shorter (ds ≈ 1.89 Å along x and y)
and two longer ones (dl ≈ 2.29 Å along z) in the LT phase
due to the JT distortion [27,40–42,45]. In addition, the average

FIG. 5. Temperature dependence of the C-N stretching mode of
the IR spectrum. At HT the six C-N bonds are equivalent, corre-
sponding to a single stretching mode observed around 2150 cm−1.
In the LT phase the band shifts around 2090 cm−1 is due to the
non-symmetry-breaking change of electronic state q (�γ ) and it
broadens due to the splitting of the CN modes related to the sym-
metry breaking (�η).

bond length 〈Mn-N〉 decreases from HT to LT due to the less
bonding nature of the HT MnII state with two electrons on
the eg orbitals. Here again, the amplitude of the splitting of
the Mn-N bond lengths scales with the symmetry-breaking
components (�η), while the average bond length change
�〈Mn-N〉 corresponds to non-symmetry-breaking compo-
nents q(∝γ ). Similar changes occur on the Fe-C bonds, with
a weaker splitting.

The coupled symmetry breaking and change of electronic
state also translate in IR data. Figure 5 shows the temperature
dependence of the C-N stretching mode in the cooling mode
[27]. In the HT phase, the six C-N bonds are equivalent with a
single stretching mode observed at ≈2150 cm−1. In the LT
phase, the band shifts around 2090 cm−1 as CT increases
the bonding strength, and splits as symmetry breaking gen-
erates inequivalent C-N bonds. The broad LT band includes
then several modes due to degeneracy lifting. Here again,
the splitting of the CN modes broadening the LT IR band
is due to the symmetry-breaking component (∝η) and the
average frequency jump is due to the non-symmetry-breaking
component related to the change of electronic state q(∝γ ).

To summarize, various experimental results reveal that
the changes observed during the phase transition include
symmetry-breaking and non-symmetry-breaking components,
which simultaneously change during the phase transition, with
similar amplitudes. Hereafter, we develop a theoretical model
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based on the Landau theory to describe the phase transition,
by taking into account both aspects to understand the origin
of the large thermal hysteresis domain of bistability.

III. LANDAU ANALYSIS OF THE PHASE TRANSITION

A. Landau development for the purely
ferroelastic phase transition

The cubic-tetragonal ferroelastic transition corresponds to
the symmetry change from the cubic space group F 4̄3m to
the nonconventional tetragonal space group F 4̄2m (Fig. 1).
Since the structural instability occurs at the � point of the
Brillouin zone, the phase transition is described by consid-
ering the group-subgroup relationship between the 4̄3m and
4̄2m point groups. As noticed above, the symmetry-breaking
OP η belongs then to the bidimensional E representation
of the 4̄3m point group, the basis of which is built with
two distortion strains: the orthorhombic strain (eo) and the
tetragonal strain (η). In the case of the cubic-tetragonal fer-
roelastic transition, the orthorhombic strain eo = exx − eyy =
0. The bidimensional symmetry-breaking OP η obeys the
transformation properties (2z2 − x2 − y2) of the JT mode
[33,36,47,49], with an anisotropic elongation along c and
contraction along a and b (Fig. 3). We use the scalar η defined
above as (2ezz − exx − eyy) in the simplest Landau develop-
ment of the thermodynamic potential for the cubic-tetragonal
transformation [36,48–51] truncated to the fourth order in η:

F = 1
2 aη2 + 1

3 bη3 + 1
4 cη4

with a = a0(T − TF )(a0 > 0). We use b < 0 for stabilizing
the JT elongation, while c > 0 stabilizes the tetragonal orien-
tation along the principal directions [36,49] resulting in three
equivalent domains elongated along c, a, or b. The stability of
the different phases is found from dF

dη
= 0 and dF 2

dη2 > 0. η = 0

is stable for a > 0(T > TF ), while η = (−b+
√

(b2−4ac))
2c is sta-

ble below T2 = TF + b2

4ca0
. Both the analytical and numerical

[Fig. 6(a) ] studies from this model illustrate common trends
of cubic-tetragonal ferroelastic transitions: the phases coexist
in the [TF -T2] range and the amplitude of η changes discontin-
uously, as e symmetry-allowed 3 term in the development of
the Landau potential is responsible for the first-order nature of
the phase transition [48].

