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Enhanced near-field radiation in both TE and TM waves through excitation of Mie resonance
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Near-field radiative heat transfer between two bodies can exceed the far-field blackbody limitation predicted
by Planck’s law due to the evanescent waves tunneling or coupling of additional surface modes, which typically
can occur only in TM modes for nonmagnetic materials. The Mie resonance may have the potential to enhance
near-field radiation in both TM and TE modes according to the calculated results from effective medium theory.
However, there is no exact solution to verify this to date. In this paper, we will give a rigorous numerical
investigation of the role of Mie resonance in near-field radiative heat transfer. The framework of fluctuational
electrodynamics that combines scattering matrix theory with the rigorous coupled wave analysis method is used
to exactly compute the near-field radiative flux between Mie resonant dielectric cubic arrays. It shows that due
to the excitation of Mie resonance, causing ε/μ near-pole effects, the radiative heat flux could be spectrally
enhanced in TM/TE modes. The discrepancy between the effective medium theory and the exact method is also
elucidated in detail. The findings will provide a way to control near-field thermal spectrum via all-dielectric
metamaterials for emerging thermal technologies.
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I. INTRODUCTION

When the gap spacing between two bodies is comparable
to or smaller than the thermal wavelength concerned, the
evanescent waves induced by thermal fluctuations can tunnel
through the gap spacing, and the radiative heat flux can be
significantly enhanced, exceeding the blackbody limitation
predicted by Planck’s law [1,2]. In particular, if surface modes
are excited, like surface plasmon polaritons in metals or doped
silicon [3,4] and surface phonon polaritons in silicon car-
bide [5,6], the radiative heat flux can be further increased, and
the corresponding spectral heat exchange shows a monochro-
matic or quasimonochromatic effect. In comparison with
the case of bulk materials, the near-field thermal transport
between different extended structures [7] can be improved
again due to resonant coupling of hyperbolic polaritons [8,9],
magnetic polaritons [10,11], or spoof surface plasmon po-
laritons [12,13]. However, few modes are supported in TE
waves for these nonmagnetic systems. Electromagnetic meta-
materials [14], which are artificially engineered materials with
unusual electric and magnetic properties, can develop electric
and magnetic surface modes in TE and TM polarizations
simultaneously as a result of the plasmonic or resonant be-
havior of the constitutive elements. Thus, a plethora of studies
focused on hypothetical metallic metamaterials, which have
been proved to be able to mediate near-field radiative heat
transfer [15–20]. Near-field thermal radiation could find many
attractive applications, such as cooling of electronics [21],
thermal management [22–25], and thermophotovoltaic sys-
tems [26].

*Corresponding author: yangyue2017@hit.edu.cn

All-dielectric metamaterials based on Mie resonance [27]
can generate an electric and magnetic response for TE and
TM polarization, respectively. According to Mie theory [28],
waveguide modes will be exhibited when plane electromag-
netic waves are incident on a microstructured trap made of
dielectric material with high permittivity, bringing out the
excitation of Mie resonances. The first-order and second-
order Mie resonances can be equivalent to the magnetic and
electric dipoles in TE and TM modes, respectively [29].
These magnetic and electric dipole resonances acting as artifi-
cial elements cause Lorentzian-type dispersions, which form
macroscopic negative permeability and permittivity in some
specific spectral bands [30]. Previous studies have shown
that surface polaritons (SPs) in both TE and TM modes in-
curred by negative permeability and permittivity can be used
for regulating near-field radiative heat flux [31–33]. Several
theoretical studies [34,35] have provided a comprehensive
procedure for investigating the properties, effects, and lo-
cal density of electromagnetic states originating from Mie
resonant metamaterials on near-field radiation and regarded
the host material containing spherical dielectric inclusions
to be an effective isotropic medium with negative permittiv-
ity and permeability via the macroscopic approximation of
the Clausius-Mossotti model. Based on this kind of effective
medium theory (EMT), a Mie resonant thermal emitter for
near-field thermophotovoltaic systems [36] was devised, and
the sensitivity of emitter design parameters [37] was quantita-
tively analyzed. However, to the best of our knowledge, there
is no exact solution to check and verify the performance of
Mie resonance on near-field radiation to date, and only EMT
is not sufficient considering the validity of EMT for such a
configuration has not been confirmed. This paper describes
an exact numerical investigation of Mie resonance in the
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FIG. 1. Schematic of radiative transfer between two symmetric,
perfectly aligned 2D periodic arrays of cubes with parameters of
period P and side length a held at temperatures T1 and T2. The
vacuum gap distance is denoted as d .

near-field radiative transfer between two all-dielectric meta-
surfaces separated by a vacuum gap. We will also reveal the
discrepancy between the EMT and exact solution for predict-
ing the near-field radiative heat flux.

