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Skyrmion spin transfer torque due to current confined in a nanowire
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In this work we compute the torque field present in a ferromagnet in contact with a metallic nanowire when a
skyrmion is present. If the nanowire is narrow enough, then the current is carried by a single conduction band. In
this regime the classical torque model breaks down and we show that a skyrmion driven by spin transfer torque
moves in a different direction than predicted by the classical model. However, the amount of charge current
required to move a skyrmion with a certain velocity in the single-band regime is similar to a classical model of
torque where it is implicitly assumed current transport by many conduction bands. The single-band regime is
more efficient creating spin current from charge current because of the perfect polarization of the single band
but is less efficient creating torque from spin current. Nevertheless, it is possible to take profit of the single-band
regime to move skyrmions even with no net charge or spin current flowing between the device contacts. We have
also been able to recover the classical limit considering an ensemble of only a few electronic states. In this limit
we have discovered that electron diffusion needs to be considered even in ballistic nanowires due the effect of
the skyrmion structure on the electron current.
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I. INTRODUCTION

Skyrmions were first introduced in 1962 by Tony Skyrme
as a nucleon model [1]. They have since found application in
condensed matter physics within the field of spintronics. In
this context, a skyrmion is a topological magnetic structure
characterized by a definite Chern number [2]. There are two
kinds of skyrmion structures, Bloch skyrmions characterized
by azimuthal magnetization in the skyrmion boundary and
Néel skyrmions where the magnetization is radial on the
boundary [3,4]. Skyrmions are created by the balance between
exchange and Dzyaloshinskii–Moriya interaction (DMI) or
also alternatively with dipole-dipole interaction [5]. Exchange
interaction wants to drive the local magnetic moment of the
ferromagnet to a minimum energy configuration where all the
spins are aligned while the minimum energy configuration
with DMI is attained where neighboring spins are perpendic-
ular [6,7].

Bloch skyrmions have been found in ferromagnetic layers
where the DMI originates from the inversion symmetry break-
ing within a unit cell of the crystal in combination of their
own material spin-orbit interaction [8–10]. However, Néel
skyrmions are found in interfaces between a ferromagnet and
heavy metal layers where the symmetry breaking is caused
by the interface [11–13]. A strong spin-orbit coupling is also
necessary which can be provided by the heavy metal. In this
work we will focus on this last case because it will provide to
us a larger control of the device physical geometry.
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Skyrmion movement is possible using spin transfer torque
(STT) or spin-orbit torque (SOT) mechanisms [14]. Both
mechanisms have a common origin in the sd exchange inter-
action between the spin of the conduction electrons and the
local magnetization of the ferromagnet. Torque models driven
by spin currents may be applied to domain walls and other
magnetic structures [15] and in the presence of skyrmions this
torque induces skyrmion movement [3,4]. Skyrmion move-
ment by spin torque has been proposed as a basis of logic
[16,17] and memory [3,4,18] devices. The breakdown of
Moore’s law for small devices in CMOS technology has
led to an increasing interest of spintronic technologies with
skyrmions because the limits in power consumption and sta-
bility of future CMOS and memory devices.

Skyrmion memory devices [4] were proposed as an
improvement over the racetrack memory [19] where the infor-
mation is encoded in magnetic regions separated by domain
walls (DW). In skyrmion racetrack memories the skyrmions
take the role of the DW increasing the amount of information
per unit surface and lowering the power consumption with
respect their DW counterparts.

In this work we will focus on the movement of Néel
magnetic skyrmions using spin transfer torque STT in a quasi-
2D interface between a ferromagnet and a narrow metallic
wire. A quantum mechanical approach for electron transport
is needed to model conduction in a narrow nanowire where
the transverse conduction bands are well separated in energy.
Up to this moment most of the skyrmion movement by STT
reported in literature [20–22] has used the classical torque
term proposed in Ref. [15]. A few works have dealt with a
quantum mechanical model of current in relation to skyrmion
movement trough spin torque [23,24] but with a very different
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FIG. 1. Device model schematic. The skyrmion appears in the
ferromagnet but is driven by the torque created by the conduction
electrons of the nanowire.

set of boundary conditions, resolution methods and objectives
than this paper.

In a narrow nanowire it is possible to achieve a sizable
spin current due to the transport of electrons in a single fully
polarized band. The resulting torque field from the interaction
between the spin degrees of freedom of the conduction elec-
trons and the skyrmion magnetic structure is different from
the torque field predicted by the classical model [15]. We
will show how with spin current originating from a single
polarized band it is possible to have skyrmion movement even
in zero power conditions. Furthermore, we will show how in
this regime the presence of skyrmions leave a signature in the
conductance of the nanowire current.

Finally, we will recover the classical torque field consid-
ering an ensemble of the spin of various electronic states in
the multi-band regime. Comparing the result with the classi-
cal model for the torque we have discovered that the terms
that arise due electron diffusion are needed even in ballis-
tic nanowires due to the scattering effect of the magnetic
skyrmion structure.

The paper is divided in four sections: Section I: Intro-
duction presenting the general concepts and background.
Section II: Theoretical model and formalism where it is de-
scribed the numerical method needed to calculate the torque
field and skyrmion movement. Section III: Results where the
topics summarized above are presented and discussed. Sec-
tion IV: Conclusions presented as a summary of key results
and some additional comments.

II. THEORETICAL MODEL AND FORMALISM

A. Quantum model

In this work we will consider a model of a quasi-2D in-
terface between a ferromagnet and a metallic nanowire as
shown Fig. 1. The ferromagnet provides the nonitinerant spin
degrees of freedom that support the skyrmion while an elec-
tronic current flows through the metallic nanowire connected
to two terminals, left L and right R. The torque is caused by
an action-reaction force applied in equal measure but with
different sign on the skyrmion magnetic structure and on the
itinerant electrons due the sd exchange interaction between
the spin of the conduction electrons and the spin of the lo-
calized electrons in the ferromagnet. To model the dynamics
of the magnetization we derive here the torque terms for the
Landau-Lifshitz (LL) equation from a quantum mechanical
model.

We start assuming that spins of itinerant and localized elec-
trons interact at the interface where they are in close proximity
to each other. The interface is modeled as a 2D grid where
each position represents an atom of the crystal lattice sepa-
rated by a distance ac. The interface between the ferromagnet
and the nanowire is described by a quantum Hamiltonian,

Ĥ = Ĥ0 + Ĥdis, (1)

where

Ĥ0 = ĤZ + Ĥex + ĤDMI + Ĥsd + ĤK, (2)

is the Hermitian term of the Hamiltonian that describes the
different spin interactions present in the device where ĤZ,
Ĥex, ĤDMI, Ĥsd, and ĤK are the Hamiltonian terms for the
Zeeman interaction, exchange interaction, DMI, sd interaction
and kinetic energy of the conduction electrons respectively.
However,

Ĥdis = −iλĤ0 (3)

is a non-Hermitian Hamiltonian that models energy dissipa-
tion as proposed in Refs. [25,26].