Figure 7 shows the strongly first-order nature of the transi-
tion. However, the thermal evolution of η (and vs), remaining
almost constant in the LT phase, cannot be represented by the
standard solutions of the potential for first-order phase tran-
sitions. In addition, exx ≈ −0.0511 and eZZ ≈ −0.0038 do
not obey the conditions for cubic-tetragonal distortion, 2exx =
2eyy = −ezz [33,36,47] which merits closer inspection. The
volume of the LT phase is VLT = a2

LT cLT ≈ 1054.9 Å3, while
the average “cubic” LT lattice with parameter ac corresponds
to the volume Vc = a3

c ≈ 1055.7 Å3. Therefore, the volume
difference (VLT − Vc ≈ −0.8 Å3) due to the ferroelastic sym-
metry breaking only is much smaller than the volume change
(VHT − VLT ≈ −121 Å3) between the HT and LT phases.
Therefore, the conventional Landau theory of cubic-tetragonal
phase transition with a single ferroelastic order parameter is
not sufficient for understanding the phase transition and the

FIG. 6. Temperature dependence along A of uncoupled (D = 0)
order parameters η and q. (a) Thermal evolution of the equilibrium
value of the symmetry-breaking order parameter η for a1 = −5, 0,
and +5. The width of the coexistence region between η > 0 and
η = 0 is �AF . (b) The equilibrium evolution of q describes the CT
transition curve and the width of the coexistence region between
q > 0 and q < 0 is �ACT . When D = 0, the behavior of q is un-
changed with a1, which only shifts the relative position of TF with
respect to TCT . �ACT and �AF are similar with the parameters used
(a0 = 0.1, TF = 200, b

3 = −2, c
4 = 3, B

2 = −1, C
4 = 3, TCT = 200).

FIG. 7. Symmetry-adapted strains calculated from the lattice pa-
rameters shown in Fig. 3. The cubic-tetragonal distortion strain η2 ∝
e2

xx,sb(a), the total volume strain vs (b) and the symmetry-breaking
volume strain vη (c). (d) The strain-strain relationship between vs and
e2

xx,sb (d) has an affine nature and is mainly due to nsb deformations.
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large vs in RbMnFe, and the contribution from another order
parameter must be questioned.

In the family of cyanide-bridged bimetallic systems, in-
cluding non-symmetry-breaking CT-based phase transitions,
the volume change is known to be due to the CT process,
which modifies the population of antibonding eg-like orbitals
[4–10,46], but which does not break symmetry. As explained
by Carpenter [52], in such a case it is necessary to express
the total strain due to the phase transition as the sum of
two tensors: [e] = [esb] + [ensb]. [esb] is the strain related to
symmetry-breaking deformations, and [ensb] is the strain re-
lated to non-symmetry-breaking deformations proportional to
a unity matrix. Since [esb] transforms as the irreducible repre-
sentation E of the HT 4̄3m point group and [ensb] transforms
as the identity representation, we must consider the following
relationships between the components of the tensors:[exx 0 0

0 exx 0
0 0 ezz

]
=

[exx,sb 0 0
0 exx,sb 0
0 0 −2exx,sb

]

+
[exx,nsb 0 0

0 exx,nsb 0
0 0 exx,nsb

]

with exx,nsb = 1
3 (2exx + ezz ) and exx,sb = 1

3 (exx − ezz ).
Typical values aHT = 10.56 Å, aLT = 10.02 Å,

cLT = 10.52 Å correspond to exx = −0.0511, ezz =
−0.0038, exx,nsb = ezz,nsb = −0.0353, exx,sb = −0.0158,

ezz,sb = 0.0315.
As shown in Fig. 3(a), exx,nsb describes the average lattice

parameter change from aHT to ac, while exx,sb describes the
lattice parameter change from ac to aLT .

The ferroelastic distortion strain is:
c(T ) − a(T )

aHT (T )
= 2√

3
(ezz,sb − exx,sb) = − 6√

3
(exx,sb),

with

exx,sb = eyy,sb = a(T ) − ac(T )

aHT (T )
,

ezz,sb = c(T ) − ac(T )

aHT (T )
= −2exx,sb.

We decompose the total volume strain vs in symmetry-
breaking (sb) and non-symmetry-breaking (nsb) components,
as done for the symmetrically similar cases of leucite and
D3C-THF [35,53] with vs = VLT −VHT

VHT
= VLT −Vc

VHT
+ Vc−VHT

VHT
.