II. NUMERICAL METHOD

The system that we study in this paper is depicted in Fig. 1.
It consists of two identical, perfectly aligned metasurfaces
formed by two-dimensional (2D) periodic arrays of cubes.
The temperatures of the emitter and receiver are set as T1 and
T2 and kept unchanged. The geometrical parameters of the
metasurface structure are the lattice constant P, the side length
of cubes a, and the gap size d . A similar geometric structure
utilizing doped silicon was adopted to understand the excita-
tion of hyperbolic modes [38]. Here we fix the lattice constant
P at 3.4 μm and investigate the effect of Mie resonance on
radiative heat flux through changing the side length of cubes
a. The side length a varies from 1.5 to 1.7 μm in an increment
of 0.1 μm. In order to excite Mie resonance and obtain a
double-negative property, cubic resonators with large relative
permittivity values ε′ and low dielectric loss are required [30].
Hence, for this study, tellurium is selected as the resonator ma-
terial, which yields a complex dielectric constant with low loss
angle ε = 25 + 0.4i (i.e., loss angle tan δ = 0.016) at infrared
frequencies [39].

To obtain the exact near-field radiative heat flux of the
periodic cubic resonator system, we combine the dyadic
Green’s function method with rigorous coupled wave analysis
(RCWA) [40] to compute it. According to the fluctuational
electrodynamics theory, thermal radiation originates from ran-
dom current sources inside the emitter, which are related by
the fluctuation-dissipation theorem,

〈J(r, z, ω)J∗(r′, z′, ω′)〉

= 4ε0ω

π
�(ω, T )δ(z − z′)δ(ω − ω′)�, (1)

where the tensor � with indexes is defined as �αβ ≡
ε′′
αβδ(r − r′), R = (r, z) or R′ = (r′, z′) is a field point in the

x-y plane, δ(·) is the Dirac function indicating the locality of

real and frequency spaces, and ε′′
αβ is the imaginary part of the

dielectric tensor, with α and β denoting components in three-
dimensional real space. �(ω, T ) = h̄ω/[exp (h̄ω/kBT ) − 1]
is the mean energy of a Planck oscillator in thermal equi-
librium at a frequency ω and temperature T . The radiative
heat flux q(ω, T ) can be acquired by calculating the ensemble-
averaged Poynting vector along the z direction. The averaged
spectral Poynting flux density along the z direction emitted
from the source point z′ in one unit cell can be written as

〈Sz〉 = �(ω, T )

A

(ω). (2)


(ω) is called the transmission factor, which can be expressed
as


(ω) = 2ωε0

π

∫
Re{Tr[�TGe�G†

h]}dz′, (3)

where ε0 is the vacuum dielectric constant, A is the area
of the unit cell, � is the Levi-Civita tensor, and Ge and
Gh are the dyadic Green’s operators relating the electromag-
netic field E and H observed at R to the source point at
R′, i.e., E = GeJ and H = GhJ. For our system, the near-
field transmission factor 
(ω) is calculated by integrating the
transmission coefficient ξ (ω, k‖) over all possible directions
of the in-plane wave vector k‖. The transmission coefficient
ξ that characterizes the probability of a thermally excited
photon transferring from one metasurface to the other can
be obtained by the RCWA method, which is described in
Appendix A.

III. RESULTS AND DISCUSSION

Let us start the discussion of the results by illustrating
the main findings of our work. The spectral radiative heat
flux q(ω, T1, T2) can be obtained by the spectral transmis-
sion factor 
(ω) multiplied by �(ω, T1) − �(ω, T2). We plot
three radiative heat flux spectra between two cubic dielectric
metasurfaces at a vacuum gap distance of d = 1 μm with dis-
similar side lengths a from 1.5 to 1.7 μm in Fig. 2. The emitter
temperature T1 = 600 K and receiver temperature T2 = 300 K
are fixed throughout the paper unless otherwise noted. For the

