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Possible odd-frequency Amperean magnon-mediated superconductivity in topological
insulator–ferromagnetic insulator bilayer

Henning G. Hugdal and Asle Sudbø
Center for Quantum Spintronics, Department of Physics, NTNU, Norwegian University of Science

and Technology, NO-7491 Trondheim, Norway

(Received 1 July 2020; revised 9 September 2020; accepted 9 September 2020; published 23 September 2020)

We study the magnon-mediated pairing between fermions on the surface of a topological insulator (TI)
coupled to a ferromagnetic insulator with a tilted mean field magnetization. Tilting the magnetization toward
the interfacial plane reduces the magnetic band gap and leads to a shift in the effective TI dispersions. We
derive and solve the self-consistency equation for the superconducting gap in two different situations, where we
neglect or include the frequency dependence of the magnon propagator. Neglecting the frequency dependence
results in p-wave Amperean solutions. We also find that tilting the magnetization into the interface plane favors
Cooper pairs with center-of-mass momenta parallel to the magnetization vector, increasing Tc compared to the
out-of-plane case. Including the frequency dependence of the magnon propagator, and solving for a low number
of Matsubara frequencies, we find that the eigenvectors of the Amperean solutions at the critical temperature are
dominantly odd in frequency and even in momentum, thus opening the possibility for odd-frequency Amperean
pairing.

DOI: 10.1103/PhysRevB.102.125429

I. INTRODUCTION

Spin fluctuations are one of the proposed mechanisms for
superconductivity in unconventional superconductors [1,2],
for which the phase diagrams often have both antifer-
romagnetic and superconducting regions [3–9], or where
ferromagnetism and superconductivity appear simultaneously
[10–15]. Recently, there have been studies focusing on the
possibility of magnon-mediated superconductivity in het-
erostructures consisting of magnetic insulators and a normal
metal or topological insulator (TI) [16–22], where the elec-
trons couple to magnetic fluctuations at the interface. In TIs
the superconductivity can be between fermions with parallel
momenta, so-called Amperean pairing [23]. It has also been
shown that a coupling to magnons can lead to indirect exciton
condensation [24].

Coupling the magnetic insulator to the TI surface states
[25,26] has a few interesting consequences compared to cou-
pling to the electrons in a normal metal. First of all, the
metallic states are restricted to the surface, locating them close
to the spin fluctuations, ensuring a strong coupling. Moreover,
due to the spin-momentum locking in the TI, the response
to the magnetization is very different compared to a normal
metal. While an exchange field leads to a band splitting and
thus pair-breaking effects for any spin-0 Cooper pairs in a
normal metal, the exchange field in a TI leads only to a
gap and/or shift in the surface state dispersions, but no band
splitting. Hence, the Fermi level only crosses one band, and
the Cooper pairs must necessarily be pseudospin triplets.

In this work we study a TI exchange coupled to a ferromag-
netic insulator (FMI) with a mean field magnetization that can
be tilted toward the plane of the interface between the TI and

FMI. We derive the gap equation for the static gap, and study
the possibility of both Bardeen-Cooper-Schrieffer (BCS) [27]
type superconductivity and Amperean superconductivity, fo-
cusing on the changes due to the in-plane component of the
magnetization. We also derive the gap equation including the
frequency dependence of the magnon propagator, and solve
these equations including only a few Matsubara frequencies.
Our results show that the eigenvectors are mostly odd in
frequency [28–36], thus showing the possibility for magnon-
mediated odd-frequency Amperean superconductivity.

The remainder of the paper is organized as follows: The
model is presented in Sec. II, as is the derivation of the
effective magnon-mediated action. The general gap equations
are derived in Sec. III, and specifically studied for the static
and frequency-dependent cases in Secs. IV and V. Finally, the
main results are summarized in Sec. VI. Further details re-
garding the derivations and material parameters are presented
in the Appendix.