Since vs is more than a few percent, it is necessary to use
second-order sb and nsb terms:

(i) the symmetry-breaking volume strain,

vη = VLT − Vc

VHT
= (1 + exx,sb)(1 + exx,sb)(1 + ezz,sb) − 1

≈ −3exx,sb
2;

(ii) the non-symmetry-breaking volume strain,

vCT = Vc −VHT

VHT
= (1+ exx,nsb)(1 + exx,nsb)(1 + ezz,nsb) − 1

≈ 3exx,nsb + 3exx,nsb
2,

vs = vCT + vη = 3exx,nsb + 3exx,nsb
2 − 3exx,sb

2

= vCT − 3exx,sb
2. (1)

The typical values are vη = −0.0008, vCT = −0.1022 and
vs = −0.103.

The ferroelastic strain c hanges the shape of the unit
cell, while an additional strain vCT alters the volume. Some
symmetry-breaking deformation related to η2 may contribute
to exx,nsb in (1). However, the contribution to the volume strain
vs of the nsb component reaches vCT = −0.102 for η = 0,
which is similar to the value reported for non-symmetry-
breaking CT [24] including the Rb0.73MnFe compound
[39]. Therefore the contribution of η2 to vs is mainly limited
to v [Fig. 7(c)], which provides the affine relationship (1)
between vs and exx,sb

2 shown in Fig. 7(d). However, since
vη � vs, vs ≈ vCT , and vs is therefore mainly driven by the
evolution of q, i.e., the fraction γ of the CT state MnIIIFeII,
transforming as the identity representation. Consequently, the
volume strain can be scaled to vs ∝ (1 − γ ) ∝ ( 1−q

2 ) as shown
in Fig. 3(b). The non-symmetry-breaking components play
therefore an important role in the modification of various
physical quantities, and we analyze hereafter the CT aspect
responsible for the large vs. It is well known that such a simple
Landau development is virtually never the correct potential in
ferroelastics, as coupling to other degrees of freedom is often
involved [54].

B. Landau development for the purely CT phase transition

We describe the CT transition, accounting for the trans-
formation from MnIIIFeII to MnIIFeIII states, similar to
CT-based transitions in CoFe or CoW systems [4–10,46].
These isostructural phase transitions are often of first-order
nature, due to the elastic cooperativity related to large volume
change, as monitored through the fraction γ of MnIIIFeII state
(Fig. 2) and the OP q describes the electronic instability and
transforms as the identity representation of the 4̄3m point
group. For isostructural transitions associated with a totally
symmetrical OP x, all powers of scalar x are allowed by
symmetry in the thermodynamic potential, truncated here at
the fourth-order term,

F = A′x + 1
2 B′x2 + 1

3C′x3 + 1
4 D′x4.

Substituting q = x − 1
4C′ eliminates the third-order term,

which limits the number of parameters in the potential, and
allows for describing the symmetric evolution of q during the
CT phase transition. Therefore, we use a potential similar to
the one introduced by Chernyshov [16] for describing non-
symmetry-breaking spin-transition phenomena [17,55–57]:

F = Aq + 1
2 Bq2 + 1

4Cq4, (2)

with A = −a0(T − TCT ), to stabilize the MnIIIFeII state
(q < 0) below the CT transition temperature TCT , C > 0 for
stability, and B < 0 to promote cooperativity. The stability of
the different phases is found from dF

dq = 0 and dF 2

dq2 > 0. At
T = TCT (A = 0) q = 0 is unstable, while the two symmetric
stable solutions are q = ± B

C . The evolution of the thermal
equilibrium value of q with A provides the CT transition curve
in Fig. 6(b), from predominantly MnIIFeIII (q > 0, HT) to
predominantly MnIIIFeII (q < 0 LT) phases. Due to B < 0,
the thermal evolution of q has a characteristic “S” shape,
corresponding to a thermal hysteresis inherent to first-order
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TABLE I. Values and ranges of the parameters of the potential.

Parameter a, a1 b/3 c/4 B/2 C/4 D

Value ─6–6 ─2 3 ─2, 2 3 0, 1, 2, 4

CT-based phase transitions. The width of the coexistence re-
gion between the phases is �ACT = 4C( −B

3C )3/2.
In the potentials used above, we considered independently

the ferroelastic transition occurring at TF , and the CT transi-
tion occurring at TCT . These phase transitions may then occur
simultaneously only at a single point of the phase diagram,
where TF = TCT . This case does not correspond to a phase
transition line between the MnIIFeIII high-symmetry and the
MnIIIFeII low-symmetry phase, and for describing the phase
transition it is then necessary to consider the coupling between
the order parameters q and η.