FIG. 2. Spectral heat fluxes between the two cubic dielectric
resonators at a vacuum gap of d = 1 μm with different side
lengths a.
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FIG. 3. Reflection and transmission of the cubic dielectric resonator array with side length (a) a = 1.6 μm and (b) a = 1.7 μm. The
orange, blue, purple, and gray areas mark the Mie resonant region. The corresponding electromagnetic field intensity distributions Exy and Hxy

are shown for (c) the magnetic dipole, (d) the electric dipole, and (e) and (f) higher-order resonant modes.

parallel metasurfaces, the spectral heat flux curves exhibit a
series of peaks whose frequency locations shift as a changes.
When a increases, the peaks shift towards lower frequencies,
and the relative locations between them remain unchanged.
Moreover, the amplitudes of those increase slightly as a in-
creases.

To explore the physical mechanisms responsible for these
spectral heat flux peaks, the reflection and transmission spec-
tra of a single metasurface, i.e., the emitter or receiver shown
in Fig. 1, calculated based on the finite-difference time-
domain (FDTD) method in the far-field regime are presented
in Figs. 3(a) and 3(b). In both plots, the spectral bands where
Mie resonant modes may exist are shaded different colors.
The geometrical and material parameters applied here are
the same as those used in near-field investigation. As one
can see, there is a host of peaks and dips in the far-field
reflection/transmission spectra of the metasurface as well.
In Fig. 3(b), as a = 1.7 μm, four separate peaks and dips
are observed at frequencies around ω = 1.9, 2.5, 2.7, and
3.1 × 1014 rad/s, corresponding to different Mie resonant
modes. In order to confirm that Mie resonance is excited
in such a metasurface, Figs. 3(c)–3(f) depict on-resonance
electromagnetic field intensity distributions Exy and Hxy at

each peak frequency to reveal the Mie scattering character-
istics [41]. When the incident plane waves with frequencies
of 1.9 and 2.5 × 1014 rad/s hit the high-index cubic array,
it is evident that magnetic and electric dipole resonances are
excited in Figs. 3(c) and 3(d), respectively, making the cube
behave like a magnetic dipole (first-order Mie resonance) and
an electric dipole (second-order Mie resonances). It should
be noted that the magnetic resonance possesses unique cir-
cular displacement currents, which are capable of coupling
with evanescent waves and enhancing the near-field radiative
heat flux. As for electromagnetic waves at 2.7 and 3.1 ×
1014 rad/s, pronounced higher-order Mie resonance will ap-
pear, resembling in such a manner the magnetic/electric
quadrupole and octupole configurations in Figs. 3(e)
and 3(f).

To understand the role of Mie resonance in near-field
radiative flux, the Mie effective medium theory (MEMT) ap-
proximation is considered, which describes the metasurface
as a monolithic medium with macroscopic electric and mag-
netic responses via an effective electric permittivity εeff and
an effective magnetic permeability μeff . Based on the mean-
field approximation, the S-parameter retrieval method [42] is
proposed to characterize εeff and μeff of the metasurface. The
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FIG. 4. (a) and (b) Effective parameter of the cubic dielectric resonator array, calculated for different side lengths a. Solid and dot-dashed
lines indicate real and imaginary parts, respectively. Spectral heat fluxes between the Mie resonant emitter and receiver at different side lengths
of (c) a = 1.6 μm and (d) a = 1.7 μm obtained from the exact method (denoted as “exact”) in comparison with those in TE modes and TM
modes from Mie effective medium theory (denoted as “MEMT-TE” and “MEMT-TM,” respectively).

equations used by the S-parameter method are as follows:

cos(nk0d f ) = 1 − r2 + t2
0

2t2
0

, (4)

Z =
√

(1 + r)2 − t2
0

(1 − r)2 − t2
0

, (5)

where t0 = teik0d f is called the normalized transmission coef-
ficient and d f is the effective thickness of the metasurface,
which is exactly equal to the actual thickness a in our
work [39]. Within this method, the effective refractive index
n and wave impedance Z can be retrieved from the trans-
mission coefficient t and the reflection coefficient r which
are determined by FDTD simulations. Both εeff and μeff