II. MODEL

A sketch of the system is shown in Fig. 1. We model the
FMI using the Lagrangian

Lm = −b(m) · ∂t m − κ

2
(∇m)2 + λ(m · â)2, (1)

where â is the direction of the mean field magnetization,
parametrized by â = sin θ x̂ + cos θ ẑ, and λ > 0. A general
mean field magnetization including a y component can be
shown to be equivalent to considering only an xz-plane
magnetization by rotating the spin-quantization axis and the
coordinate system. b(m) is the Berry connection, satisfying
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FIG. 1. Sketch of the system consisting of TI coupled to a FMI
with a mean field magnetization tilted in the xz plane by angle θ with
respect to the z axis. J is the strength of the exchange coupling.

∇m × b(m) = m/m̄2 [37], where ∇m = (∂mx , ∂my , ∂mz ). Here
m̄ is the length of the mean field magnetization along â. We
have set h̄ = 1 throughout the paper. The Lagrangian of the TI
surface states reads as

LTI = �†[i∂t − ivF(σy∂x − σx∂y) + μ]�, (2)

where � = (ψ↑, ψ↓)T is a vector of spin-up and spin-down
electrons in the TI, vF is the Fermi velocity, and μ is the chem-
ical potential. The TI and FMI are coupled via the exchange
coupling term

Lc = J�†m · σ�, (3)

where J is the coupling strength.
We fix the length of the magnetization vector to m̄, and thus

write

m =
√

1 − n2m̄â + m̄n, (4)

where n is the fluctuation vector perpendicular to â,

n = n(cos θ x̂ − sin θ ẑ) + nyŷ. (5)

We assume that n, ny � 1.
We next calculate the Berry connection by generalizing the

leading-order expression b = (ẑ × n)/2 [16] to a mean field
direction along â:

b = â × n
2

= −ny cos θ x̂ − nŷ − ny sin θ ẑ

2
. (6)

Hence, to lowest order, we have

∇m × b = â
m̄

. (7)

Switching to imaginary time τ = it and Fourier transform-
ing,1 we get the three contributions to the action:

Sm = 1

βV

∑
q

{[
κm̄2

2
q2 + λm̄2

]
n(−q) · n(q)

− �nm̄

2
[ny(−q)n(q) − n(−q)ny(q)]

}
, (8)

1We use the convention

f (τ, r) = 1

βV

∑
ωn,k

f (ωn, k)eik·r−iωnτ

for the Fourier transform.

STI = 1

βV

∑
k

�†(k)[−iωn − vF(kxσy − kyσx ) − μ]�(k),

(9)

Sc = Sm̄
c + Sn

c

= − Jm̄

βV

∑
k

�†(k)â · σ�(k)

− Jm̄

(βV )2

∑
q,k

�†(k + q)n(q) · σ�(k). (10)

Here, we have used the notation q = (�n, q) and k = (ωn, k)
for bosonic and fermionic Matsubara frequencies and mo-
menta, respectively. We have also kept only leading-order
terms in the fluctuations in the coupling term. Using a more
general model as a starting point, such as the one in Ref. [38],
λ could in principle be renormalized to take negative val-
ues, meaning that an antiferromagnetic alignment between the
magnetic fluctuations n could be favored.

A. Integrating out the magnons

To obtain the effective, magnon-mediated interaction be-
tween Dirac electrons, we need to integrate out the magnons.
This can be done by rewriting the full magnon action Sn =
Sm + Sn

c by introducing the vectors N (q) = (n(q), ny(q))T

and

j(q) = Jm̄

βV

∑
k

(
�†(k + q)(cos θσx − sin θσz )�(k)

�†(k + q)σy�(k)

)
,

(11)

resulting in

Sn = 1

βV

∑
q

{
N (−q)T

[
κm̄2

2
q2 + m̄2λ + i�nm̄σy

2

]
N (q)

− NT (−q) j(−q) + jT (q)N (q)

2

}
. (12)

Performing the functional integral, we get an additional term
in the TI action:

δSTI = − 1

4βV m̄

∑
q

jT (q)
κm̄
2 q2 + m̄λ − 4 i�n

2 σy(
�n
2

)2 + (
κm̄
2 q2 + m̄λ

)2
j(−q).