C. Linear quadratic coupling between q and η

For analyzing the evolution of the thermodynamic potential
with q and η, we add to their individual contributions the cou-
pling term of lowest order Dqη2 always allowed by symmetry:

F = 1
2 aη2 + 1

3 bη3 + 1
4 cη4 + Aq + 1

2 Bq2 + 1
4Cq4 + Dqη2,

(3)

with A = −a0(T − TCT ) and a = −A − a1. a1 = −a0

(TCT − TF ) measuring the difference of temperature
instability between the CT phase transition and the ferroelastic
phase transition. Here again we consider the OP η as scalar,
keeping in mind the threefold symmetry corresponding to
the three domains elongated along z, y, or x. We calculate,
with the parameters of the potentials previously used for the
purely ferroelastic and CT phase transitions, the evolution
of this potential with A and a1 and for different couplings
D. The different phases that appear for different (a1, A)
are characterized by the equilibrium values of the OP
corresponding to a minimum of the potential in the (q, η)
space (Fig. 8) with dF

η
= 0, dF

dq = 0, dF 2

dη2 > 0, dF 2

dq2 > 0, and
dF 2

dqdη
> 0.

The phase space to explore with the parameters in Eq. (3)
is limited and their values or ranges used for simulations
are given in Table I. As explained above, b < 0 is used for
stabilizing the JT elongation, B < 0 to promote CT coopera-
tivity, c > 0 and C > 0 for stability. D > 0 is also required to
stabilize the LT and low-symmetry phase (q < 0, η > 0). The
relative change of parameters modifies the cooperative nature
of the phase transitions but the qualitative features remain
similar.

Phase I (q > 0, η = 0) corresponds to the HT and high-
symmetry MnIIFeIII phase. With respect to phase I, phase II
(q < 0, η = 0) corresponds to a non-symmetry-breaking CT
phase transition, phase III (q < 0, η > 0) corresponds to the
LT MnIIIFeII phase with CT and ferroelastic distortion, and
phase IV (q > 0, η > 0) corresponds to a purely ferroelastic
distortion without CT. Without coupling (D = 0), the stability
conditions of the phases combine the results for the ferroe-
lastic and CT transitions, which are presented in the (a1, A)
space (Fig. 9) . The thermal evolution corresponds to a vertical

FIG. 8. Contour map of the potential (3) showing the evolution
of the equilibrium positions indicated by the red dot in the (q, η)
space and corresponding to phase I (HT), phase II, phase III (LT),
and phase VI.
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FIG. 9. Phase diagrams in the in (a1, A) space. (a) D = 0: the
CT transition occurs at A = 0 (dotted line), with a hysteresis width
�ACT . The ferroelastic transition occurs at A = −a1 (thick line) with
a hysteresis width �AF . (b) Shift of the transition lines due to the
coupling D = 1, (c) for D = 2 and (d) for D = 4. The colors show

line along A, with T increasing from A > 0 to A < 0. For the
CT aspect, the phase-transition line between the phases q > 0
(I and IV) and q < 0 (II and III) is centered at A = 0 and a
coexistence region �ACT . For the ferroelastic aspect, the limit
of stability of the high-symmetry phase (η = 0) corresponds
to A = −a1, while the coexistence region is �AF . For D =
0, the four phases appear in the phase diagram [Fig. 9(a)]
and coexist around (a1 = 0, A = 0). However, the transition
between phases I and III, corresponding to the HT and LT
phases of RbMnFe, occurs only at this single point of the
phase diagram (a1 = 0, A = 0), which does not correspond
to a phase-transition line between phases I and III. The state
(q = 0, η = 0) is always unstable with B < 0.