are functions of n and Z . Therefore, the final expressions
for εeff and μeff are derived as εeff = n/Z and μeff = nZ .
The Lorentzian-type dispersive spectra of εeff and μeff with
different side lengths are shown in Figs. 4(a) and 4(b), re-
spectively. There clearly exists a series of reststrahlen bands
from the real part of the dispersive spectra, indicating in-
tense Mie resonant modes. In Fig. 4(b), as a = 1.7 μm,
when the frequency is around 1.9, 2.5, 2.7, and 3.1 × 1014

rad/s, ε′ → ∞ and μ′ → ∞ are observed, and Mie reso-
nances in TM and TE modes with ε/μ near-pole effects are

supported, enabling heat transfer to be further enhanced [43].
Moreover, negative effective permeability and permittivity are
achieved around ω = 1.9 × 1014 and 2.5 × 1014 rad/s, re-
spectively, which originate from strong magnetic and electric
dipole resonances. Meanwhile, the fact that surface modes
can also be induced at the interface between the effective
medium and vacuum with μ′ = −1 or ε′ = −1 [31] should be
noted.

The near-field radiative spectral heat flux q(ω, T1, T2) in
the TE and TM modes between two effective media are pre-
sented in Figs. 4(c) and 4(d). Note that the general calculation
procedure of the near-field radiative heat flux with dispersive
permeability included is elucidated in detail in Appendix C.
In both the MEMT and exact solutions, we could clearly
observe the heat flux enhancement effects from the Mie res-
onances with different orders, i.e., the magnetic dipole, the
electric dipole, and higher-order ones, excited at different
frequencies. Taking a = 1.7 μm as an example, Fig. 4(d)
shows that for the MEMT-TE case, the spectral heat flux
is enhanced by exciting the magnetic dipole or higher-order
resonances with the μ near-pole effect, resulting in four sharp
peaks at frequencies of 1.9, 2.5, 2.7, and 3.1 × 1014 rad/s.
With regard to the MEMT-TM case, the peak locations are
also at 1.9, 2.5, 2.7, and 3.1 × 1014 rad/s, coming from the
contribution of the ε near-pole effect induced by the electric
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FIG. 5. (a) Total heat fluxes between two cubic dielectric resonator arrays at different vacuum gaps calculated by the exact, MEMT, and
MG EMT methods. (b) Comparison of the spectral heat flux at a vacuum gap of d = 1 μm between the exact and WA solutions. All the emitter
and receiver temperatures are set as default values.

dipole and higher-order resonance mode. Although coincident
resonant peaks exist for TE and TM modes, their amplitudes
are different due to different near-pole resonant intensities. It
can be clearly observed that the resonant peak in TM modes
is dominant due to electric resonance stronger than the mag-
netic counterpart at ω = 2.7 × 1014 rad/s in Fig. 4(d) and
2.9 × 1014 rad/s in Fig. 4(c). Conversely, at the frequency
of 3.1 × 1014 rad/s in Fig. 4(d), a more prominent spectral
peak in TE modes is seen owing to a more intense magnetic
response. This also demonstrates that the near-field radiative
heat transfer can be spectrally enhanced for both TE and TM
modes. In addition, the results of the exact and MEMT solu-
tions clearly show the perfect consistency of the frequency for
sets of heat flux peaks, providing strong evidence of the ex-
istence and enhancing effects of Mie resonances in near-field
radiative heat transfer for both TE and TM modes. However,
we also need to note the large discrepancy of the amplitudes
for the spectral heat flux peaks between the exact and MEMT
solutions. This discrepancy may be from additional magnetic
and electric SP resonances, at μ′ = −1 and ε′ = −1, pre-
dicted by the MEMT solution but not the exact one.

Herein, in order to further explore the reason for the dis-
crepancy between the MEMT and exact methods, the total
heat fluxes between two metasurfaces at a = 1.7 μm calcu-
lated by such two methods with different vacuum gaps d are
shown in Fig. 5(a). It can be observed that when the vacuum
gap distance is less than 2 μm, similar to the size of a cubic di-
electric resonator, the total heat flux derived from the MEMT
method is significantly greater than that from the exact RCWA
method. However, when the vacuum gap goes beyond 2 μm,
the total heat fluxes predicted by both MEMT and the exact
method are almost the same. This phenomenon is consistent
with the reason provided for the discrepancy between the
MEMT and exact solution shown in Fig. 4(d) that the electric
and magnetic SP resonances supported in the MEMT solution
overestimate the heat flux compared to the exact one. With a
decrease of the vacuum gap distance, the electric and magnetic
SP resonances become stronger, and the discrepancy of the
total heat flux between these two methods also becomes larger.
On the other hand, the Maxwell-Garnett effective medium
theory (MG EMT) [8], which is a commonly used EMT

method in near-field radiation and regards the metasurface as
a homogeneous uniaxial thin film, is examined to determine
whether or not it can predict the total heat flux accurately.
According to the MG EMT theory, the effective dielectric
functions of the parallel and vertical components of the cubic
resonator array can be expressed as