(13)

In the low-frequency limit, the last term in the numerator
is less singular than the other two terms, and we therefore
neglect it in the following [16]. We therefore get

δSTI = − 1

4βV m̄

∑
q

ωq(
�n
2

)2 + ω2
q

jT (q) j(−q), (14)

where we have defined the magnon dispersion

ωq = κm̄

2
q2 + m̄λ. (15)
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FIG. 2. Plot of eigenenergies in Eq. (23) as a function of ky with
kx = 0 and μ = 0 for different values of θ . Increasing θ toward π/2
reduces the mass gap and shifts the center of the dispersion away
from ky = 0. At π/2 we have a Dirac point located at ky = Jm̄/vF.

B. Diagonalization of mean field TI action

We next diagonalize the mean field TI action

Smf
TI = − 1

βV

∑
k

�†(k)G−1(k)�, (16)

where we have defined the inverse Green’s function

G−1(k) = iωn + μ + Mσz + vFkxσy − vF(ky − Ky)σx, (17)

where M = Jm̄ cos θ and Ky = Jm̄ sin θ/vF. Diagonalizing
the Green’s function results in

G−1
d = PkG−1P†

k = diag(λ+, λ−), (18)

where the diagonal entries are

λ± = iωn + μ ∓
√

v2
Fk2

x + v2
F(ky − Ky)2 + M2, (19)

and the Green’s function is diagonalized by the matrix

Pk = 1√
nk

( s∗
k rk

−rk sk

)
, (20)

where

sk = vF(ky − Ky) + ivFkx, (21a)

rk = M +
√

|sk|2 + M2, (21b)

nk = r2
k + |sk|2. (21c)

The eigenvectors �±(k) in the helicity basis are given by
a transformation from the spin basis �(k), defined below
Eq. (2), as follows:

�±(k) ≡
(
ψ+
ψ−

)
= Pk�(k), (22)

where the helicity index is denoted by + or −. The eigenen-
ergies are given by the zeros of the diagonal entries

ε±(k) = ±
√

v2
Fk2

x + v2
F(ky − Ky)2 + M2 − μ. (23)

Hence, M leads to a gap in the dispersion, while Ky shifts the
dispersion along the ky axis. This is illustrated in Fig. 2.

C. Magnon-mediated interaction

We now rewrite the effective action in Eq. (14) in terms of
the Dirac fermions defined by Eq. (22), assuming that μ > M

and thus restricting the problem to only considering the ψ+
fermions. This results in (see Appendix A for details)

δSTI = − J2m̄

4(βV )3

∑
q,k,k′

D(q)�k′k(q)

× ψ†(k′ + q)ψ†(k − q)ψ (k)ψ (k′), (24)

where we for notational simplicity have dropped the subscript
+ on the fields ψ+, and defined the magnon propagator

D(q) = ωq

(�n/2)2 + ω2
q
, (25)

and the scattering form factor �k′k(q) = �0
k′k(q) +

�x
k′k(q) + �xz

k′k(q), with

�0
k′k(q) = cos2 θ + 1√

nknk−qnk′nk′+q

× [sk′s∗
k−qrk′+qrk + sks∗

k′+qrk′rk−q], (26)

�x
k′k(q) = sin2 θ√

nknk−qnk′nk′+q

× [sk′sks∗
k′+qs∗

k−q − sk′s∗
k′+qrkrk−q

− sks∗
k−qrk′rk′+q + rkrk−qrk′rk′+q

− sk′skrk′+qrk−q − s∗
k′+qs∗

k−qrk′rk], (27)

�xz
k′k(q) = − cos θ sin θ√

nknk−qnk′nk′+q

× [sk′sks∗
k−qrk′+q + sksk′s∗

k′+qrk−q

+ sks∗
k−qs∗

k′+qrk′ + sk′s∗
k′+qs∗

k−qrk

− sk′rk′+qrkrk−q − skrk−qrk′rk′+q

− s∗
k′+qrk′rkrk−q − s∗

k−qrkrk′rk′+q]. (28)

The first expression is the same expression as was analyzed in
Refs. [16,19], except it now has a θ dependence and an overall
multiplicative factor of 2 when θ = 0. This term is, however,
always nonzero. The other two expressions were not present
in Refs. [16,19], as they both require an x component in the
mean field magnetization. The last expression also requires a
finite z component. Hence, we may have differences in the
pairing depending on the angle of the mean field direction,
which will be analyzed after calculating the gap equations for
the system.