By introducing in (3) a coupling term D 	= 0, the equi-
librium η = 0 is found for a + 2Dq > 0 and q2 > −B

3C . For
η = 0 the potential (3) corresponds to (2) for the isostruc-
tural CT transition from phase I to phase II, with a width
of bistability �ACT [Figs. 9(b)–9(e)]. The nonzero solution

is η = (−b+
√

(b2−4(2Dq+a)c)
2c for A > −a1 − b2

4c + 2Dq.
Writing (3), F = 1

2 (a + 2Dq)η2 + 1
3 bη3 + 1

4 cη4 + Aq +
1
2 Bq2 + 1

4Cq4 highlights that D renormalizes the η2 coeffi-
cient, shifting TF between phases II and III to TF

′ = TF − 2Dq
a0

.
η 	= 0 is then stable for −a1 > A + 2Dq. Compared to the
case without coupling, Fig. 9(b) shows that the coupling terms
(i) shift the stability region along A between phases III and
II for which q < 0 by −|2Dq|, (ii) shifts the stability region
between phases I and IV for which q > 0 by +|2Dq|. These
transition lines are distorted because q is not constant in the
phase diagram.

Writing (3), F = 1
2 aη2 + 1

3 bη3 + 1
4 cη4 + (A + Dη2)q +

1
2 Bq2 + 1

4Cq4 highlights that D shifts the III-IV transition

temperature to TCT ′ = TCT + Dη2

a0
. As shown in Fig. 9(b), this

CT transition line is bent since η is not constant along the
transition line. The I-III phase transition line is also affected
by the coupling. For phase I the stability condition is A <

−a1 and for phase III it is A > −a1 − b2

4c + 2Dq with q < 0.
The I-III hysteresis width increases then with the coupling
strength D:

�A = b2

4c
+ |2Dq|. (4)

It is therefore the coupling term which opens the I-III phase
transition line and enlarges the bistability region of the phases.
Except for the non-symmetry-breaking phase transition line
I-II, which is unaffected, calculating the exact shifts of the
phase-transition lines is complex and without analytical so-
lution, as the amplitude of both q and η depend on (A, a1).
However, it is possible to compute the evolution of the po-
tential and to find for each (A, a1) the stable and metastable
(η, q) values characterizing the different phases. The phase
diagrams obtained in this way for different couplings D = 0,
1, 2, 4 are shown in Fig. 9. Phases II and IV are destabilized

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
the regions of stability and coexistence of the different phases. The
dark green area marks the region of coexistence of the phases I and
III. The parameters of the potential are those used in Fig. 6. For each
panel the dotted lines correspond to A = 0 and A = −a1.
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FIG. 10. Evolution of q and η with A for a1 = 0. The hysteresis
broadens with coupling strength D.

by the coupling term, while phases I and III are stabilized
over broader regions of the phase diagram. For discussing the
phase diagram with a potential truncated at fourth order, it is
sufficient to consider the qη2 term of lowest order. Indeed, due
to symmetry, including the q2η2 coupling term would simply
balance the relative stability between phases where η = 0 or
η 	= 0 and shift the transition lines in one way or another
depending on the sign of the coupling, while the q3η term is
not allowed by symmetry. It is therefore the qη2 term which is
responsible for the main features.

Figure 6 shows the thermal evolutions of q and η for
D = 0 and a1 = −5, 0, +5. The behavior of q is unchanged as
the CT transition is centered at a1 = 0. The thermal evolution
of η shifts with a1 = a0(TCT − TF ), but since the OPs are
uncoupled, there is no discontinuous change of one OP when
the other one changes during the transition. The hysteresis
widths �ACT and �AF are chosen similar with the parameters
used for the pedagogical purpose. Figure 10 shows at a1 = 0
the effect of the coupling strengths D on the thermal evolution
of the OP q and η. Due to the coupling, they change simul-
taneously and discontinuously during the phase transition. As
indicated in Eq. (4), the width of the I-III hysteresis increases
with the coupling strength D, as shown in the phase diagrams
with the dark green area (Fig. 9), and becomes larger than
�ACT and �AF . Figure 11 shows the thermal evolution for
D = 4 and a1 = 0–6. The width of the thermal hysteresis
remains similar, but the hysteresis loops are shifted towards
higher temperature when a1 = a0(TCT − TF ) increases.