ε‖ = ε(1 + f ) + (1 − f )

ε(1 − f ) + (1 + f )
, (6)

ε⊥ = (1 − f ) + ε f , (7)

where f = a2/P2 is the filling factor of the metasurface. For
the proposed geometry, we have f = 0.25 (a = 1.7 μm).
Thus, the uniaxial effective dielectric tensor of the metasur-
face can be given by

ε̂ =
(

ε‖ 0 0
0 ε‖ 0
0 0 ε⊥

)
. (8)

The total heat flux predicted by the MG EMT method is also
shown in Fig. 5(a). Note that MG EMT is usually valid when
the characteristic dimension of the metasurface a is much
smaller than the characteristic thermal wavelength λ. And in
the near-field regime, the validity of MG EMT is limited to
vacuum gap distance d > P/π , as pointed out in Ref. [8].
However, we can see that the total heat flux predicted by MG
EMT is far less than the exact one for any gap distance d .
Contrary to previous studies [10,38], where MG EMT usually
overpredicts the total heat flux due to the existence of hyper-
bolic modes, MG EMT would underestimate the heat transfer
because it could not take into account the local resonance like
Mie resonance in the present study.

In addition, a gap-based weighted approximation (WA)
approach is also investigated for comparison to the exact
solution with the Mie resonance excited [11]. For the two-
dimensional metasurfaces that we study with f = 0.25, the
near-field spectral heat flux qWA(ω, T1, T2) calculated by the
WA method can be written as follows:

qWA(ω, T1, T2) = f × qplate(ω, T1, T2; d ), (9)
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FIG. 6. (a) Contour plot of the transmission coefficient ξ from the exact solution between two Mie resonant cubic metasurfaces in the
ω-k domain under k‖ = (kx, 0) for a gap size of d = 1 μm and side length a = 1.7 μm. The Mie resonances with ε/μ near-pole effects are
identified by green triangles. (b) The distribution of the transmission coefficient ξ in kx-ky space for the same geometry at 1.9 × 1014 rad/s.
All the inserted dashed green lines denote the light cone in vacuum.

where qplate(ω, T1, T2; d ) is the spectral heat flux between two
plates with a vacuum gap distance of d . By comparing the
spectral heat flux from the WA method to the exact solu-
tion in Fig. 5(b), the WA method turns out to agree well
with the exact result except for the regions where the Mie
resonances cause spectral heat flux enhancement. This is
easy to understand because the WA method could account
for only the modes supported by the planar surface and
not the local ones like Mie resonance excited by the cube
arrays.

To get further insight into the behaviors of Mie resonance
in near-field radiative transfer, we show a contour plot of
the transmission coefficient ξ from exact results in the ω-kx

domain for a = 1.7 μm and d = 1 μm in Fig. 6(a). The color
represents the amplitude of the transmission coefficient. Mul-
tiple bright bands, which reveal the photon tunneling channels
and indicate resonant frequencies, can be clearly observed.
Modes lying to the right of the light cone (ω = kxc) are a
typical signature of evanescent modes, while dominant modes
to the left of the light cone are propagating modes. The ε/μ

near-pole modes induced by Mie resonance at frequencies of
1.9, 2.5, 2.7, and 3.1 × 1014 rad/s are indicated by triangles.
Note that the enhanced transmission coefficients caused by the
excitation of Mie resonances are independent of kx. Although
the Mie resonance could enhance the transmission coefficient
at both propagating and evanescent waves, it could not behave
like the surface modes in which the strength rapidly increases
with the decrease of the vacuum gap distance. This differ-
ence could also be derived from the comparison of the total
heat flux at different gap distances between the MEMT and
exact solutions shown in Fig. 5(a). Furthermore, we plot the
transmission coefficient ξ in kx-ky space at magnetic dipole
resonant frequency ω = 1.9 × 1014 rad/s in Fig. 6(b). The
wave vector k‖ = (kx, ky) is normalized by the wave vector
in vacuum k0. The green dashed line denotes the light cone
(k2

x + k2
y = k2

0 ). Due to the C4 rotational symmetry of the
cubic metasurface, the transmission coefficient distribution in
kx-ky space is also C4 symmetric, and the magnetic dipole
resonance could increase the heat transfer channels for both

propagating (area inside the light cone) and evanescent (area
outside the light cone) waves.