In more detail, the exchange term models the spin-spin
interaction between neighboring sites,

Ĥex = −
∑

i

∑
j

Ji, j (Ŝi · Ŝj), (4)

where Ŝi and Ŝj are the dimensionless spin operators and
Ji, j = J if i and j are neighbors but zero otherwise. The
DMI term describes the antisymmetric exchange between two
neighboring spins of the lattice,

ĤDMI = −
∑

i

∑
j

Di,j · (Ŝi × Ŝi), (5)

where Di,j is different from zero when i and j are neigh-
bors. The nanowire-ferromagnet interface breaks the inversion
symmetry therefore only a perpendicular DMI term is present
where Di,j = D(ẑ × r̂i,j) and where r̂i,j is the vector between
two neighboring atomic sites. The balance between exchange
and DMI forces is responsible for the creation of the skyrmion
in the ferromagnet. An external Zeeman field or a magne-
tocrystalline anisotropy in the material is needed to stabilize
the skyrmion [27–29]. In this work we will consider without
loss of generality an external Zeeman field for that purpose.

The Zeeman term describes the interaction between an
external magnetic field and the nonitinerant spins located at
each of the atomic sites of the 2D crystal lattice,

ĤZ = γ h̄
∑

i

Ŝi · Bi, (6)

where γ is the gyromagnetic factor and Bi is the magnetic
field felt at the atom site i. However, ĤK is the kinetic energy
of the conduction electrons,

ĤK = p̂2

2m
, (7)

where p̂ = ∑
n p̂n, p̂n is the momentum operator of the nth

electron and m is the effective mass of the electrons. Note that
itinerant electrons are not attached to any particular atomic
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site but are free to move around the whole wire therefore they
are not labeled by any site index.

Finally, the sd Hamiltonian term describes the interaction
between the spin degrees of freedom of the conduction elec-
trons and the spins pinned to atomic sites,

Ĥsd = −Jsd

∑
i

ŝi · Ŝi, (8)

where in the same way as before Ŝi is the dimensionless
spin operator for the pinned electrons attached to the atomic
site i. However, ŝi is the corresponding dimensionless spin
operator for the conduction electrons contained in an atomic
cell volume for the same atomic site. This is ŝi = Vcδ(r − ri )ŝ
where Vc = a3

c and the dimensionless spin angular momentum
operator is defined as ŝ = 1/2(σ̂x, σ̂y, σ̂z ), where σ̂x,y,z are the
corresponding Pauli matrices. This is the term that gives rise
to the torque produced by spin currents.

B. Generalized Ehrenfest theorem

The non-Hermitian dissipation term in the Hamiltonian
[Eq. (1)] leads to a non conservation of the norm in time, for
example,

n2
l = 〈�̃l (t )|�̃l (t )〉 = e−2λ〈�̃l (t0 )|Ĥ0|�̃l (t0 )〉�t , (9)

where l is just a label for the Hamiltonian Ĥ eigenstates �̃l (t0)
and �t = t − t0. According to Refs. [25,26] to enforce the
conservation of the norm we can renormalize the eigenstates,

|�l (t )〉 = |�̃l (t )〉√
1 − rl

, (10)

where rl = − 1
ih̄�t〈�l (t0)|Ĥ − Ĥ†|�l (t0)〉. Note that �̃(t0) =

�(t0) at the initial time t0. The time of evolution of the unnor-
malized states is governed by

d|�̃l (t )〉
dt

= 1

ih̄
Ĥ|�̃l (t )〉, (11)

while for the normalized states,

d|�l (t0)〉
dt

= 1

ih̄
{Ĥ0 − iλ[〈�l (t0)|Ĥ0|�l (t0)〉]}|�l (t0)〉

(12)

gives as a result the usual Schrödinger equation for an Her-
mitian Hamiltonian plus a dissipation term. Although this
equation is derived for t0 the subindex can be dropped and
Eq. (12) can be applied to any time t because the time origin t0
is chosen arbitrarily. With this equation it is possible to obtain
an expression for the expectation value of an operator analo-
gous to the Ehrenfest theorem but applicable to an ensemble of
mixed states and with an extra term accounting for dissipation,

d〈Ô〉
dt

= 1

ih̄
〈[Ô, Ĥ0]〉 − λ

h̄

(
〈{Ô, Ĥ0}〉

− 2
∑

l

pl〈�l (t )|Ĥ0|�l (t )〉〈�l (t )|Ô|�l (t )〉
)

, (13)

where 〈Ô〉 = Tr[ρ̂ Ô] and ρ̂ = ∑
l pl |�l (t )〉〈�l (t )|. The last

term in Eq. (13) is different from the one proposed in Ref. [26]

because we are considering mixed states instead of pure ones.
Nevertheless this difference becomes unimportant later on be-
cause the states of the ferromagnetic system are approximated
to be locally pure.

With Eq. (13) and the Hermitian Hamiltonian H0 of Eq. (2)
we obtain the equation for the expectation value of the spin
angular momentum at each of the atomic sites,

d〈Ŝi〉
dt

= −γ (Bi × 〈Ŝi〉) + 2
∑

j

Ji, j〈Ŝi × Ŝj〉

− 2
∑

j

Di,j〈Ŝi · Ŝj〉 + 2
∑

j

〈(Di,j · Ŝi)Ŝj〉

+ Jsd〈Ŝi × ŝi〉 − λ

h̄

(
〈{Ŝi, Ĥ0}〉

− 2
∑

l

pl〈�l (t )|H0|�l (t )〉〈�l (t )|Ŝi|�l (t )〉
)

. (14)

Note that the Hamiltonian term corresponding to the kinetic
energy of the conduction electrons ĤK does not contribute to
this equation because [Ŝi, Ŝi] = 0 and [Ŝi, ŝi] = 0.

C. Landau-Lifshitz equation derivation

The Landau-Lifshitz equation is derived from Eq. (14)
under mean field approximation,

Ŝi · Ŝj ≈ Ŝi〈Ŝj〉 + 〈Ŝi〉Ŝj − 〈Ŝi〉〈Ŝj〉, (15)

neglecting second-order terms. This approximation holds for
ferromagnetic devices where the length of spatial variation of
the pinned electrons spin is large enough in comparison with
the atomic length ac. Furthermore, the dissipation term may be
further simplified to the one derived in Ref. [26] if we consider
the equilibrium states to be locally pure because of the same
slow spatial variation of the spins.

