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We present a methodical study of grazing-incidence small-angle x-ray scattering performed in situ during
pulsed-laser deposition of Pt on sapphire substrates. From measured two-dimensional intensity distributions
in reciprocal space we calculated horizontal and vertical intensity projections and compare them to numerical
simulations. The structure of the Pt layers was described using a simple Monte-Carlo model and the Ornstein-
Zernicke theory with the Percus-Yevick approximation, and the scattering process was simulated using distorted-
wave Born approximation. The validity of the structure models as well as the effect of the indirect scattering
processes are discussed. From the comparison of the measured and simulated data we determined the lateral
and vertical sizes of surface islands, the surface coverage, the island coalescence, as well as the thickness of the
wetting layer at the substrate surface. We studied the time evolution of these parameters and their dependence
on the substrate temperature.
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I. INTRODUCTION

Grazing-incidence small-angle x-ray scattering (GISAXS)
has been frequently used for in situ investigation of thin
film growth realized by various deposition techniques; see
the reviews [1–3], among others. Measured reciprocal-space
distribution of diffusely scattered intensity I (Q) is used for
the determination of the lateral size of characteristic surface
features (islands, ripples, terraces, etc.) as well as for the study
of vertical structure (layer thicknesses, island heights, etc.);
here we denote Q = Kf − K i the scattering vector, K i,f being
the wave vectors of the primary and scattered beams.

The lateral surface structure is usually manifested by char-
acteristic side maxima of I (Q); in many papers the lateral
position Q‖m of the maxima is used for a simple estimation
of the lateral size of the surface features by fitting the max-
ima to a suitable phenomenological peak function [4–11].
In Refs. [9,10,12–17] in situ recorded GISAXS data were
compared to numerical simulations based on the paracrys-
tal model [18,19]. The paracrystal model is implemented in
standard software packages available for GISAXS simulations
and fitting [20,21]. The fitting to the paracrystal model can
determine the mean lateral island size and its statistical dis-
tribution, as well as mean island-island distances. However,
the paracrystal model is purely phenomenological and it does
not correctly consider physical processes during the deposi-
tion. Moreover, the resulting parameters can be affected by
a priori assumptions on statistical correlation between the
island sizes and distances, especially in the case of densely
packed islands (see the discussion in Ref. [1]). For the descrip-
tion of the correlation function of densely packed objects the

Ornstein-Zernicke (OZ) theory [22] is more appropriate, al-
beit it is still rather phenomenological. This method takes
into account many-particle interactions and it is mainly used
in the theory of fluids. The OZ model can be solved under
assumption of nonpenetrating rigid particles using the Percus-
Yevick (PY) model [23]. For the analysis of GISAXS data this
approach is seldom used and to our knowledge it has not been
applied so far for in situ data.

Numerical Monte-Carlo (MC) methods take into account
atomistic processes on the growing surface and they use true
physical parameters of growth (temperature, diffusivities, dif-
fusion barriers, interaction energies, etc.); see the reviews
in Refs. [24–27]. In contrast to the previously mentioned
approaches, these methods correctly describe the island ripen-
ing, coalescence, and percolation. On the other hand, the
numerical realization of a MC method is rather time consum-
ing and it can be hardly used for fitting of large datasets.

For the description of the vertical sample structure, x-ray
scattering from the substrate and from a thin wetting layer at
the substrate surface (if present) must be correctly included.
Usually, distorted-wave Born approximation (DWBA) is used,
in which not only the primary wave but also the waves specu-
larly reflected from and transmitted through the flat interfaces
are diffusely scattered from the islands [28].

In this paper we compare the PY model with simple Monte-
Carlo simulations and study the growth and coalescence of
surface islands. From the comparison we identify structure
parameters which can be determined using both approaches.
Using DWBA we determine also the time evolution of the
island heights and the wetting-layer thickness. The method is
used for the analysis of in situ GISAXS data acquired during
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pulsed-laser deposition (PLD) of thin Pt layers on sapphire
substrates, and we demonstrate that the growth kinetics is
substantially affected by the substrate temperature. This work
presents a methodical study, a detailed extensive investigation
of a large set of growth conditions will be the subject of a
forthcoming paper.

II. EXPERIMENTS

Here we report two growth runs of Pt layers by pulsed-laser
deposition (PLD) at two different temperatures T = 300 ◦C
(growth run I) and T = 500 ◦C (growth run II) for a duration
of one hour. The Pt layers were deposited using the same
fluence of 40 J/cm2, the repetition frequency of 5Hz, and
laser spot size on the target of 0.05 × 0.03 cm2. The target-
substrate distance utilized for the PLD growth was 35 mm.
In situ GISAXS measurements were performed during nonin-
terrupted PLD growth runs I and II with the acquisition time
of 10 s at NANO beamline of the Institute of Photon Science
and Synchrotron Radiation (IPS) at the KARA storage ring of
Karlsruhe, Germany. The x-ray beam had an energy of 15 keV
and a beam size in FWHM of 250 μm (horizontal) × 80 μm
(vertical); the angle of incidence was set to 0.7 deg. Using
a 111Si monochromator, we achieved the energy resolution
of about �E/E ≈ 10−4; horizontal and vertical divergences
of the primary beam were 0.05 × 0.004 mrad2. These values
result in the coherence length and width of about 1 μm and
2 μm, respectively. A two-dimensional (2D) detector (Pilatus
2M, 1475 × 1679 pixels, pixel size of 172 × 172 μm2) was
used at a sample-to-detector distance of 2316 mm. The in situ
PLD chamber which is used for Pt growth is well suited for in
situ x-ray diffraction and for in situ grazing incidence diffrac-
tion and is previously described in detail in Refs. [29,30].