IV. CONCLUSION

In summary, we have theoretically investigated the effect
of Mie resonance in the near-field radiative heat flux between
two all-dielectric metasurfaces based on the exact RCWA
method. It was found that the excitation of Mie resonances
could cause ε/μ near-pole effects and hence enhance the
spectral radiative heat flux, verified by the consistency of
magnetic resonance in TE modes and electric resonance in
TM modes compared to the MEMT method. Meanwhile, the
applicability of MEMT in predicting near-field thermal radia-
tion was evaluated by the exact solution, and a vacuum gap
distance beyond the cubic size is needed for MEMT to be
valid. The MG EMT and WA methods were also analyzed,
and neither of them can predict the heat transfer correctly. The
excitation of Mie resonance in near-field thermal radiation
provides an innovative way to spectrally enhance heat transfer
in both TM and TE modes. The fundamental understanding
obtained in this paper will pave the way to tailor near-field
radiative spectra with all-dielectric metamaterials for active
thermal management at the nanoscale.
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APPENDIX A: RIGOROUS COUPLED-WAVE ANALYSIS

Based on the exact scattering theory, near-field radiative
heat flux between two metasurfaces can be given by the
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FIG. 7. Convergence test for (a) the transmission coefficient ξ (ω, k‖) and (b) the transmission factor 
(ω) between two Mie resonant
cubic metasurfaces with side length a = 1.7 μm and vacuum gap d = 1 μm. The relative error varies with the maximum diffraction order N
and number of kx (ky) points Nk , respectively. (c) The transmission factor 
(ω) between two metasurfaces through the RCWA method with
different ranges for N and Nk .

following Landauer-like expression [44]:

h(T1, T2) =
∫ ∞

0
q(ω, T1, T2)dω

=
∫ ∞

0
[�(ω, T1) − �(ω, T2)]
(ω)dω. (A1)

The spectral transmission factor 
(ω) for a two-dimensional
periodic system is expressed as [7]


(ω) = 1

8π3

∫ π/P

−π/P

∫ π/P

−π/P
ξ (ω, kx, ky )dkxdky, (A2)

where ξ (ω, k‖) is the transmission coefficient that character-
izes the possibility of photon tunneling from one body to the
other at a frequency ω and mode k‖. It can be decided by [10]

ξ (ω, k) = Tr(DW1D†W2), (A3a)

D = (I − S1S2)−1, (A3b)

W1 =
pw∑
−1

−S1

pw∑
−1

S†
1 + S1

ew∑
−1

−
ew∑
−1

S†
1, (A3c)

W2 =
pw∑
1

−S†
2

pw∑
1

S2 + S†
2

ew∑
1

−
ew∑
1

S2, (A3d)

where S1 = R1, S2 = eikz0d R2eikz0d , the dagger is the Hermi-
tian adjoint, and R1 and R2 are the reflection matrices of
the interface between the vacuum and metasurface, which
can be computed by the RCWA method. The operators∑pw/ew

±1 = 1
2 k±1

z0

∏pw/ew, where
∏pw/ew are the projectors into

propagating/evanescent modes and kz0 =
√

ω2/c2 − k2
‖ is the

longitudinal wave vector in the vacuum, where k‖ is the
modulus of k‖. To get the transmission factor 
(ω), the trans-
mission coefficient ξ is integrated over all of k‖. Note that
k‖ is the in-plane wave vector on the interface of the vacuum
and metasurface, the modulus of which can be expressed as

k j
‖ =

√
(k0

x + 2π
p j)

2 + (k0
y + 2π

p j)
2

( j ∈ N) according to the

Bloch wave condition. Here k0
‖ = (k0

x , k0
y ) is the wave vector

in the first Brillouin zone of the periodic lattice, j runs from
−N to N , and N refers to the maximum diffraction order.
For more complicated geometries, the integrating value of ξ

is adjusted to be rigorous by using a larger diffraction order.
For the sake of saving computational costs and ensuring the

numerical accuracy, the maximum diffraction order is picked
on the basis of this convergence analysis.