Once we have neglected second-order correlation effects
in Eq. (14) we rewrite it into an equation of spin density. For
each atomic site the spin density of the pinned electrons is
S(ri) = ρc〈Ŝi〉 while conduction electrons are treated on the
same footing s(ri) = ρc〈ŝi〉 where ρc = 1/a3

c . In this form,
we further approximate the spin density by a continuous field
in the limit ac = |ri − rj| → 0 where i and j are index for
neighboring crystal sites. As a consequence we can apply the
approximation,

S(rj) ≈ S(ri) + (ri,j · ∇ )S(ri) + 1
2 (ri,j · H · ri,j)S(ri), (16)

where H is the Hessian,

H =
(

∂
∂x2

∂
∂x∂y

∂
∂y∂x

∂
∂y2

)
. (17)

Finally, the units are changed from angular momentum
to magnetization M(ri) = −γ S(ri), m(ri) = −γ s(ri) where
M(ri) is the magnetization of pinned electrons at position ri
and m(ri) is the magnetization of the conduction electrons on
the same position.
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Applying the mean field approximation and the continuous
spin field description we derive from Eq. (14):

dM(r)

dt
= − γ0

1 + α2
[M(r) × Heff (r)]

− αγ0

1 + α2
{M(r) × [M(r) × Heff (r)]}, (18)

where γ0 = γμ0, μ0 is the vacuum permeability and

Heff (r) = HZ(r) + Hex(r) + HDMI(r) + HT(r) (19)

is the local effective magnetic field felt by the magnetization.
There is one term for each of the interactions where the spin of
the pinned electrons is involved. Those terms are the external
Zeeman field,

HZ = H, (20)

which we will consider constant along the device H(r) =
[B − M(r)]/μ0. Note that M(r) × M(r) = 0, therefore we
can use without loss of generality H ≈ B/μ0. The exchange
field,

Hex = 2A

μ0M2
s

∇2M(r), (21)

and the DMI effective field,

HDMI = − 2D
μ0M2

s

{[∇ · M(r)]ẑ − ∇Mz(r)}, (22)

where Mz(r) is the z component of the magnetization. The
magnetization strength Ms = |M(ri)| = |M(rj)| is also con-
stant all along the device, only its orientation varies point to
point.

Finally, the interaction between the magnetization field and
the spin of the conduction electrons is represented by the
torque field,

HT = Jsd

γ0Ms
m(r). (23)

To calculate the magnetization field of the conduction elec-
trons m(r) a model of their movement is needed, more on this
is to be found below.

Furthermore, the constants of the LL equation can be writ-
ten as a function of the constants of the quantum microscopic
equation A = JS2/ac and D = 2DS2/a2

c where S = |〈Si〉| =
|〈Sj〉| is the mean value of the dimensionless spin.

D. Conduction electrons effective Hamiltonian

The overall torque term can be rewritten as an independent
term apart from the rest of the effective fields,

T = − 1

1 + α2

Jsd

γ0Ms
[M(r) × m(r)], (24)

where m(r) ∝ 〈ŝ〉|r = Tr[ρ̂(r)ŝ] is the trace of the spin of
the conduction electrons evaluated at a particular position.
Naturally, we need to know which is the actual density matrix
of the system at each time step. To this end we calculate
the effective Hamiltonian that drives the conduction electrons
tracing out the degrees of freedom related to the nonitinerant
electrons,

Ĥeff = 〈Ĥ〉|ni = Tr[ρ̂Ĥ]ni = ĤK + Ĥeff
sd + ELL(�l ), (25)

where 〈Ĥ〉|ni is the partial trace over the nonitinerant degrees
of freedom.

The resulting effective Hamiltonian is divided in three
terms. The first term, is the kinetic energy term of the con-
duction electrons ĤK that remains unmodified with respect to
its definition in Eq. (7) because it does not depend on pinned
electron spins. Therefore, nonitinerant electronic degrees of
freedom just trace out for this term. The second term is the
effective sd interaction term,

Ĥeff
sd = 〈Ĥsd〉 = JsdS

Ms
ŝ · M(r), (26)

which takes the form of an external Zeeman field for the
conduction electrons where the role of the external field is
taken by the ferromagnet magnetization. And the third term
is the energy provided by nonitinerant electrons terms of the
Hamiltonian ELL. This last term depends on the states of the
conduction electrons that at the same time depend on the spin
configuration of the atomic ones.

One key point of this work is the assumption that the
characteristic time scale of the evolution of the conduction
electron states is faster than the dynamics of the ferromag-
net magnetization M(r). Therefore, ELL will be assumed
constant, decoupling both kind of degrees of freedom in an
analogous way to the Born-Oppenheimmer approximation.
The constant term in Eq. (25) Hamiltonian can be ruled out
shifting the origin of energies thus leading to the final form of
the effective Hamiltonian,

Ĥeff = p̂2

2m
+ �B(r) · σ̂ , (27)

where �B(r) = Jsd S
2

M(r)
Ms

.
In this approximation, the conduction electron wave-

functions are assumed to undergo adiabatic evolution. This
way, we neglect nonequilibrium effects [30] but this is cor-
rect provided that |m(r)|max/Ms 	 1 where |m(r)|max is the
maximum value in magnitude of the conduction electrons
magnetization at any point. In a physical system where the
ferromagnet is in contact with, for example a wide iron slab,
magnetization ratios are usually around |m(r)|max/Ms ≈ 10−2

and this value will be even smaller in narrow nanowires due
to transverse confinement.

Magnetization ratios are relevant as an adiabaticity mea-
surement because the sd interaction between the spins of both
conduction and pinned electrons is an action reaction force.
Therefore, both magnetizations (of the conduction and pinned
electrons) feel the same torque but with opposite sign. Natu-
rally, the one with the smaller magnetization magnitude will
change at a faster rate for the same force.