The topography of the Pt layers was characterized by scan-
ning electron microscopy (SEM) using an FEI Dual beam
Helios G4 FX microscope. For this purpose, the microscope
was operated at 2 kV accelerating voltage in the so-called
immersion mode with a beam current of approximately 0.1 nA
and the through-lens detector (TLD) was used for secondary
electron (SE) imaging of the sample surface. This microscope
setup helped to obtain a very good lateral resolution in SE
imaging in combination with a high surface sensitivity. In
particular, the size of the interaction volume was reduced
because of the low primary electron energy of only 2 keV
compared to standard values of 10 keV and more. In addition,
the sample was tilted by about 20 deg or 40 deg in order to get
a more three-dimensional impression of the surface relief.

III. THEORY

We model the growing surface by a large set of cylindri-
cal islands. The island positions x j ≡ (x j, y j ), radii Rj , and
heights h j are random and statistically independent, and we
assume that the surface is statistically homogeneous, i.e., the
mean radii and heights R = 〈Rj〉, h = 〈h j〉 do not depend on
the sample positions, and the mean coverage of the surface
by the islands θ does not depend on x, either (0 � θ � 1
holds). In order to include possible coalescence of islands, we
consider also penetrating islands.

For the simulation of x-ray scattering we used the
distorted-wave Born approximation method (DWBA) [28,31].
In this approach, the sample is divided into two parts, a
nondisturbed part with flat interfaces and a disturbance. In our
case, the nondisturbed system comprises a semi-infinite sap-
phire substrate, a Pt wetting layer with thickness TPt, and an
effective “diluted” Pt layer with the thickness h and electron
density θ�Pt, where �Pt is the electron density of bulk Pt. In
the DWBA, the set of islands is irradiated by the waves trans-
mitted through the diluted layer (with the wave vector k(1)

T

and amplitude E (1)
T ) and reflected from the Pt wetting layer

underneath with the wave vector k(1)
R and the amplitude E (1)

R .
Similarly, the wave scattered from the islands is transmitted
again through the diluted layer; its wave vector and amplitude
are k(2)

T and E (2)
T or reflected again from the wetting layer

(wave vector k(2)
R and amplitude E (2)

R ). This approximation
assumes that the islands are vertically homogeneous cylinders
so that the effective diluted layer is vertically homogeneous,
too. Thus, the wave irradiating the cylinders decays vertically
only due to absorption in the diluted layer; the absorption
is rather weak since the angle of incidence is far above the
critical angle of total reflection. Moreover, the extinction of
this wave due to scattering from the islands is not considered.
The consequence of this simplification is that the scattering
from the bottom parts of the islands is slightly overestimated.

The intensity of diffuse scattering is

I (Q) = SPC(FT)(Q‖)
4∑

α=1

4∑
β=1

AαA∗
β

qαq∗
β

〈(e−iqαh − 1)(eiq∗
β h−1)〉h.

(1)

Here S is the irradiated surface area and P is a constant
containing the primary intensity and the factor δPt (1 − θ ), i.e.,
the contrast in the refraction index increment δ = 1 − n of the
islands and diluted layer. We assume that the islands are made
of pure Pt with the nominal increment δPt and the increment
of the diluted layer is θδPt.

The sums over α and β run over the scattering processes,
Aα and qα are the amplitudes, and the vertical components of
the scattering vectors of the processes, listed in the table in
Fig. 1. If we restrict ourselves only to the first (“direct”) pro-
cess α = β = 1, we neglect diffuse scattering of specularly
reflected wave and specular reflection of diffusely scattered
wave (kinematical approximation). This simplification can be
used if the specular reflectivity is weak, due to large interface
roughness and/or large incidence/exit angles, for instance.
Figure 1 shows the dependences of individual scattering pro-
cesses intensities |Aα|2 on the vertical component Qz of the
scattering vector, calculated for the typical values θ = 0.5,
h = 5 nm, TPt = 1 nm, and αi = 0.7 deg; the intensities are
normalized to the primary intensity, and the sharp peaks at
Qz ≈ 1 nm−1 are the Yoneda wings. From the figure, the
effect of the “indirect” scattering processes (α = 2, 3, 4) is
obvious. The direct process α = 1, the indirect process α = 2
is not negligible close to the Yoneda wing, the intensity of
process α = 3 is almost one percent of α1 for all Qz’s, and the
process α = 4 can be neglected. The averaging 〈 〉h in Eq. (1)
runs over random island heights h. Further, Q‖ is the in-plane

component of all scattering vectors, i.e., Q‖ = k(2)
T,R‖ − k(1)

T,R‖.
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FIG. 1. The intensities of individual scattering processes normal-
ized to the primary intensity as function of Qz. See the main text
for the details. The black dotted line depicts the reflectivity curve
calculated for variable exit angles αf derived from Qz and αi, the
scattering processes α = 1, . . . , 4 are defined in the table in the right
panel.