Figure 12 shows the role of the degree of cooperativity of
the CT aspect by showing the evolution with A at a1 = 0 of the
OP q and η when D = 2 for B = ±2. The hysteresis is much
larger for B < 0 (cooperative CT transition) while for B > 0 it
is similar to the region of coexistence of the purely ferroelastic
transition for D = 0, even for large coupling. Indeed, B < 0
constrains a discontinuous change between q < 0 and q > 0,
with q2 >

|B|
3C , which increases the hysteresis width between

phases I to III as �A = b2

4c + |2Dq| (4). For B > 0, q can
approach 0 at the transition, which reduces �A. This key
role of the cooperative nature of the CT agrees with the fact

FIG. 11. Evolution of q and η with A for D = 4. The hysteresis
shifts with a1, keeping similar width.

that many CT PBA, like CoFe or CoW systems [9,10,58,59],
exhibit first-order CT transition, without symmetry change.
Using B < 0 is more relevant in the model and corresponds to
experimental observations like the broad thermal hysteresis.

IV. DISCUSSION FOR RbMnFe SYSTEMS

The experimental data reveal two types of changes in
physical parameters: transforming like the non-symmetry-
breaking OP q (or γ ) or the symmetry-breaking OP η. The
temperature dependences of the order parameters are sum-
marized in Fig. 13(a). The evolution of the ( 1−q

2 ) is obtained
from the volume strain vs, which is mainly driven by the CT
[Fig. 3(b)], and the intensity of the IR band at 2150 cm−1

(Fig. 5), which provides an apparent tilt of the hysteresis
branches during the phase nucleation due to the local nature
of the probe. The relative evolution of η can be extracted from
the width of the IR band in the LT phase (Fig. 5), the splitting

FIG. 12. Evolution with A for a1 = 2 of q and η with D and
B. The hysteresis is broader for cooperative CT transition (B < 0).
For B > 0 the hysteresis is due to the ferroelastic transition, as q
undergoes a crossover (blue).
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FIG. 13. Thermal evolution of ( 1−q
2 ) or γ (right axis), and η.

(a) Experimental data. (b) Theoretical results from the potentials (3)
for D = 4 scaled to temperature. The elastic couplings broaden the
hysteresis and limit the thermal dependence of the order parameters
(η is normalized to 1 for clarity).

of the lattice parameters [Fig. 3(a)], and the splitting of the
Mn-N bond lengths (Fig. 5).

The results from the Landau model in Eq. (3) shown in
Fig. 13(b) are in qualitative agreement and highlight the role
of the coupling term in the broadening of the thermal hys-
teresis, as well as the coupled and discontinuous evolution
of the order parameters (q, η) during the phase transition.
However, contrary to experiments, the model exhibits some
temperature dependence of the OP. This shortcoming may
be due to developing the expansion of the thermodynamic
potential in minimal form and up to fourth-order terms only.
For the same reason, the non-symmetry-breaking transition
does not exhibit Heaviside step-like change of CT observed
in many systems from HT phase where q = 1 to LT phase
where q = −1 [9,10,58,59]. Instead, our model provides some
pretransitional variations, also obtained with other models
describing the CT transition [29,30]. Our theoretical model
can mimic various experimental observations, and it is the
symmetry-allowed lowest-order coupling, Dqη2, which is re-
sponsible for key features in the phase diagram (i) opening a
phase transition line between phases I (HT) and III (LT), (ii)
broadening the width of the thermal hysteresis, (iii) driving
simultaneous changes of the OP.

For a deeper understanding of the processes coming into
play, the nature of the coupling D introduced phenomenolog-
ically, and stabilizing a ferroelastic distortion in the MnIIIFeII

LT phase, should be discussed. Compared to the cubic
MnIIFeIII state with two electrons in the eg orbitals, the LT
MnIIIFeII state is more bonding as there is a single electron on
the eg-like antibonding orbitals, which results in an average
shortening of the Mn-N and Fe-C bonds and a decrease of
the volume of the MnN6 and FeC6 octahedra. The change
of electronic state from MnIIFeIII to MnIIIFeII results in a
non-symmetry-breaking change q of the population of the
eg orbitals. However, the MnIIIFeII state is stabilized by a
symmetry-breaking structural reorganization, which lifts the
degeneracy between the Mn(dx2 − y2) and Mn(dz2) states,
stabilizing the occupied dz2 orbital. The corresponding JT
distortion, leading to shorter Mn-N bonds along x and y com-
pared to z, transforms like the bidimensional E representation
of the HT point group 4̄3m.