III. GAP EQUATIONS

Including the symmetrized magnon-mediated interaction
in the action, we get the following effective action for the +
fermions:

S+ = − 1

βV

∑
k

ψ†(k)λ+(k)ψ (k) + 1

(βV )3

∑
k,k′,q

Vk′k (q)

× ψ†
(

k′ + q

2

)
ψ†

(
−k′ + q

2

)
ψ

(
−k + q

2

)
ψ

(
k + q

2

)
,

(29)
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with the symmetrized interaction

Vk′k (q) = − J2m̄

8
[D(k′ − k)�q(k′, k)

− D(k′ + k)�q(k′,−k)]. (30)

For notational simplicity we have defined

�q(k′, k) ≡ �k+ q
2 ,−k+ q

2
(k′ − k). (31)

We have also relabeled the momenta to allow for a finite
center-of-mass momentum q for the Cooper pairs, which is
necessary for Amperean pairing. Moreover, since the mini-
mum of the dispersion is shifted away from k = 0 for nonzero
θ there is also the possibility of BCS Cooper pairs with
finite center-of-mass momentum, i.e., a Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [39,40]. As such, the system has
some similarities to two-dimensional normal metal systems
with Rashba spin-orbit coupling coupled to a Zeemann field
with an in-plane component, leading to a shift in the disper-
sion and thus the possibility of a FFLO state [41–46].

We now perform a Hubbard-Stratonovich decoupling [47]
by introducing bosonic fields ϕq and φ†

q (see Appendix B for
details), resulting in the functional integral

Z =
∫

Dψ†Dψ e−S′
∫

Dϕ†
qDϕq e−S0

φ , (32)

where we have the fermionic action containing the coupling
to the bosonic fields

S′ = − 1

βV

∑
k

{
ψ†(k)λ+(k)ψ (k)

+
∑

q

[
ϕ†

q (k)ψ
(
−k + q

2

)
ψ

(
k + q

2

)

+ ψ†
(

k + q

2

)
ψ†

(
−k + q

2

)
ϕq(k)

]}
, (33)

and the additional bosonic action

S0
φ = − βV

∑
q,k′k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k). (34)

Before proceeding any further, we will assume that the mean
field bosonic field is of the form

ϕq(k) = 1
2δq,Qδ�n,0�Q(k). (35)

This effectively restricts the analysis to only consider
Cooper pairs with one common center-of-mass momentum. In
general, these will couple to Cooper pairs with other center-
of-mass momenta. However, since any interaction between
them does not conserve momentum, the couplings are likely
to be small, and we therefore focus on only one Q in the
following.

In order to integrate out the fermions, we rewrite the action
using the vector

�Q(k) =
(

ψ (k)
ψ†(−k + Q)

)
, (36)

where Q = (0, Q), leading to

S′ = − 1

2βV

∑
k

�
†
Q

(
k + Q

2

)
G−1

Q (k)�Q

(
k + Q

2

)
, (37)

where we have defined the inverse Green’s function matrix

G−1
Q (k) =

(
λ+

(
k + Q

2

)
�Q(k)

�
†
Q(k) −λ+

(−k + Q
2

)). (38)

Integrating out the fermions, we finally get the effective action
for the bosonic fields

Sφ = − βV

4

∑
k′k

�
†
Q(k′)[Vk′k (Q)]−1�Q(k)

− 1

2
Tr ln

( − G−1
Q

)
. (39)

The gap equation follows from using the saddle-point ap-
proximation [47]

δSφ

δ�Q(p)
= 0, (40)

resulting in

βV

4

∑
k′

�
†
Q(k′)[Vk′ p(Q)]−1 = �

†
Q(p)