This component also equals the in-plane component of the
vacuum scattering vector Q.

Finally,

C(FT)(Q‖) =
∫

d2xC(x)e−iQ‖.x (2)

is the Fourier transformation of the correlation function of the
surface, which depends both on the island positions and sizes.
We define the random function p(x), which equals one if the
point x ≡ (x, y) at the surface is covered by an island, other-
wise it is zero; the mean value of p(x) equals the coverage
〈p(x)〉 = θ . The correlation function is then

C(x) = 〈p(x)p(0)〉 − θ2. (3)

In Eqs. (1)–(3) the averaging runs over all possible island
configurations (“microstates”). We assume that the island dis-
tribution is statistically homogeneous and isotropic, then the
correlation function depends only on the length ρ ≡ |x| and
its Fourier transformation can be expressed by the Hankel
transform

C(FT)(Q‖) = 2π

∫ ∞

0
dρ ρ C(ρ)J0(Q‖ρ), (4)

where J0 is the Bessel function of zeroth order.
The asymptotic behavior of C(ρ) is obvious:

lim
ρ→∞C(ρ) = 0, lim

ρ→0
C(ρ) = θ − θ2. (5)

The second limit occurs in the integral Sz(Qz ) =∫ ∞
0 dQ‖Q‖I (Q) calculating the vertical intensity projection

(see the next section), unfortunately this fact cannot be simply
used for the estimation of θ , since the integral depends also
on the vertical sample structure.

From Eq. (1) it follows that the diffusely scattered intensity
is assumed as a product of two functions, one depends on
Q‖ and is affected only by the lateral shapes of the islands,
where the other depends on the vertical component Qz of the
scattering vector Q; this function depends only on the island
heights. This fact follows from the assumed cylindrical shapes
of islands and it is used in the analysis of experimental data,
in which the lateral and vertical intensity distributions are
analyzed separately.

For the calculation of C(x) we developed a simple
phenomenological Monte-Carlo model which allows us to
determine the basic parameters of the growing surface. The
model describes the transition from the isolated-island mor-
phology to the coalesced structure. In the model we assume
that cylindrical islands are randomly placed in a square

FIG. 2. Distributions of islands simulated for various θ and ζ (parameters of the panels) and the same mean island radius of R = 20 nm.
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FIG. 3. The correlation functions C(ρ ) (a) and their Hankel transformations C (FT)(Q‖) (b) calculated for various values of θ and ζ using
our MC method. The vertical dotted lines are at ρ = 2R and Q‖ = π/R in panels (a) and (b), respectively. The inset in (b) demonstrates that
C (FT)(Q‖) asymptotically decays as Q−3

‖ . In panel (a), the characteristic radii R1,2 are denoted by vertical arrows.

simulation area with the size L × L, assuming periodic
boundary conditions for the calculation of the nearest island
distance. The island radii Rj are random and they are dis-
tributed according to Gamma distribution with the mean value
R and the order mR; the root-mean square (rms) deviation of
the radii is σR = R/

√
mR. For the generation of random island

positions we assume that there is no island-island interaction,
however the distance d jk = |x j − xk| of the centers of the
islands j and k must be larger than ζ (Rj + Rk ). The parameter
ζ = RD, j/Rj determines the radius RD, j of the depleted zone
around the jth island relative to Rj , where no other islands can
occur. In the definition of parameter ζ we take into account
the actual (random) island radii Rj,k . If ζ = 1, RD, j = Rj and
we allow touching of nonpenetrating islands; the case ζ = 0
describes the island coalescence. The island heights hj have
been assumed random as well and independent from the island
radii, we assume the Gamma distribution with the mean height
h = 〈h j〉 and the order mh; the rms deviation of the heights
is σh = h/

√
mh. The MC simulation was performed N > 103

times with various starting seeds of the random generator;
each simulation corresponds to one microstate. The resulting
correlation function C(ρ) was obtained by averaging of the set
of correlation functions of individual microstates. The surface
coverage of the ith microstate is θi = ∑

j π [R(i)
j ]2/L2 and the

mean coverage θ = ∑
i θi/N . The size L of the simulation

area roughly compares to the size of coherently irradiated
volume (CIV), determined mainly by the coherence length
of the primary beam; therefore, one microstate occurs in one
CIV. The averaging over the microstates corresponds to the
fact that in an experiment the irradiated footprint contains
approx. 106 CIVs.

Figure 2 shows examples of the surface morphologies
simulated for various θ and ζ ; in the figures gray (white)
areas denote the island and the gaps between the islands,
respectively. In the simulations we set R = 20 nm, mR =
10, and L = 2000 nm. In Fig. 3 we plot the correlation
functions C(ρ) [panel (a)] and their Hankel transformations
C(FT)(Q‖) (b) calculated for the same sets of parameters.
The Hankel transformation was calculated numerically ac-

cording to Eq. (4). The upper limit of the numerical integral
equals L, which determines the step size of Q‖ to approx.
3 × 10−3 nm−1. The figure clearly demonstrates that the
correlation function of a noncoalesced island set shows a
negative minimum, while that of a coalesced structure has the
form of one central maximum and negative side minima are
missing. Therefore, the extinction of the negative minimum
of the correlation function can be considered as the onset
of the island coalescence. Similarly, the function C(FT)(Q‖),
which is proportional to the Q‖ dependence of the scattered
intensity, shows a side maximum in a noncoalesced case. In
Fig. 3(a) we define characteristic radii R1,2 of the surface;
the former is the first zero point of C(ρ), where the latter
corresponds to its (negative) minimum. In the next chapter we
determine the time evolution of these radii from experimental
data. From the figure it is obvious that there is no simple
connection between the characteristic radii R1,2 and the values
R and RD. For instance, for the typical coverage of θ = 0.5
and touching islands (ζ = 1), R1 corresponds roughly to R,
however R1 increases with decreasing coverage or increasing