This strong coupling between electronic and structural re-
organization is the microscopic origin of the qη2 coupling
as the CT (q) is stabilized by the JT distortion (η) [43].
The changes of q and η occur in a cooperative way within
the 3D polymeric lattice, mainly due to the elastic cost, and
are responsible for lattice strains. Like the chicken or the
egg causality dilemma, the relative role of non-symmetry-
breaking (q) and the symmetry-breaking (η) changes may
be questioned. However, the fact that the isostructural com-
pounds Rb0.73MnFe undergoes the MnIIFeIII to MnIIIFeII CT
phase transition without symmetry breaking [39], like many
other cyanobridged CT metal complexes [9,10,58,59], sug-
gests that the ferroelastic strain may be regarded as driven by
the CT rather than driving.

In these volume-changing phase transitions, where
molecular-based deformations propagate at the macroscopic
scale, elastic energy terms must be considered. In the case
of conventional cubic-tetragonal ferroelastic distortions elas-
tic terms due to symmetry breaking (vη ) contribute to the
potential. On the other hand, in the case of the non-symmetry-
breaking CT phase transition, only q, or vCT , are considered
due to the change in the bonding nature of the lattice ac-
companying the change of electronic state [3,60,61]. For
RbMnFe, during the phase transition between LT and HT
phases, both instabilities related to structural deformations of
different symmetries contribute then to the total volume strain
(vs = vη + vCT ). Since vs and q transform as the identity
representation A1 and η as the representation E, we add the
symmetry-allowed elastic terms to the ferroelastic and CT
potentials:

F = 1

2
aη2 + 1

3
bη3 + 1

4
cη4 + Aq + 1

2
Bq2 + 1

4
Cq4

+ ληvsη
2 + λqvs

(
1 − q

2

)
+ 1

2
C0

s v2
s ; (5)

1
2C0

s v2
s is the elastic energy related the total volume strain vs,

λvsη
2 is the elastic coupling to vs of the ferroelastic OP and

is zero in the HT phase, λqvs(
1−q

2 ) is the elastic coupling to
vs of the CT conversion scaling as ( 1−q

2 ) to be zero in the HT
phase and similar to the elastic energy introduced for volume-
changing spin-crossover materials [62].
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Equation (5) provides the well-known relationship between
elastic energy and coupling energy:

ληvsη
2 + λqvs

(
1 − q

2

)
= −C0

s v2
s = −2

(
1

2
C0

s v2
s

)
,

where the energy gain due to the elastic coupling is twice
larger than the elastic energy cost [32].

The equilibrium value of vS minimizing the potential (5) is

vs = −
[
λq

( 1−q
2

) + ληη
2
]

C0
s

= − λq

C0
s

(1 − q

2

)
− Ke2

xx,sb. (6)

This affine relationship between e2
xx,sb (or η2) and vs

agrees with Eq. (1) found from the non-symmetry-breaking
and symmetry-breaking components of the deformations [see
Fig. 7(d)].

Substituting vs in Eq. (5) renormalizes some coefficients of
the Landau expansion:

F = 1

2

(
a − ληλq

C0
s

)
η2 + 1

3
bη3 + 1

4

(
c − λη

2

2C0
s

)
η4

+
(

A + λq
2

4C0
s

)
q + 1

2

(
B − λq

2

8C0
s

)
q2

+ 1

4
Cq4 +

(
ληλq

2C0
s

)
qη2 (7)

It appears then that it is the elastic couplings of each OP to
the volume strain which lead to an effective linear-quadratic
coupling strength D between the order parameters, related to
the elastic constant C0

s , with D = ληλq

2C0
s

. The renormalization
shifts the temperatures TCT and TF .

Regarding the family of RbxMn[Fe(CN)6](x+2)/3 · zH2O
materials, our model is sufficiently flexible to map several
scenarios found experimentally. In the case of the RbMnFe
system The linear coupling of ( 1−q

2 ) to vs also affects the

CT instability, making the q2 coefficient (B − λq
2

8C0
s

) more neg-
ative and broadening the CT hysteresis width �ACT . This
explains why the thermal hysteresis is of similar order for the
Rb0.73MnFe compound undergoing non-symmetry-breaking
CT-based phase transition [39]. The broadening of the ther-
mal hysteresis with the coupling strength due to the elastic
coupling (Fig. 10) is similar to the broadening observed under
chemical pressure. Indeed, when the fraction x of Rb alkali
changes from 1 to 0.64, the hysteresis width expands from
73 to 138 K [27]. The Rb concentration x allows then for
a chemical control of the coupling strength, since the Rb
acts as a spacer within the lattice. On the other hand, the
thermal shift of the hysteresis, on the order of 0.026 K/bar
[63] under hydrostatic pressure, is similar to the shift with
a1 = a0(TCT − TF ) shown in Fig. 11. Indeed, pressure stabi-
lizes lower volume states towards higher temperature, but the
volume strain vCT due to CT is much larger than the volume
strain vη due to the ferroelastic transition. Consequently, TCT