APPENDIX B: CONVERGENCE ANALYSIS OF
THE RCWA METHOD

The framework of fluctuational electrodynamics that com-
bines scattering matrix theory with RCWA was successfully
used to analyze near-field thermal radiation in Refs. [7,45].
To ensure the validation of numerical calculations using the
RCWA method, we have tested the convergence of ξ (ω, k‖)
for the proposed metasurfaces as a function of the maximum
diffraction order N at a vacuum gap distance of d = 1 μm.
For the given frequency ω = 1.9 and 2.5 × 1014 rad/s, the re-
sults for k‖ = (0, 0), (1.1ω/c, 1.1ω/c) are shown in Fig. 7(a).
The relative error is defined as e1 = |ξ/ξaccurate − 1| to judge
whether ξ is convergent, where ξ with N = 500 is regarded
as accurate. As we can see, for the four cases considered here,
as N increases from 100 to 500, the corresponding relative
errors e1 are within 5%, which indicates good convergence.
The result calculated with N = 200 is slightly smaller than the
accurate value by 1% but can save a lot of time. For the given
maximum diffraction order N = 200 and fixed frequency, the
convergence of 
(ω) with a change in the number of kx (ky)
points Nk has also been checked. Here the relative error is
defined as e2 = |
/
accurate − 1|, in which the value of 


at Nk = 100 is treated as accurate. As shown in Fig. 7(b),
Nk = 50 was applied to calculate the spectral transmission
factor with a relative error smaller than 2% compared to that
obtained with Nk = 100. Thus, a total of 401 diffraction orders
(i.e., N = 200) and 2500 k‖ points (i.e., Nk = 50) are selected
in our paper. Figure 7(c) shows 
(ω) obtained from different
parameters N and Nk . Even in the cases with N = 300 and
Nk = 100, the results are also consistent, which validates the
correctness of the RCWA method with the parameters applied
in this work.

APPENDIX C: NEAR-FIELD RADIATIVE HEAT
TRANSFER IN MAGNETIC FILMS

Near-field radiative spectral heat flux between two thin
films with dispersive permittivity and permeability can be
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expressed as follows [3]:

q(ω, T1, T2) = 1

π2

∫ ∞

0
[�(ω, T1) − �(ω, T2)]dω

×
∫ ∞

0
ξ (ω, k‖)k‖dk‖, (C1)

where ξ (ω, k‖) is the transmission coefficient of the films,

ξ (ω, k‖) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1−

∣∣Rp,s
1

∣∣2)(
1−

∣∣Rp,s
2

∣∣2)
4
∣∣1−Rp,s

1 Rp,s
2 e2ikz0d

∣∣2 , k‖ < k0,

Im
(

Rp,s
1

)
Im

(
Rp,s

2

)∣∣1−Rp,s
1 Rp,s

2 e2ikz0d
∣∣2 e2ikz0d , k‖ > k0,

(C2)

for propagating (k‖ < k0) and evanescent modes (k‖ > k0),
where kz0 is the perpendicular component of the wave vector
in vacuum and the subscripts 0, 1, and 2, respectively, denote
vacuum, film emitter, and film receiver. Rp,s

j ( j ∈ {1, 2}) is
the film refection coefficient for p or s polarization, which is

defined as

Rp,s
j = rp,s

0 j + rp,s
j0 e2ikz j a

1 + rp,s
0 j r p,s

j0 e2ikz j a
. (C3)

In Eq. (C3), kz j is the perpendicular component of the wave
vector in the jth film k j , and rp,s

j0 (rp,s
0 j ) is the Fresnel reflection

coefficient at the interface j-0 (0- j) in p or s polarization,
which is given by [46]

rp(s)
j0 = ε0(μ0)kz j − ε j (μ j )kz0

ε0(μ0)kz j + ε j (μ j )kz0
, (C4)

rp(s)
0 j = ε j (μ j )kz0 − ε0(μ0)kz j

ε j (μ j )kz0 + ε0(μ0)kz j
. (C5)

Note that μ0 is the permeability in vacuum, and ε j = εeff

(μ j = μeff ) is the permittivity (permeability) of the jth film.
For the transmission coefficient ξ , the contribution of the mag-
netic response will be included in s-polarized or TE waves,
while that of the electric response belongs to p-polarized or
TM waves.
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