FIG. 4. The correlation function C (FT)(Q‖) calculated for θ = 0.5
and ζ = 1 using our MC method (points) and the Percus-Yevick
model [33] (line).
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FIG. 5. The correlation function C (FT)(Q‖) calculated using the Percus-Yevick model for various ζ s and constant θ = 0.5 (a), and for
various θs and constant ζ = 1 (b). The mean island radius was set to R = 10 nm and mR = 10. The vertical dashed lines denote the value of
π/R. The black dotted curves represent only the island form factor (not in scale), which is proportional to the correlation function for θ → 0.

ζ . The inset of Fig. 3(b) demonstrates that the asymptotic
tails of C(FT)(Q‖) behave as Q−3

‖ ; this fact corresponds to
the Porod’s scattering from a surface fractal with dimension
D = 3 [32].

In addition to the MC method, the island distribution
with ζ � 1 can also be described using the Ornstein-
Zernicke theory [22] with Percus-Yevick model [23], which
was reformulated for nonpenetrating “hard” cylindrical discs
in Ref. [33]. Figure 4 compares the correlation functions
C(FT)(Q‖) using the MC method and the PY model for θ =
0.5, ζ = 1 and R = 20 nm, mR = 10. Indeed, both methods
yield very similar results. The PY model is much faster, since
it uses an explicit formula (see Ref. [33]), however it does not
include the island coalescence, so that it cannot be used for the
analysis of experimental data at later growth stages. The PY
model was implemented also in the well-known FitGISAXS
software package [21], which might be used for the fitting as
well.

Figure 5 presents a series of calculations of C(FT)(Q‖) using
the PY model for various values of ζ and θ . It is obvious
that the position Q‖m of the side maximum (and consequently
the position of the satellite peak in the scattered intensity) is
slightly affected both by the coverage θ and by the depletion
factor ζ . Therefore, the position Q‖m alone can be used only

for the estimate of the radius Rm = π/Q‖m, which agrees
with the mean radius R only with the accuracy of several
tens of percent. For a more exact estimate of R and for the
determination of θ and ζ the fitting of the whole curve to
the PY model must be performed. However, for a coalesced
structure the PY model is not applicable, and we can estimate
only the characteristic radii R1,2 mentioned above.

Now we focus attention to the distribution of the diffusely
scattered intensity along the vertical Qz axis. From Eq. (1) it
follows that the vertical distribution is determined mainly by
the mean height h of the islands and by the thickness TPt of
the Pt wetting layer. Figure 6 shows the simulated intensities
as functions of h and Qz [panels (a) and (b)] and functions of
TPt and Qz (c),(d); in the simulations we replaced the lateral
correlation function by its value in zero C(0) = θ − θ2 and
used the values θ = 0.5 and σh = 0.

The Qz dependence of the diffusely scattered intensity
shows maxima ascribed to island thickness fringes, and their
positions can be derived considering only process α = 1. The
scattered intensity is roughly proportional to |sinc(q1h/2)|2,
where q1 = k(2)

T z − k(1)
T z and sinc(x) = sin(x)/x. The nonzero

maxima of this function are in the points q1m ≈ (2m + 1)π/h,
from which the following simple formula for the maximum
positions can be derived

Qzm = K sin(αi ) + K

√[π (2m + 1)

hK
−

√
sin2(αi ) − 2δeff

]2

+ 2δeff . (6)

Here we denoted K = 2π/λ, αi = 0.7 deg is the incidence
angle, m = 0, 1, 2, . . ., and δeff = θRe(δPt ). This result shows
that it is possible to determine the mean height h of the islands
from the measured Qz dependence of the diffusely scattered
intensity. The intensity distribution is less sensitive to the Pt
wetting layer under the islands. We repeated the simulations
for various θ ’s and we found the same hyperbolic shape of
the interference maxima. It is worthy to note that the scattered
intensity in panels (c),(d) does not depend on TPt, if only the

direct process α = 1 is considered, thus the TPt dependence
reflects the importance of the indirect processes α = 2, 3, 4.