E. Resolution method

To calculate the time evolution of the magnetization
M(r, t ) we will numerically integrate the LL equation
[Eq. (18)] discretized in space and time. Different methods
available [31,32] have been tested to this purpose, Euler,
Heun, and ODE45. All three methods provided the same
results and proved to be suited to perform the calculations.
However, the torque calculation involves the solution of a
computational costly quantum model and therefore Euler
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FIG. 2. (a) The conduction electrons eigenstates are calculated
using a quantum model on a spatial grid with the input plane waves
acting as boundary conditions. (b) A net charge and spin current is
obtained when the chemical potential at the left and right leads are
different. Note that in the single-band limit the lower energy band is
polarized due the magnetization of the ferromagnet.

method has been preferred in this work over the others where
multiple calculations of Eq. (18) are needed in each time
step. The computational cost reduction provided by the Eu-
ler method also allows for a smaller integration steps while
maintaining a reasonable calculation time compensating for
the better error behavior of Heun and ODE45 methods.

In the adiabatic approximation, the Hamiltonian of Eq. (27)
will be used to calculate the conduction electron eigenstates
at a given time using M(r, t ) as an input parameter. The
magnetization of the conduction electrons m(r, t ) is obtained
as a mean value of the ensemble of the occupied electronic
eigenstates (more on this below). This magnetization m(r, t )
is further used to calculate the torque for the LL integration
finally obtaining a new ferromagnet magnetization M(r, t +
�t ) thus closing the loop. The whole time evolution of M(r, t )
is then obtained iterativelly.

The wavefunctions associated with the conduction elec-
trons are obtained as the eigenstates of the Hamiltonian
Eq. (27) where the interaction between conduction and pinned
electrons is modeled as an external magnetic field. To calcu-
late this eigenstates we will consider our device as a central
region between two contacts (see Fig. 2). This effective
magnetic field will be inhomogeneous in the central region
because of the presence of a skyrmion in the ferromagnet
while a constant field is assumed for the leads. The central
region is discretized in the same way as the LL equation with
a value of M(r, t) defined on each point of the grid. The
solutions in the central region for different energies will be
obtained considering Eq. (27) evaluated on each grid point
using energy as a input parameter. The nanowire upper and

lower boundaries in Fig. 2 are modeled as infinite confining
potentials while the left and right boundaries are considered
open contacts where the magnetic field is maintained homo-
geneous.

Both contacts in Fig. 2 are modeled as normal metals
with the same effective mass as in the central region and a
voltage bias may be defined between them to create charge
and spin current. This voltage bias is introduced as differ-
ence in the chemical potentials of the left μL and right μR

contacts. Incident modes from the contacts may be transmit-
ted or reflected and therefore solutions in the contacts are
linear superpositions of the asymptotic nanowire eigensolu-
tions. The asymptotic eigensolutions are labeled by their wave
numbers because contacts are homogeneous and therefore
transitionally invariant. As a consequence, the wavefunction
eigensolutions at the contacts for a given energy take the form

�c(E , x, y, s) =
∑
α,nα

d (c,α)
nα√

h̄v
(c,α)
nα

exp
[
ik(c,α)

nα
x
]
φ(c,α)

nα
(E , y, s),

(28)
where c = L, R labels the contact, α = i, o the input and
output modes in each contact and s =↑,↓ the spin-up and
-down quantum number. d (c,α)

nα
determines the amplitudes of

the asymptotic solutions, k(c,α)
nα

their wave number and

v(c,α)
nα

= 1

h̄

∂E

∂k(c,α)
nα

= h̄k(c,α)
nα

m
(29)

their group velocity.
From the point of view of the conduction electrons this

is a scattering problem where the skyrmion is a magnetic
inhomogeneity. To solve this problem we use an extended
version of the quantum transmitting boundary method [33] as
presented in Refs. [34,35]. The overall system is described by
a closed system of linear equations,

(Ĥeff − E )�(E , x, y, s) = 0 , (xy) ∈ C , (30)

�(E , x, y, s) −
∑

no

d (c,o)
no√

h̄v
(c,o)
no

exp
[
ik(c,o)

no

]
φc

no
(E , y, s)

=
∑

ni

d (c,i)
ni√

h̄v
(c,i)
ni

exp
[
ik(c,i)

ni

]
φc

ni
(E , y, s), (x, y, c) ∈ L/R,

(31)

∑
s

∫
dy φ(c,o)

mo
(E , y, s)∗ �(E , xc, y, s)

−
∑

no

d (c,o)
no√

h̄v
(c,o)
no

exp
[
ik(c,o)

no
xc

]
M(oc,oc)

mono
(E )

=
∑

ni

d (c,i)
ni√

h̄v
(c,i)
ni

exp
[
ik(c,i)

ni
xc

]
M(oc,ic)

moni
(E ), c ∈ L/R,

(32)
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which can be solved numerically [36], where xc is the coordi-
nate of the boundary c = L, R and

M(αc,βc)
mαnβ

(E ) =
∑

s

∫
dy φ(α,c)

mα
(E , y, s)∗φ(β,c)

mβ
(E , y, s). (33)

The first equation is just the Schrödinger equation with E
as a parameter for the central region while the second one
represents the matching between the asymptotic leads and
the central region. Output modes are at the left hand side of
the equation while input modes are at the right hand side.
Input modes amplitudes are parameters while output modes

amplitudes are unknowns to be determined. The purpose of
the third set of Eqs. (32) is to close the system of equations
evaluating the strength of the overlap between the different
asymptotic solutions.

The total magnetization of the conduction electrons m(r)
is obtained by integrating the magnetization of each eigen-
state occupied by an electron due to an active incident mode,
dn(c,i) = 1 (global phase is arbitrary). This is equivalent to the
local trace where the Fermi-Dirac distribution takes the role
of the probability for each pure state. At zero temperature
we consider an incident mode active if it is below its contact
Fermi energy, that is:

m(x, y) = − γ
h̄

4π

∑
ni

∫ ∞

0
[ f (μL ) �∗

ni
(E , x, y) σ̂ �ni (E , x, y)] dE − γ

h̄

4π

∑
ni

∫ ∞

0
[ f (μR) �∗

ni
(E , x, y) σ̂ �ni (E , x, y)] dE

= − γ
h̄

4π

∑
ni

∫ μL

0
[ �∗

ni
(E , x, y) σ̂ �ni (E , x, y)] dE − γ

h̄

4π

∑
ni

∫ μR

0
[ �∗

ni
(E , x, y) σ̂ �ni (E , x, y)] dE , (34)

where σ̂ = (σ̂x, σ̂y, σ̂z) and σ̂x,y,z are the corresponding Pauli
matrices. Note that different magnetizations are obtained if
both contacts are in equilibrium creating zero net charge and
spin currents or if a potential bias is applied between them like
in Fig. 2(b). Contributions to the magnetization calculation
from bound states of the electrons attached to a skyrmion
are neglected. In this case, these states are not propagating
therefore these electrons magnetization will be oriented in the
local magnetization direction thus providing zero torque. In
general, there is also the possibility of states able to create
closed loops of current without any input or output from the
contacts. These close loops could arise, for example, from
edge states or circular motion caused by orbital effects. How-
ever, in this simple metal model such effects are not present.