2 detG−1
Q (p)

, (41)

where detG−1
Q (k) = −λ+(k + Q/2)λ+(−k + Q/2) −

|�Q(k)|2. Multiplying both sides with Vpk (Q)/βV and
summing over p, we get

�
†
Q(k) = 2

βV

∑
ω′

n,k
′

�
†
Q(k′)Vk′k (Q)[

iω′
n − εo

Q(k′) − EQ(k′)
][

iω′
n − εo

Q(k′) + EQ(k′)
] , (42)

where we have defined

εo
Q(k′) = ε+

(
k′ + Q

2

) − ε+
(−k′ + Q

2

)
2

, (43)

εe
Q(k′) = ε+

(
k′ + Q

2

) + ε+
(−k′ + Q

2

)
2

, (44)

EQ(k′) =
√[

εe
Q(k′)

]2 + |�Q(k′)|2. (45)

It is important to point out that since we have included only the
ψ+ states in the analysis, the gap equation is for pseudospin
triplets, the “spin” in this case being the helicity index + or
−. The physical spin is not a good quantum number because
of the spin-orbit coupling in the system. Therefore, following
the symmetry analysis in, e.g., Ref. [36], the gap function has
to be odd in ωn and even in k, or even in ωn and odd in k.

We will now treat the gap equation in two different ways:
(1) We neglect the frequency dependence of the magnon
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propagator in Eq. (25) [12,13,19,24] and study the static limit,
and (2) we use an approach similar to the Eliashberg equations
[48–50], solving the gap equations directly including only a
low number of Matsubara frequencies.

IV. FREQUENCY-INDEPENDENT SOLUTION

In the static limit, we set the frequency to zero in the
magnon propagator,

D(q) → D(q) = 1

ωq
, (46)

such that the interaction now only depends on the momenta
Vk′k (q) → Vk′k(q). Hence, there is no longer a free frequency
in the gap equation, and we can perform the remaining Mat-
subara sum, resulting in

�
†
Q(k) = − 2

V

∑
k′

Vk′k(Q)�Q(k′)χQ(k′), (47)

with

χQ(k) = 1

4EQ(k′)

[
tanh

β
(
εo

Q(k) + EQ(k)
)

2

− tanh
β
(
εo

Q(k) − EQ(k)
)

2

]
, (48)

where β = 1/kBT . Since the surface states are pseudospin
triples, and we have neglected the frequency dependence,
�Q(k) must now be an odd function of k [36], which is evi-
dent also from the interaction. For simplicity, we now define
K = (0, Ky), and let Q = 2K + 2P, such that the center of the
Fermi surface is at the origin when P = 0 independent of the
angle θ .

A. BCS pairing

We first study the case P = 0, which resembles the reg-
ular BCS pairing case with circular Fermi surface. Now,
εo

2K(k) = 0 for all k, and the temperature-dependent factor in
the gap equation simplifies to

χ2K(k) = 1

2E2K(k)
tanh

βE2K(k)

2
, (49)

which is peaked at the minima of E2K, at Fermi momenta
vFkF =

√
μ2 − M2. Instead of solving the gap equation di-

rectly, we write the linearized gap equation [51]

�
†
2K(k) = − 〈2Vk′k(2K)�2K(k′)〉k′,FS

∫
dk′

2π
k′χ2K(k′),

(50)

which can be written as an eigenvalue problem

η�2K(k′) = −〈2Vk′k(2K)�2K(k′)〉k′,FS, (51)

where FS denotes an average over the Fermi surface. The
critical temperature is then proportional to e−c/η, where η is
the highest positive eigenvalue [51], and c is some constant.