Figure 7 displays in detail the region of the Yoneda wing
and its dependence on θ . The Yoneda wing occurs for the
Qz value that corresponds to the exit angle of the scattered
radiation, which equals the critical angles of total external
reflection for sapphire or Pt. In Figs. 6 and 7 the positions of
the Pt and sapphire Yoneda wings are denoted by horizontal
blue dashed lines. From the figure it follows that for zero or
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FIG. 6. The distributions of diffusely scattered intensity along the Qz axis calculated as functions of the mean island height h for two
thicknesses TPt of the wetting layer (a),(b) and as functions of TPt for two values of h (c),(d). In the calculations we kept the coverage θ = 0.5
fixed. The dotted horizontal lines marked “0” and “R” denote the Qz values for the zero exit angle (0—the sample horizon) and for the
specularly reflected beam (R), the blue dashed lines denote the positions of the Yoneda wings for Pt (upper line) and sapphire (lower line). The
dashed hyperbolas in (a),(b) denote the positions of diffuse maxima following from Eq. (6). The colors of the two-dimensional graphs (from
white to dark red) span over two decades.

very thin Pt wetting layers, the position of the intensity maxi-
mum on the Qz only very slightly depends on the coverage θ

and it coincides with the Yoneda wing of sapphire [panel (a),
the black dots] for almost all coverages θ . Only for a thicker

wetting layer in Fig. 7(b), the maximum moves towards the Pt
Yoneda wing with increasing coverage. Therefore, from the
Qz position of the diffuse intensity maximum it is possible to
estimate the coverage θ only qualitatively.

FIG. 7. The diffusely scattered intensities calculated as functions of coverage θ and Qz in the vicinity of the sapphire and Pt Yoneda wings
(blue dashed lines denoted “S” and “Pt,” respectively), for fixed island height h = 5 nm. The black dots represent the intensity maxima on the
Qz axis. The colors of the two-dimensional graphs (from white to dark red) span over three decades. In panels (a) and (b) we put TPt = 0 and
5 nm, respectively.
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FIG. 8. Examples of the experimental data: (a) The GISAXS pattern of the sapphire substrate before the deposition, growth run I, (b) the
GISAXS pattern after 285s deposition, (c) the same pattern after subtraction of (a). Panels (d) and (e) display the horizontal and vertical
projections of (c), respectively. In (c), the horizontal black dotted lines denote the values of Qz corresponding to the sample horizon (0) and of
the specularly reflected maximum (R). The blue dashed lines denote the positions of the Yoneda wings for sapphire (S) and Pt. The vertical
dotted line denotes the minimum value Q‖min, from which the vertical projection in (e) was calculated. The blue rectangles in (a)–(c) denote
the areas from which the specularly reflected intensity was extracted. The color scale in (a)–(c) is logarithmic and the colors from white to
dark red span over three decades.

IV. ANALYSIS OF THE GISAXS DATA

During each growth run several thousands of GISAXS
patterns have been collected; typical examples of the GISAXS
patterns taken before and during the growth run I are shown
in Figs. 8(a) and 8(b). From each pattern we subtracted the
pattern of the naked sapphire substrate; this removes the air
scattering and possible influence of the windows of the growth
chamber [panel (c)].

It is not practical to fit the whole 2D reciprocal-
space maps of measured intensity to the theory. Instead,
we considered horizontal S‖(Q‖, t ) and vertical Sz(Qz, t )
projections shown in Figs. 8(d) and 8(e) using the
expressions

S‖(Q‖) =
∫ Q(Pt)

z

Q(sappire)
z

dQzI (Q), Sz(Qz ) = 2π

∫ ∞

Q‖min

dQ‖Q‖I (Q).

(7)

For the horizontal projections we took into account the
GISAXS data with the Qz coordinates between the posi-
tions of the Yoneda wings of sapphire and Pt Q(sapphire)

z �
Qz � Q(Pt)

z ; the Q(sapphire,Pt)
z values are denoted in Fig. 8(c) by

horizontal blue dashed lines. For the vertical projection we
integrated the GISAXS data along Q‖ for Q‖ > Q‖min, where
Q‖min [vertical dotted line in panel (c)] was chosen so that the
projection does not include the central specular maximum. In
the Q‖ integration we assumed that the experimental intensity
pattern exhibits a circular symmetry in the QxQy plane, and
the Q‖ integral is in fact a 2D integral over the area |Q‖| >

Q‖min. In contrast to usual practice, which uses vertical cuts of
the experimental 2D pattern (see Refs. [10,14], for instance),
we use projections into the Qz axis. Since

2π

∫ ∞

0
dQ‖Q‖C(Q‖) =

∫
d2Q‖C(Q‖) = 4π2C(ρ = 0),
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FIG. 9. The specular intensities extracted from the GISAXS pat-
terns; the growth runs I and II.

the projections Sz(Qz ) do not depend on the lateral island
shape.

From the GISAXS patterns we also extracted the intensities
of the specular peaks; for this extraction we considered the
square area depicted in Figs. 8(a)–8(c) by blue rectangles. Fig-
ure 9 shows the time dependences of the specular intensities of
the growth runs I and II. The intensity oscillations are caused
by the interference of the waves reflected from the sapphire/Pt

interface, from the wetting-layer/diluted-layer interface, and
from the free sample surface.

Figure 10 shows the time evolution of the horizontal S‖
[panels (a),(c)] and vertical scans Sz (b),(d) for the growth
runs I (a),(b) and II (c),(d), note the logarithmic scale on the
horizontal time axes. The S‖ scans show side maxima, which
have been predicted in the theoretical models in Sec. III. With
increasing time, the side maxima get closer and sharper; in the
growth run I the distance of the maxima reaches its minimum
(nonzero) value at approx. t = 0.2h and then remains con-
stant. In run II performed at a higher substrate temperature,
the side maxima merge together at t ≈ 0.08h. These critical
times are highlighted by vertical dotted lines in panels (a),(c).