III. RESULTS

A. Skyrmion electron blockade in the single-band limit

In Fig. 3(a) the magnetization field M(r) hosting a
skyrmion is depicted. We use a spatial discretization of
1 nm × 1 nm × 1 nm for a nanowire of Ly = 25 nm wide.
The ferromagnet is allowed to be larger to avoid border
effects and it is limited by open boundary conditions. We
consider a central region of length Lx = 30 nm connected to
two translationally invariant infinite contacts. The interface
between the ferromagnet and the nanowire is considered to
be wide enough to hold an uniform electron density of 1
electron by each atomic layer ac = 0.1 nm. No confinement
has been considered in the z direction where the electron wave
functions are assumed to decay smoothly. This resolution is
fine enough with respect to the atomic length to allow the use
of the LL equation with continuous fields while at the same
time it is coarse enough to keep the computational cost of the
quantum model reasonable. The same discretization is used
for the fields M(r, t) and m(r, t) in the LL equation and in
the quantum model. This resolution is coarse in comparison
to simulations in literature [3,4] but we have tested the ro-
bustness of the results comparing the torque fields at t = 0

with their finer resolution counterparts and running higher
resolution but shorter simulations of skyrmion movement. The
rest of the physical parameters are discussed in the Fig. 3(a)
caption.

Physical parameters are tuned [29] to obtain a skyrmion of
radius R ≈ 5 nm. The width of the nanowire is such that we
are in the single-band limit while the value of the skyrmion
radius is constrained by the nanowire width. The conduction
electron density of states (DOS) is shown in Fig. 3(b) in pre-
sence of the skyrmion plotted in Fig. 3(a) while the spin angu-
lar momentum is shown in Fig. 3(c). The nanowire dispersion
relation in the leads is displayed in Fig. 3(d). The wire width
Ly, the sd interaction Jsd, the external magnetic field strength
H and the ferromagnet strength (S = 10) have been chosen to
obtain an ideal single-band parabolic dispersion with origin at
zero energy as shown in Fig. 3(d) while still having a physi-
cally plausible set of parameters. Only one band is considered,
if multiple bands where shown the second band will appear at
around 100 meV.

The left chemical potential μL = 100 meV has been also
chosen to match the limit of the single-band regime. We can
see that the electron DOS is altered by the presence of the
skyrmion with an higher electron density at the left side of the
skyrmion than at the right side. This also affects the spatial
distribution of the magnetic moments in Fig. 3(c) that is also
larger because the larger electron density at the left of the
skyrmion. This is happening because the partial reflection
of the electron modes from the left contact caused by the
magnetic inhomegenity that the skyrmion represent to the
electrons.

This electron blockade is very different to what occurs
in the classical model [4,15] where an adiabatic approxi-
mation in the sense of near detachment between the pinned
and the conduction electrons magnetization is assumed. In
the classical model the conduction electron magnetization
m(r) ∝ 〈ŝ〉|r is assumed to follow in an approximated way
the pinned electrons magnetization M(r) causing zero torque
in first order approximation. Only second-order nonadiabatic
terms are responsible for generating the torque. This is very
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FIG. 3. (a) Magnetization field of the pinned electrons. A
skyrmion structure of around 10 nm diameter is observed in the cen-
ter. The interface parameters used are J = 10 meV, D = 1.256 meV,
h̄γ0Hz = 10 meV, S = 10 and ac = 0.1 nm. Resolution of the nu-
merical discretization �x = �y = 1 nm. (b) Density of states of the
conduction electrons flowing from the left lead when the skyrmion
of panel (a) is present. In this figure Jsd = 9.0 meV, m/me = 0.013,

and μL = 100 meV where me is the bare electron mass. Note the
increase of density at the left of the skyrmion position due the
blockade effect in the flow of electrons caused by the skyrmion. (c)
z component of the itinerant electrons magnetization (in color) and
x, y components as a vector. (d) Band structure and Fermi energy
on the leads for the panels (a), (b), and (c). This is the single-band
limit case where only incident electrons flowing from the left lead
are considered.

different in what is happening here in the single-band limit
where the electrons magnetization is altered but does not fol-
low the skyrmion orientation while they may also be partially
reflected.

We obtain the conductance in the leads as

g(E ) = e2

h
T (E ), (35)

where T is the transmission probability at energy E . The
electron blockade can be seen in the conductance (see Fig. 4
a) where it is most notable for lower energy values while this
blockade is almost a negligible effect for larger values. The
skyrmion completely blocks the lower energy states of small
wave number with a perfect reflection of those modes while
it is completely transparent for higher energy modes. Addi-
tionally, the relationship between the size of the skyrmion and
the width of the nanowire also plays an important role. The
increase in conductance is faster for the smaller ratios between
skyrmion size and nanowire width. Therefore, this blockade

FIG. 4. (a) In black, conductance of the current for the skyrmion
configuration in Fig. 3(a). In color, conductance for configurations
with different ratios of skyrmion size in relation to the nanowire
width 2R/Ly. Size ratios are shown near the plots. Different con-
figurations are obtained tuning J/D and H while maintaining Ly
constant. (b) Schematic for the particle current in the nanowire in
the single-band regime in presence of a skyrmion (c) x component of
the particle current with a larger chemical potential in the left than
in the right contact, μL = 100 meV and μR = 0 meV. The rest of
the parameters are the same as in Fig. 3(a). (d) y component of the
particle current in the same case as panel (c).

can not be measured in large metallic slabs but only in very
narrow wires.

However, the local current is almost homogeneous in lon-
gitudinal x direction while it has a parabolic distribution in
the y direction due transverse confinement. This is shown in
Figs. 4(c) and 4(d). The y component of the current exists only
around the skyrmion position and it is two orders of magnitude
less that the longitudinal component. In general, the particle
current bends a little around the skyrmion in an assymetri-
cal way therefore creating a momentum transfer between the
electron current and the skyrmion.