TABLE I. Material parameters used unless otherwise stated.

h̄vF 0.4 eV nm [57]
μ 0.2 eV [58]
a 0.4 nm [57]
Jm̄ 10 meV [59,60]
m̄κ 0.03 meV nm2 [61]
λ/κ 0.01 nm−2

Assuming M � μ, we get for the scattering form factor

�2K(k′, k) ≈ −e−iφk+iφk′ [1 − sin2 θ sin φk sin φk′]. (52)

The expression in the square brackets never changes sign, but
introduces anisotropy in k space. Hence, for φk = φk′ , the
interaction Vk′k(2K) is always positive as long as the easy-axis
parameter λ > 0 [see Eq. (1)], giving the wrong overall sign
in order for a nontrivial solution of the gap equation to be
possible. To verify this, we solve Eq. (51) numerically as a
function of λ using the parameter values in Table I, resulting
in the eigenvalues shown in Fig. 3 for tilt angle θ = 0. The
figure shows that η is very small for positive values of λ.
We also calculated the eigenvectors, which were randomly
fluctuating for positive λ. For other tilt angles, the results are
qualitatively the same. Hence, we conclude that BCS pairing
is not possible in the static limit for λ > 0. For λ < 0 we
find finite eigenvalues η and smooth eigenvectors, meaning
that the system has a superconducting instability in this case,
the reason being that the magnon propagator, and thus the
interaction potential, now can change sign. This is consistent
with the results in Ref. [19]. In systems where λ < 0 and
θ �= 0 is possible, this would lead to FFLO Cooper pairs with
momentum 2K. However, for the present system, we have
assumed that λ > 0, thus, we do not find a solution to the gap
equation in the BCS-type case.

B. Amperean pairing

As has been shown in previous work [16,19,22], it is possi-
ble to get a superconducting instability where the Cooper pairs
reside on the same side of the Fermi surface, and the Cooper

-0.01 0 0.01 0.02λ/κ [nm−2]

10−14

10−11

10−8

10−5

10−2

101

η
[a

.u
]

FIG. 3. Plot of solutions to the eigenvalue problem (51) as a func-
tion of λ for θ = 0 and J = 0.01eV nm2. We see that the eigenvalues
are very small for λ > 0, indicative of the gap equation not having
solutions. For λ < 0, however, we get finite eigenvalues, meaning
that the gap equation has solutions for negative λ.
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FIG. 4. Plot of the logarithm of 4T χQ(k) with Q = 2K + 2P for
P = (kF, 0), kBT = 5 × 10−4 eV, and �Q = 0. The white areas are
outside the range of the color bar. The red lines indicate k2

‖ + k2
⊥ ±

2k‖kF = 0.

pairs thus have a finite center-of-mass momentum of 2kF.
In the present case, this means setting Q = 2K + 2P, where
|P| = kF. In the limit T → 0, χ (k) quickly drops off to zero
when the εo

2K+2P(k) term in the tanh terms dominates over the
εe

2K+2P(k) term in the � = 0 limit, i.e., approximately when

k2
‖ + k2

⊥ ± 2k‖kF > 0, (53)

where k⊥ (k‖) is perpendicular to (parallel with) P [23] (see
Fig. 4). Even inside this region, we see that χ (k) is largest
for small |k|. In the limit |k|, |k′| � |P| the form factor to
lowest order is

�2K+2P(0, 0) = v2
Fk2

F(1 − sin2 φP sin2 θ ) + M2 sin2 θ

M2 + v2
Fk2

F

, (54)

a plot of which is shown in Fig. 5. The figure shows that
as θ increases toward π/2, the isotropy in the xy plane is
broken, and pairing of particles with P pointing along the x
axis becomes increasingly more favored. Importantly, the sign

FIG. 5. Plot of �2K+2P(0, 0) for different tilt angles θ as a func-
tion of φP and chemical potential μ. The pairing is zero for μ < M =
Jm̄ cos θ since we have no Fermi surface in this case.

is opposite compared to the BCS case studied above. Solv-
ing the linearized gap equation numerically in the Amperean
pairing case as a function of tilt angle θ for different orienta-
tions of P = kF(cos φP, sin φP ), we get the results shown in
Fig. 6(a). As expected from Fig. 5 the critical temperature
decreases when θ increases toward π/2 when φP = π/4 and
π/2 compared to φP = 0. For φP = 0, the critical temperature
increases for increasing θ , meaning that Amperean supercon-
ductivity might be easier to detect in a system where the FMI
magnetization lies in the interface plane. It must be noted
that the change in Tc due to changes in J [see Fig. 6(b)]
is quite large for J ∼ 0.01eV nm2, and might explain the
rather large relative increase in Tc for φP = 0 when tuning the
magnetization into the plane. Figures 6(c) and 6(d) show
the real and imaginary parts of the eigenvector, showing that
the eigenvector is odd in k. The eigenvector is similar to that
obtained in Ref. [22] for a topological insulator coupled to an
antiferromagnetic insulator.