In agreement with theoretical simulations shown above
[see Fig. 6, Eq. (6), and the corresponding text], the Sz pro-
jections in Figs. 10(b) and 10(d) exhibit side maxima, the
distance of which decreases with increasing deposition time.
This fact corresponds to the increase of the mean island height
h. Unfortunately, the visibility of these maxima gets worse
with increasing time, most probably due to an increase of the
rms height deviation σh, and above approx. t = 0.3h the side
maxima disappear. There is no distinct time dependence of
the Qz position of the main maximum of Sz, from which the
time dependence of the coverage θ could be determined. Most
likely, the Pt wetting layer is very thin so that the substrate
Yoneda peak is still visible.

Using inverse Hankel transform

C(ρ) = const
∫ Q‖max

0
dQ‖Q‖J0(ρQ‖)S‖(Q‖) (8)

FIG. 10. The time dependence of the extracted S‖ (a),(c) and Sz projections (b),(d) in the growth runs I (a),(b) and II (c),(d). The nearly
horizontal dotted lines in (a),(c) show the time dependences of Q‖min, the vertical dotted lines denote the critical times mentioned in the text.
The black dotted lines in (b),(d) represent the positions of the sample horizon (0) and of the reflected peak (R), the blue dashed lines denote
the Yoneda wings of sapphire (S) and Pt. The color scale is logarithmic and the colors from white to dark red span over four decades, note the
logarithmic scale of the time axis.
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FIG. 11. (a,c) The time dependences of the correlation function C(ρ ) calculated from the measured GISAXS data displayed in Fig. 10, the
positive (negative) values are displayed by red (blue) colors; for better visibility, the negative interval is ten times exaggerated. The vertical
lines denote the time values for which the correlation functions are plotted in panels (b) and (d). The vertical arrows in (b) labeled R1,2 denote
the characteristic radii for 0.03 h (see text).

we calculated the correlation function C(ρ) from the hori-
zontal scans; the results are plotted in Fig. 11. The upper
integration limit in Eq. (8) determines the step size and min-
imum value of ρ to approx. 5 nm. The maximum value of ρ

follows from the sampling theorem ρmax = 2π/δQ‖ ≈ 1 μm,
where δQ‖ is the step size of the experimental dataset. How-
ever, this maximum value is not reached in the experimental
data, since the correlation function decays to zero already at
approx. 100 nm. The multiplicative constant is not important
for the analysis of the shape of C(ρ).

In panels (a),(c) the red (blue) areas denote the positive
(negative) values of C. The blue-white stripe patterns visible
for shortest deposition times in both growth runs are numeri-
cal artifacts caused by the numerical integration. The presence
of the negative (blue) area for all deposition times in the
growth run I [Figs. 11(a) and 11(b)] demonstrates that the
islands are still noncoalesced and the PY model can be used
for the determination of the lateral island size R and the size
of the depleted region RD for all deposition times. In run II
the negative area disappears at approx. t = 0.1 h, which is the
coalescence threshold. For shorter times, the PY model can be
used, after the threshold we can only determine the radii R1,2

from C(ρ), as characteristic distances describing the surface
morphology.

The analysis of experimental data has been performed in
three steps. In the first step, we used the correlation function
C(ρ) plotted in Fig. 11 and determined the time dependences
of the characteristic radii R1,2 defined in Sec. III. In the
second step we fitted the horizontal projections S‖(Q‖) to
the PY model and determined the time dependence of the
mean island radii R, the radii of the depleted zone RD = ζR,

and the coverages θ . Examples of measured and fitted hor-
izontal projections are shown in Fig. 12; the insets in this
figure demonstrate that the asymptotic behavior of horizontal
projections agrees with the theoretical prediction shown in
Sec. III. The correspondence of the experimental and fitted
horizontal projections is very good, however the fitting proce-
dure could be carried out only for horizontal projections with
well-developed side maxima, i.e., for run II only at growth
times shorter than 0.1 h.

The results of the first two steps are plotted in Fig. 13. The
radii R and RD increase with the growth time t roughly as t0.7;
the factor ζ = RD/R slowly decreases with t and it reaches
unity for t ≈ 0.1 h. The radii RD are comparable with the
characteristic radii R2. In the growth run II [panels (c) and (d)]
the radii R1,2 rapidly increase with t for t > tcrit = 0.06h; the
critical time tcrit can be interpreted as the coalescence thresh-
old. At higher time values above approx. 0.15 h the radii R1,2

exceed the maximum measurable value of approx. 200 nm;
this limit follows from the reciprocal-space resolution of the
experimental setup.

The time dependences of the coverage θ are plotted in
Figs. 13(b) and 13(d). In the growth run I the surface morphol-
ogy remains stable during the whole deposition time and the
coverage is almost constant θ ≈ 0.5; however, the statistical
error of θ becomes quite large for longer times. In the growth
run II the coverage reaches the value of 0.5 at approx. 0.01 h
and then slightly decreases. Above 0.06h the uncertainty of θ

is large, as well.
The third step of the data analysis comprises the fitting of

the vertical projections Sz(Qz ) to the model in Eq. (1) together
with the fitting of the specular intensities plotted in Fig. 9.
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FIG. 12. The horizontal projections S‖(Q‖) extracted from the measured data in Fig. 10, growth runs I (a) and II (b), for three time values
(points), and their fits using the PY model (lines). The insets present the measured projections in the loglog scale; the dashed line denotes the
slope Q−3

‖ .