B. Torque scaling considerations

Rewriting the LL equation [Eq. (18)] and the conduction
electrons effective Hamiltonian [Eq. (27)] as function only
of dimensionless magnetizations M(r)/Ms and m(r)/|m(r)|
makes scaling relations easier to spot. The shape of the torque
for a skyrmion of a given size can be maintained constant
for different sd interaction strengths provided the factor R =
JsdSmLy2 is kept constant. This constant is proportional to the
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FIG. 5. Torque field as defined in Eq. (24) for the skyrmion
depicted in Fig. 3(a). (b) Same as panel (a) but Jsd = 0.09 meV,
m∗ = 1.3, and μL = 1 meV. (c) Same as in panel (a) but for the case
of zero net charge and spin currents. This is μL = μR = 100 meV.
(d) Torque provided by the classical model using the same amount
of current jx = 120 MA/cm2 that the obtained in panel (a). Current
diffusion effects have been neglected and only the ballistic torque
term has been considered, that is bj = 1 and c j = 0.

ratio between the magnetic JsdS/2 and confinement energies
E0 = π2h̄2/2mL2

y . As a consequence, if Jsd and m are changed
while maintaining S constant for a given R, then the nanowire
dispersion relation is the same but for a rescaled energy axis
therefore the torque is also rescaled in the same amount.
Note that the values of the chemical potentials in the contacts
must be rescaled too with the same amount as the energy
axis. This way, the value of the Fermi wave number is fixed.
This is shown in the comparison between Figs. 5(a) and 5(b)
where for two different sd interaction strengths but a common
R factor the same torque profile is obtained in both figures
but two orders of magnitude apart. The skyrmion velocity is
proportional to the torque, therefore we can infer the skyrmion
velocities for a set of parameters from a single simulation. In
that regard, the factor R characterizes the interface determin-
ing the shape of the torque for different scales that lead to the
same skyrmion movement but with different velocities.

However, if only Jsd an S are changed while maintaining
the confinement energy E0 constant (avoiding re-scaling of
the energy bands), then the torque strength is also main-
tained constant because it only depends on the product JsdS
as shown in Eq. (27). However, the skyrmion velocity will
also be different for different values of S, the larger the S
the slower the dynamics of the skyrmion. Therefore, a long
simulation for a large S but small Jsd is equivalent to a shorter
simulation of smaller S where JsdS = J ′

sdS′. Also note that

changes in S will require the same proportional increase of the
external magnetic field H to keep the device in the skyrmion
phase [29].

C. Torque symmetry and skyrmion movement

A nanowire in equilibrium has no potential bias between
the left and right contacts (μL = μR) therefore a zero net
charge and spin current goes through the nanowire. The torque
created in the quantum single-band limit with zero net charge
and spin current does not lead to zero torque. This is an
important point of this paper because it is different from the
classical models [3,4,15] where the torque becomes zero with
zero net spin current.

In Fig. 5(c) we can see the resulting torque for the case
where both contacts chemical potentials are equal μL = μR =
100 meV. In a quantum model for transport a zero net current
in a nanowire means an equal amount of right-going k > 0
and left-going k < 0 occupied electronic modes. In this case,
a potential bias between the leads is still required to create
skyrmion movement and the equilibrium case with zero net
current still cancels skyrmion movement. However, different
from the classical model the underlying reason here is not the
cancellation of the torque but the symmetry of it.

Right-going k > 0 electronic modes create an asymmetric
torque field like in Fig. 5(a). If these modes are the only
ones active then skyrmion movement is created in the trans-
verse top to bottom direction. This movement can be seen for
different times in Figs. 6(a) and 6(b). This is also different
on comparison with the classical model in a STT scenario
where a net right-going current will drive the skyrmion also
in the right direction [see Fig. 6(c)]. The asymmetry is created
by the recoil of the conduction electron spin caused by the
sd interaction with the skyrmion magnetic structure. That is,
the electron spin is different in the left side of the skyrmion
than in the right because the skyrmion presence. Left-going
modes will create the same torque but inverted around the
x = 0 axis because of the longitudinal symmetry of the device.
Therefore, when the same number of modes are active in both
contacts because μL = μR the resulting torque is symmetric
and all the forces cancel and as a result no skyrmion move-
ment is produced.

The classical model of the torque effective field for STT
used in literature is

HT = b j

γ0

PμB

eM3
s

j0[M(r) × ∇M(r)] + c j

γ0

PμB

eM2
s

j0∇M(r),

(36)

where μB is the Bohr magneton, e the electron charge, and P
is the electronic polarization. The rest of the variables have
the same meaning as above. This model of the torque contains
two terms, a “ballistic” term multiplied by the constant b j ≈
1/1 + ξ 2 and a “diffusive term” multiplied by c j ≈ ξ/1 + ξ 2.
The first arises from the presence of a ballistic current in
the heavy metal while the second torque term arises by the
presence of diffusion effects on that current. The coefficient
ξ = τex/τsf is calculated as the ratio between τex = 1/JsdS
and the spin flip relaxation time. Zero impurities in the metal
imply an infinite spin flip time and therefore ξ = 0 and c j = 0.
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FIG. 6. (a, b) Skyrmion position after 5 ns and 10 ns of sim-
ulation, respectively. The interface parameters in this case are
are J = 10 meV, D = 1.256 meV, h̄γ0Hz = 10 meV, S = 2, Jsd =
45.0 meV, and ac = 1.0 nm. This results is equivalent to a t = 25 ns
and t = 50 ns of simulation time for S = 10, Jsd = 9.0 meV like
in panel (a). The resolution of the numerical discretization is �x =
�y = 1 nm. (c) Skyrmion position after 5 ns of simulation using the
classical model with the parameters and the same quantity of current
density jx = 120 MA/cm2 than in panels (a) and (b). Only the bal-
listic term of the torque has been considered. Therefore, bj = 1 and
c j = 0.

To compare the classical model with the single-band quan-
tum model we assume a purely ballistical nanowire b j = 1,
c j = 0, and also perfect polarization P = 1. As shown in
Figs. 6(b) and 6(c) skyrmion velocity is larger for the same
amount of current jx = 120 A/nm2 in the classical model
than in the quantum model. Furthermore, the shape of the
torque field of the quantum model in Fig. 5(a) is very differ-
ent than the torque field of the classical model in Fig. 5(d).
Therefore, skyrmions move very differently in both cases,
skyrmions move in the longitudinal direction in the clas-
sical model but in the transverse direction in the quantum
one.

We can see in Fig. 7 how for the single-band quantum
model the magnetization m of the conduction electrons is
mainly pointing upwards but the skyrmion magnetization M
changes direction. Figure 7 provides a schematic of a Néel
skyrmion structure in a cut that goes trough its center. The
cross product between conduction electrons and skyrmion
magnetizations gives rise to a torque field that points mainly
in the x-y plane. The z components of the torque arise because
of the recoil between both magnetic moments, the one of
the itinerant electrons and the one of the skyrmion in the
ferromagnet. In the classical model the reported mechanism
is different as the electron follows the skyrmion magnetic

FIG. 7. Schematic of how the torque is created between a
skyrmion and the itinerant electrons of a metallic very narrow
nanowire in the one band limit.

moment producing zero torque on first order approximation
and torque arises from second-order terms.