increases more with increasing pressure than TF and a1 is
then analogous to pressure. Our theoretical model can also
be used to describe I-II non-symmetry-breaking CT transi-
tions observed in various materials belonging to the family of
cyanobridged CT metal complexes [9,10,58,59], which may
be of first-order (B < 0) or crossover (B > 0) nature. The

model also describes ferroelastic phase transitions in PBA [4],
without CT, analogous to the I-IV or II-III phase transitions,
and it also predicts sequences of CT and symmetry-breaking
phase transitions (I-II-III or I-IV-III).

V. GENERALIZATION OF THE MODEL
TO OTHER SYSTEMS

The Landau model discussed here, where a non-symmetry-
breaking electronic instability related to an OP q may couple
to a symmetry-breaking instability η in a linear-quadratic
way, applies to various systems. For example, it can de-
scribe the phase transition reported in a few spin-crossover
materials, for which the non-symmetry-breaking change of
spin state (q) couples to a ferroelastic distortions (η) and
results in a broad thermal hysteresis [21,64–66]. The model
also accounts for totally symmetric changes of electronic
state in one-dimensional organic conductors coupled to fer-
roelastic distortion [67]. The phase diagram in Fig. 9(d) is
also similar to the one of V2O3, exhibiting a non-symmetry-
breaking phase transition I-II between the metal trigonal
phase and the Mott insulator trigonal phase, and symmetry-
breaking transition lines I-III or II-III between these phases
and the monoclinic Mott insulator phase [2]. This phase
diagram is also similar to the one of TTF-CA undergoing
a neutral-ionic transition [15,68], where a non-symmetry-
breaking CT between electron donor and acceptor molecules
and a ferroelectric symmetry-breaking phase transition can be
concomitant (I-III) or sequential (I-II and II-III). The Ti3O5

material is another type of system which undergoes a se-
quence of phase transitions with an orthorhombic (Cmcm)
to monoclinic (C2/m) ferroelastic transition around 500 K
between two metallic phases and a non-symmetry-breaking
phase transition around 450 K towards a semiconducting
phase (C2/m) [69]. This corresponds to the sequence of
phases I-IV-III in our model. The non-symmetry-breaking
IV-III semiconducting-to-metallic phase transition is associ-
ated with a wide domain of bistability due to large volume
strain, allowing for reversible photoswitching within the
hysteresis [13].

These phase diagrams or sequences of phases are also
similar to the gas-liquid-solid one, with three transition lines
meeting at a triple point. The phase transition I-II is the
non-symmetry breaking one (gas-liquid-like) related to a dis-
continuous change of q, equivalent to density. The phase
transition II-III is the symmetry-breaking one (liquid-solid-
like) related to a change from η = 0 to η 	= 0. During the
phase transition I-III (gas-solid-like) q and η change in a
coupled way. It is important to underline that for the different
examples mentioned above, the non-symmetry-breaking elec-
tronic instability (Mott transition, semiconducting-metallic,
neutral-ionic transition, spin transition, CT …) originates
from a relative change of the occupation (q) of antibonding
electronic states, which, by coupling linearly to vs, drives
an elastically cooperative phase transition with spectacu-
lar changes of various types of physical properties. When
symmetry-breaking components come into play, the volume
strain may also couple to the symmetry-breaking OP through
the qη2 term and the non-symmetry-breaking and symmetry-
breaking phase transitions may be concomitant or sequential.
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VI. CONCLUSION

We used the Landau theory to study phase transitions
where an electronic instability, related to a non-symmetry-
breaking OP q, and a symmetry-breaking instability, related
to an OP η, may occur simultaneously due to their elas-
tic coupling qη2. The phase diagrams obtained highlight
the importance of non-symmetry-breaking changes related
to electronic instabilities, strongly changing the bonding na-
ture of the lattice, and responsible for large volume strain
that may drive cooperative phase transitions. This general
model, taking into account the coupling between symmetry-
breaking and non-symmetry-breaking components, is suffi-

ciently flexible to describe phase diagrams in various types of
materials.
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