For each time value t we performed the Sz- and specular-
reflectivity fits in an iterative loop. The specular reflectivity
was calculated using the standard Névot-Croce approach
[34], considering a (sapphire/Pt wetting layer/effective island
layer) sandwich structure. From the Sz fit we determined
the mean height h of the islands, its rms deviation σh, the
thickness TPt of the wetting layer, and again the coverage θ ;
these values were used as starting estimates for the specular-
reflectivity fit, the result of which is used again in the next
Sz-fit step. The coverage affects the vertical projection Sz

only indirectly, since it modifies the refraction index of the
effective diluted layer containing the islands and consequently
slightly affects the amplitudes Aα,β and the shape of the Sz(Qz )

projection. This is the reason why these coverage values are
burdened with large statistical errors. The iterative procedure
was applied for the growth times t for which the Sz(Qz ) pro-
jections show side maxima; this was the case for t < 0.6h and
t < 0.3 h for the runs I and II, respectively.

Figures 14(a) and 14(c) show examples of the measured
and fitted Sz projections; in panels (b) and (d) we plotted the
measured and fitted specular intensities. The figures demon-
strate that the fitting of the Sz projections was quite successful,
however we were not able to achieve a good fit of the specular
reflectivity for all time values.

Figure 15 shows the resulting time dependences of the
parameters h, TPt, and θ . In the growth run I, both the

FIG. 13. The evolution of the characteristic radii R, RD, R1, and R2 [panels (a) and (c)] as well as the coverages θ [(b) and (d)] determined
from the fit of the measured projections S‖ using the PY model. The inclined dashed lines represent the slope of 0.7 (see the text).
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FIG. 14. Examples of the vertical projections Sz (points) and their fits using Eq. (1) (lines); the growth runs I(a) and II(c). In (b),(d) the
measured (lines) and fitted (points) specular reflectivities are plotted in the growth runs I (b) and II (d).

island height h and the wetting layer thickness TPt in-
crease during the deposition. In contrast, the thickness of
the wetting layer remains constant during the growth run
II and after reaching the threshold time tcrit it even de-
creases and becomes not detectable; the island height steeply

increases. The time dependences of the total thickness of
the deposited layer h + TPt agree well with the expected
dependences (black dashed curves) based on growth rates de-
termined from the total Pt thickness measured after the growth
completion.

FIG. 15. The time dependences of the parameters h, TPt determined from the vertical projections; the growth run I (a) and II (c). Panels
(b), (d) display the time dependences of the coverage θ . The vertical dashed lines mark the time values for which the vertical projections in
Figs. 14(a) and 14(c) are displayed. The black dashed curves in (a) and (c) denote the time evolution of the total Pt thickness deduced from the
growth rates determined after the growth completion.
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FIG. 16. The characteristic radii R1,2 determined from the correlation function C(ρ ) compared with the distances Rm from the horizontal
projections S‖ (see the text). The panels (a) and (b) present the results for the growth runs I and II, respectively.

V. DISCUSSION

In the previous section we described the numerical pro-
cedure for determining the characteristic lateral size of the
growing surface as well as the mean island height and the
thickness of the Pt wetting layer underneath. The numerical
calculations are quite demanding, however for the determina-
tion of the time evolution of the lateral characteristic distance
we can use the value of Rm = π/Q‖m, which can be easily
determined form the horizontal projection S‖(Q‖), if it ex-
hibits side maxima. As we showed above, this characteristic
radius agrees with the mean island radius with the accuracy of
a few tens of percent. Figure 16 compares these values with
the characteristic radii R1,2 determined from the correlation
function C(ρ). It is obvious that Rm well compares with R2,
i.e., with the first minimum of C(ρ). Moreover, Fig. 13 shows
that R2 compares with the mean island radius R determined
from the PY model, if applicable. Thus, if a horizontal pro-
jection exhibits a side maximum, from its position we easily
estimate the island radius R ≈ R2 ≈ Rm = π/Q‖m, with the
accuracy discussed above. If no side maxima are present, we
can determine only R1,2 from the correlation function.

The determination of the vertical surface structure (param-
eters h and TPt) is more complicated. Equation (6) shows
a simple connection between the maxima Qzm of a vertical
projection with the mean island height h, however usually
only one side maximum is visible in the measured data,
so that for a reliable determination of h the knowledge of
the coverage θ is necessary. Therefore, without a numerical
simulation, the wetting-layer thickness TPt is not accessible
at all. The coverage θ of the surface by the Pt islands was
determined both from horizontal S‖(Q‖) and vertical Sz(Qz )
intensity projections, however the reliability of the θ values
determined from Sz is much worse. In both growth runs the
coverage is approx. 50%, however for longer deposition times
t the coverages are burdened by large uncertainties.