For the same polarization P = 1 the single-band quantum
approach is less efficient in moving a skyrmion than the
classical model. The single-band quantum model moves the
skyrmion at a velocity around v ≈ 0.3 m/s for S = 2 in a
10 ns simulation. For the same amount of charge current jx =
120 A/cm2 the velocity obtained from the classical model
is around v ≈ 1.5 m/s using the parameters considered in
Fig. 6. If JsdS is maintained constant, then these results are
equivalent to a v ≈ 0.06 m/s and v ≈ 0.3 m/s in the quantum
and classical models respectively in larger 50 ns simulations
with S = 10.

Our interpretation is that the classical model implicitly
accounts for the torque interaction of many electron bands
instead of only one band like in the single-band quantum
approach. However, wide metallic slabs with many electron
bands can not be perfectly polarized to P = 1 but P < 1
instead. Therefore, the many electron classical limit will not
benefit by its better efficiency in creating torque because
it is less efficient producing spin current from charge cur-
rent. Considering a realistic polarization of P ≈ 0.2 both
models will give similar skyrmion velocities for the same
amount of current but with different skyrmion movement
directions.

Note too that in the single-band quantum approach
skyrmion velocities will be roughly proportional to the
injected current because those velocities are roughly propor-
tional to the torque strength that is proportional to the density
of states like the current. The amount of bias needed to obtain

125436-9



JAVIER OSCA AND BART SORÉE PHYSICAL REVIEW B 102, 125436 (2020)

a determined current for a parabolic dispersion relation is
known to be jx ∝ μ − E0 provided the single-band regime is
not broken where E0 is the energy of the bottom of the band.
Therefore, skyrmion velocity will increase linearly with the
current and with the bias provided that the bias is inferior to
the activation energy of higher lying transport bands.

D. Skyrmion movement with zero current

One of the more notable aspects of the single-band limit
is that it is possible to move a skyrmion even with a zero
charge (and spin) current, this is, spending zero power to keep
the skyrmion moving. As explained above, in the quantum
model the same chemical potential in both contacts leads to
a symmetric nonzero torque field. The imbalance between
terminals creates an asymmetry in the torque that allows for
the skyrmion movement but this is not the only mechanism
available to create this asymmetry.

As show in Fig. 7 in the single-band limit the resulting
torque field is essentially the result of a cross product between
the downward magnetic moment of the impinging conduction
electron and the skyrmion magnetization. This way a mainly
in plane torque field is created like the one shown in Fig. 5(c)
where the largest torque strength is obtained at the point where
the skyrmion magnetization is also pointing in plane. When
both contacts are in equilibrium the right pointing torque on
the upper edge of the skyrmion and the left pointing torque
on its lower edge are equal. Consequently, the net torque
and therefore the net movement of the skyrmion are zero as
discussed in Sec. III C. However, if the skyrmion is placed
near one of the nanowire edges [as depicted in Fig. 8(a)],
then the upper and lower torques become imbalanced because
the smaller electronic DOS near the edge of the nanowire. If
the torque at the lower edge of the skyrmion pointing to the
right direction is larger than the one on the upper edge, then
a net skyrmion movement in that direction arises as shown in
Figs. 8(b) and 8(c).

Note that the source of the asymmetry in the torque field
is due only to DOS variation. Therefore, this movement can
be explained without considering the effect of the torque on
the conduction electrons (not depicted in Fig. 7). Conduction
electron spin creates a torque on the skyrmion but they are also
affected by the same torque with opposite sign. In Fig. 8(d)
we use a simpler model of unperturbed electrons obtaining a
similar skyrmion movement than in Figs. 8(b) and 8(c). This
new model uses the magnetic moment field of the itinerant
electrons neglecting the effect of the skyrmion on them but
not the other way around.

We can see comparing the torque from the quantum model
in Fig. 8(c) with the one of the new model in Fig. 8(d) that
a similar field and skyrmion dynamics are obtained although
there is no nonzero z components of the torque in the new
model because electrons do not change their spin orientation
across the wire. In the former case the electron recoil dimin-
ishes a bit the skyrmion velocity and it is a source of losses.

E. Skyrmion torque with many conducting bands, classical limit

The torque field of the classical model is recovered when
many conduction bands are considered. This is the typical

FIG. 8. (a, b) Initial skyrmion position at y = 3 nm and after t =
10 ns of simulation for the same parameters than in Fig. 6(a). (c) Cor-
responding torque to the simulation after t = 10 ns. (d) Torque of a
skyrmion movement simulation at t = 10 ns for the same parame-
ters than panel (a) but using a synthetic unperturbed model for the
conduction electrons.

situation in wide slabs where the energy gap between different
electronic modes is very small compared with μ. This is
shown in Fig. 9(a) where the torque field obtained from a
quantum model for a few bands already takes the shape of
a torque field [like the one in Fig. 10(c)] calculated with the
classical model.

Surprisingly, the torque field in Fig. 10(c) using the classi-
cal model is calculated considering that there is some amount
of electron diffusion while the ensemble torque for multiple
electron bands from the quantum model is calculated in a
purely ballistic nanowire. Our interpretation is that when the
ratio JsdS/E0 is not too large the skyrmion magnetization
creates a small perturbation in the spin of the conduction
electrons similar to the perturbation that may be created by
magnetic impurities. In this regard, there is electronic diffu-
sion because the skyrmion itself is behaving as a collection
of magnetic impurities. We already showed in Fig. 4 how the
momenta of the electrons is altered around the skyrmion.

However, with increased Jsd as in Fig. 9(b) the skyrmion
magnetization strength is more than a perturbation. In this
regime, the conduction electrons magnetization m(r) mimics
more closely the skyrmion magnetization fulfilling better the
assumptions of the classical model where only the ballistic
term is present [like in Fig. 5(d)] provided there are no impu-
rities in the metal.