For systems with a finite in-plane component of the magne-
tization, the system no longer has many degenerate solutions
for all the possible choices of the vector P. The highest Tc

will be for P = (±kF, 0), and hence we expect the system to
condense to either or both of these P vectors. Although con-
densing with P = (±kF, 0) is equally probable, there is still
an overall shift 2K in the center-of-mass momentum, meaning
we always have a net shift in the Cooper pair center-of-mass
momentum.

V. FREQUENCY-DEPENDENT TREATMENT

We next solve the gap equations including the frequency
dependence of the gap function and magnon propagator. In
this way we allow for both even-frequency/odd-momentum
solutions, and odd-frequency/even-momentum solutions. The
latter has, to our knowledge, not been considered in the con-
text of Amperean pairing in other works. Writing out the
interaction potential in Eq. (42), we get

�
†
Q(iωn, k) = J2m̄

βV

∑
ω′

n,k
′

∑
γ

× γωk′−γ k�Q(k′, γ k)�†
Q(iω′

n, k′)

[iω′
n − z1][iω′

n − z2][iω′
n − z+

γ ][iω′
n − z−

γ ]
,

(55)

where γ = ±1, and the poles are given by

z1,2 = εo
Q(k′) ± EQ(k′), (56a)

z±
γ = γ iωn ± 2ωk′−γ k. (56b)

To find Tc we linearize the above gap equation, and define
the indices N = 2n + 1 and M = 2n′ + 1, and the temperature
parameter t = πkBT , such that the Matsubara frequencies can
be written ωn = Nt and ω′

n = Mt . For notational simplic-
ity, we also define �

†
Q(N, k) = �

†
Q(iωn, k). Inserted into the
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FIG. 6. (a) Plot of Tc normalized to that at φP = 0 and θ = 0 for J = 0.01eV nm2. We see that as the tilt angle θ increases, the critical
temperature is no longer the same for different P: It decreases for θ increasing toward π/2 for φP = π/4 and π/2, as we would expect from
Fig. 5. For φP = 0 it actually increases for increasing θ . We use a momentum cutoff of 3kF for kx and ky. (b) Plot of Tc as a function of J
normalized to the value of Tc at J = 1eV nm2, showing a very sharp decrease in the critical temperature for J < 0.01eV nm2. The error bar
shows the sample standard deviation for five calculations of Tc. (c), (d) Show the real and imaginary parts of the eigenvector � at Tc for φP = 0,
θ = 0, and clearly shows that the eigenvector is odd in k.

linearized equation, we get

�
†
Q(N, k) = J2m̄

πV
t
∑
M,k′

× �
†
Q(M, k′)[

Mt + iε+
(
k′ + Q

2

)][
Mt − iε+

( − k′ + Q
2

)]
×

[
ωk′−k�Q(k′, k)

(M − N )2t2 + (2ωk′−k )2

− ωk′+k�Q(k′,−k)

(M + N )2t2 + (2ωk′+k )2

]
. (57)

Including a finite number Nω of positive Matsubara frequen-
cies, and Nk reciprocal lattice points k, we can write this as
a matrix equation � = M(t )�, where M(t ) is a (2NωNk ) ×
(2NωNk ) matrix. Hence, the critical temperature is given by
the value of t such that the highest eigenvalue of M is 1.