Our approach is based on the assumption that the contri-
butions to the diffusely scattered intensity from the lateral
and vertical structures can be separated, i.e., the expression
for the intensity is assumed as a product of two functions:
One depends only on the lateral island size, while the other
depends on the island heights and on the wetting layer
[see Eq. (1)]. This is the crucial assumption that simplifies

substantially the data analysis and makes it possible to deter-
mine reliably the time evolution of characteristic lateral and
vertical island sizes. Figure 17 demonstrates that this assump-
tion is not always fulfilled; here we present GISAXS patterns
taken during the growth run I [(a)–(c)] and II [(d)–(f)], the
growth times are indicated in the panels. In panels (b) and
(c) the side maxima show oblique streaks (emphasized with
dashed black lines) making angles between 70 and 80 deg to
the mean sample surface. The streaks can be explained by the
presence of facets inclined by 10–20 deg to the surface; most
likely, the surface produced in the growth run I is somewhat
bumpy. In the growth run II the oblique streaks are not visible,
probably the bumpy surface appears as well, however its char-
acteristic lateral distance is larger than the coherence width of
the primary x rays and therefore not detectable.

If the lateral and vertical structures cannot be separated,
a suitable a priori assumption on the island sizes must be
made. For instance, one can assume that the islands are self-
similar, i.e., the facet angles and the aspect ratios (height vs
width) of different islands are equal. This approach leads to
a random-fractal model of the island landscape, which lies
beyond the scope of this paper. Nevertheless, the island pa-
rameters following from the model of separated lateral and
vertical structures must be taken with caution, if oblique
streaks are detected; in this case they represent mere effective
(characteristic) island heights and radii.

For comparison, the surface topography of the two differ-
ent Pt layers was characterized after growth completion ex
situ by SE imaging in an SEM. The SE images in Fig. 18
give an overview of the surface peculiarities, whereas those of
Fig. 19 reveal more topographic details since they were taken
at a fifty thousand times magnification. In more detail, in the
case of growth run I [Figs. 18(a) and 18(b)] the Pt surface is
relatively rough and the layer is composed of small islands
with sizes in the range of approximately 50–100 nm. After
growth run II larger aggregates of Pt islands or grains, re-
spectively, are present and the surface seems to be smoothed,
which can be explained by the higher deposition temperature
of 500 ◦C. Typical dimensions of these aggregated islands
are in the range between few 100 nm and about 2 μm, i.e.,
they are much larger than the islands found in the Pt layer
of growth run I. Furthermore, it should be noted that for
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FIG. 17. GISAXS patterns taken during the growth runs I [(a)–(c)] and II [(d)–(f)] at three times t (parameters of the images). The color
scale is logarithmic and it spans over three decades. The horizontal dotted lines denote the sample horizon; the oblique lines mark the facet
streaks with the angles 70 deg and 80 deg.

the Pt surface after the growth run II the SE images exhibit
regions with two clearly different signal intensities, resulting
in distinct bright-dark contrast features [cf. Figs. 18(b) and
19(b)]. Presumably, height differences of the two different

planar regions in combination with crystal-orientation effects,
especially channeling, are the reasons for this contrast phe-
nomenon. With respect to the latter point, it can be assumed
that in each type of contrast feature, i.e., brighter or darker

FIG. 18. SEM images of Pt surfaces after the growth run I (a) and II (b).
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FIG. 19. The SEM images of the same Pt surfaces in a larger magnification; growth runs I (a) and II (b).

region, the Pt grains are grown together with dissimilar in-
plane orientation. Besides, in the higher-magnified SE images
in Fig. 19(b) dotlike dark contrast features are additionally
observable. One possible explanation for their appearance is
the presence of threading dislocations, the strain field of which
can locally influence the yield of secondary electrons. Because
of the use of the through-lens detector at very low primary
electron energy (2 keV) even such small surface details are
made visible. In general, the results of these SEM investi-
gations support those of the GISAXS measurements, namely
that the characteristic lateral sizes of the surface features is
approximately 50 nm in the growth run I and several hundreds
of nanometer for the run II.

VI. SUMMARY

Using grazing-incidence small-angle x-ray scattering we
investigated the development of surface morphology in situ
during pulsed-laser deposition of Pt on sapphire substrates.
The Ornstein-Zernicke theory with the Percus-Yevick model
(PY) was used for the analysis of the diffuse scattering pro-
file along the sample surface (lateral direction); this model
is applicable if the lateral intensity distribution exhibits dis-
tinct satellite maxima, i.e., for isolated surface islands. For
coalesced islands we used another approach, consisting of
the Monte-Carlo calculation of the island correlation function
in real space, and we determined two characteristic surface
distances R1,2. Comparing the mean island radius R from the
PY model with these characteristic distances we found that

the distance R2 in which the correlation function exhibits
minimum compares well with R; this radius can be also de-
termined directly from the reciprocal-space position of the
satellite maximum.

The vertical sample structure was studied by fitting the ver-
tical distribution of the diffusely scattered intensity to a model
based on the distorted-wave Born approximation. Using this
method we determined the time evolution of the mean island
height as well as the thickness of the Pt wetting layer at the
substrate surface.

The analysis method was applied for two growth runs with
the substrate temperatures 300 ◦C (run I) and 500 ◦C (run II).
We found that small isolated islands are present during the
whole run I, while island coalescence was observed during run
II after approx. 20min of growth. We detected the presence of
a thin Pt wetting layer on the substrate surface; in the growth
run I both the island height and the wetting layer thickness
increase during the deposition, while in run II the wetting
layer remains very thin.
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