For the same reason, this effect is not seen in wide slabs
where JsdS/E0 is large while it becomes a more important
effect if we make the nanowire narrower. The torque resulting
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FIG. 9. (a) Ensemble torque calculated with the quantum
model for n = 15 active bands in a Ly = 1 μm width nanowire
with contacts μL = 0.06 meV and μR = −0.01 meV. The rest
of the interface parameters are J = 13.63 meV, D = 0.086 meV,
h̄γ0Hz = 0.7 neV, S = 1.7, Jsd = 0.01 meV, m/me = 0.53, and
ac = 0.316 nm, where me is the bare electron mass. The resolution
of the numerical discretization is �x = �y = 15 nm. (b) Ensemble
torque calculated with the quantum model for n = 13 with the same
interface parameters than a) but Jsd = 0.2 and μR = −0.09 meV.
(c) Dispersion relation for panel (a). (d) Dispersion relation for panel
(b).

from the latter case [see Fig. 10(a)] takes a shape analo-
gous to the torque calculated from a classical model [like in
Fig. 10(b)] where the only torque present in the nanowire is
caused by the diffusion term.

The classical model is derived under the assumption that
the conduction electrons spin adapt almost instantly to the
skyrmion magnetization field. Intuitively, one may think that
this assumption may translate to the quantum model in the
form of a certain short wavelength regime. This is, larger
values of JsdS = 1/τex may imply larger values of k for a
wider range of E . Therefore, the larger k the smaller the
length scale an electron needs to adapt its spin orientation to
the skyrmion magnetization orientation. However, this idea is
wrong and the concept of electron spin instant reaction can
not be carried straightforwardly between models. In Figs. 9(c),
9(d), and 10(d) it is shown that the different dispersion rela-
tions of the conduction electrons lead to the different torque
fields in Figs. 9(a), 9(b), and 10(a). In the range of energies
considered the maximum wave number does not change that
much. As a consequence, the classical concept that electrons
spins relax almost instantly to an equilibrium value following
roughly the skyrmion magnetization is an average statistical
effect that can not be applied individually to single electrons.

FIG. 10. (a) Ensemble torque calculated with the quantum model
for n = 10 active bands in a Ly = 30 nm width nanowire with
contacts μL = 1 eV and μR = 0 meV. The rest of the interface
parameters in this case are are J = 10 meV, D = 1.256 meV,
h̄γ0Hz = 0.2 meV, S = 2.0, Jsd = 0.01 meV, m/me = 0.013, and
ac = 0.1 nm, where me is the bare electron mass. The resolution of
the numerical discretization is �x = �y = 0.6 nm. (b) Torque calcu-
lated with the classical model for the same interface parameters than
in panel (a) where only current diffusion is present, that is bj = 0
and c j = 1.0. Current parameter jx = 40 MA/cm2 in Eq. (36) has
been selected to match torque strengths with the quantum model.
(c) Torque calculated with the classical model for the same interface
parameters than in Fig. 9(a) where ballistic and diffusive terms have
the same weight bj = 0.5 and c j = 0.5. Current jx = 6 kA/cm2 has
been also selected to match torque strengths. (d) Dispersion relation
for panel (a).

It is for this reason that the classical model breaks down for
few conduction bands.

F. Extension to use spin-orbit interaction and future work

In previous sections we have considered that the nanowire
material is a metal modeled by a quadratic dispersion relation.
However, the presented method can be applied to a wider
array of materials. The effect of the spin-orbit interaction may
be considered modifying the Hamiltonian ĤK to include the
corresponding linear term,

ĤK = p̂2

2m
+ α

h̄
[(p̂ × σ̂ ) · n], (37)

where α is the spin-orbit interaction strength and n a unit
vector. The unit vector n points in the anisotropy direction
of the material or in the direction of an external electric field
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FIG. 11. Torque field as defined in Eq. (24) for a centered
skyrmion with the same parameters as in Fig. 6. In this case the
conduction electron motion is modeled by Eq. (38) where the spin-
orbit interaction strength is twice the kinetic energy α = h̄2/mLy.

depending on the physical origin of the interaction. Note
that with this new Hamiltonian for the conduction electrons
Eqs. (18)–(23) hold without change because [Ŝ, ĤK] = 0.
However, the effective Hamiltonian for those conduction elec-
trons is modified to consider the new linear term,

Ĥeff = p̂2

2m
+ α

h̄
( p̂xσ̂y − p̂yσ̂x ) + �B(r) · σ̂ , (38)

where the addition of this term is the only update to Eq. (27)
because the spin-orbit term does no depend on Ŝ. Further-
more, Eqs. (30)–(32) can also be applied without modification
therefore the overall method remains the same. Note that in
Eq. (38) we have considered the particular case where n = z
because it is usual the anisotropy direction to be the growth
direction of the material.

In the Fig. 11 the torque field created by conduction elec-
trons whose motion is governed by Eq. (38) is shown. Active
modes are considered only at the left lead therefore the re-
sulting torque field is created by spin-y accumulation near
the lower edge. It is expected from the resulting torque field
that the corresponding skyrmion movement will be affected
by the addition of spin-orbit interaction. Note, however, that
spin-orbit interaction by itself it is not enough to obtain spin-
orbit torque (SOT). To obtain SOT it is required to extend
the model of the interface from 2D to a 3D model such that
vertical spin current can be considered. The investigation of
SOT induced transport of skyrmions based on our quantum
mechanical model is beyond the scope of this paper. The
model presented can however be applied to other spin current
inducing mechanisms.

IV. CONCLUSIONS

The torque field created by the interaction of a skyrmion
magnetization with the spin current in the single-band limit
is very different from the one reported in the classical model
for STT. The main reason is that the classical model consid-
ers implicitly an ensemble of many electrons bands whose
properties can not be translated to the behavior of individual
electrons.

The classical model limit can be recovered if many con-
duction bands are considered but dispersion effects may arise
for a certain range of nanowire widths because of the rela-
tive strength of the sd interaction with respect the nanowire
confinement energy. The quantum single-band limit and the
classical limit are similarly efficient in producing torque for
the same quantity of charge current. The one band limit is
in itself a fully polarized state and therefore it is a more
efficient regime in creating spin current from a given charge
current than the classical limit with polarization P < 1. How-
ever, the classical limit is more efficient creating skyrmion
movement from a given spin current that the single-band
limit because it is implicitly considering the effect of many
electrons.

However, each one of the limits have their advantages and
limitations. On one side, there is no theoretical limitation
in the amount of charge current that a metal slab can carry
(except, of course, the thermal resilience of the material),
while there is a limitation in the maximum chemical poten-
tial that can be used while in the single-band limit before
further conduction bands are activated therefore breaking this
limit.

However, the single-band regime offers new possibilities.
Skyrmions can be detected with conductance measurements
in metallic nanowires and it is possible to maintain skyrmion
movement even in zero power conditions. There are limi-
tations in the skyrmion velocities attained by this method
because the narrow range of energies where the single-
band limit holds before new bands are activated. However,
it may be interesting for applications with strong power
restrictions.
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