Since we did not find any BCS-type solutions, except for
λ < 0 in the frequency-independent treatment above, we will
focus only on Amperean pairing. Solving the eigenvalue prob-
lem numerically for the Amperean case with Q = 2K + 2P,
P = (kF, 0) for θ = 0, we find the dependence on coupling J
as shown in Fig. 7(a) for Nω = 1, 2, and 3. The critical temper-
ature does not change significantly by increasing the number
of Matsubara frequencies included in the calculation. The
reason for this is that this is not a strong coupling calculation,
and thus the renormalization of the fermion propagator is not
included. Hence, the largest eigenvalues of M are given by
M = N = ±1, and necessarily do not change when including
more frequencies.

We also calculate the eigenvalues �(N, k) at Tc when solv-
ing the matrix equation. Under particle exchange, we must

have �(N, k) = −�(−N,−k) [36] which means the eigen-
vectors can be written in the form

�(N, k) = �e(N, k) + �o(N, k), (58)

where �e/o is even/odd in the frequency index N . Hence, we
have

�e(N, k) = �(N, k) + �(−N, k)

2
, (59a)

�o(N, k) = �(N, k) − �(−N, k)

2
, (59b)

where �e/o necessarily is odd/even under k → −k. Numeri-
cally, we normalize the eigenvectors such that

1 = 1

V

Nω∑
n=−Nω

∑
k

|�(2n + 1, k)|2

= 1

V

Nω∑
n=−Nω

∑
k

[|�e(2n + 1, k)|2 + |�o(2n + 1, k)|2].

(60)

For an index N , we define the weighting function for odd-
or even-frequency pairing

wi(N ) = 1

V

∑
k

�
†
i (N, k)�(N, k)

= 1

V

∑
k

�
†
i (N, k)[�e(N, k) + �o(N, k)]

= 1

V

∑
k

|�i(N, k)|2 = wi(−N ), (61)
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FIG. 7. (a) Plot of the critical temperature for different couplings J and Nω normalized to that at J = 1eV nm2 and Nω = 1. (b) Plot of the
total weight Wi for odd- (solid) and even- (dashed) frequency solutions as a function of J for different Nω. For the entire range of couplings,
the eigenvectors are dominantly odd in frequency. For both plots we see that there is no significant difference between the plots for different
Nω. (c) Plot of Tc normalized to that at φP = θ = 0 and (d) the total weight Wi as functions of tilt angle θ for different P orientations for
J = 10−1eV nm2 and Nω = 1. The error bars show the sample standard deviation for 5 runs with momentum cutoff kF .

where i = e/o, and the total weight for each symmetry is
defined as

Wi =
Nω∑

n=−Nω

wi(2n + 1). (62)

Hence, we must have

1 =
Nω∑

n=−Nω

[we(2n + 1) + wo(2n + 1)] = We + Wo. (63)

A plot of Wi is shown in Fig. 7(b), and shows that the
odd-frequency part of the eigenvectors dominates the even-
frequency part. Hence, this points to the possibility of
magnon-mediated odd-frequency Amperean pairing, which
is consistent with the fact that pairing at finite momentum
has been shown to stabilize odd-frequency superconductivity
[30–32]. Moreover, the reason odd-frequency solutions are
favored might be understood from the fact that s-wave solu-
tions allow for a finite gap close to k = 0, corresponding to
a maximum of the first term in Eq. (57). The even-frequency
p-wave solution, however, has to be zero at k = 0, and thus
gets a much smaller contribution from these areas of k space.

Again, we see negligible change when increasing Nω.
Figure 8 shows the effects of increasing the number of
momentum-space grid points on the critical temperature and
weights Wi, showing that Tc converges quickly for the given
parameter values. For lower couplings J (not shown), the
convergence is slower due to the increasing sharpness of
the potential when the temperature decreases. However, the
qualitative picture still remains the same independent of the
number of grid points, namely, that the odd-frequency solu-
tion dominates.

Figures 7(c) and 7(d) show the critical temperature and
weight functions Wi as functions of tilt angle θ for different
orientations of P for J = 10−1eV nm2. The overall θ depen-
dence is similar to that in Fig. 6(a), which is expected since

the θ dependence of Tc is determined by the scattering form
factor. Compared to Fig. 6(a) the changes in Tc are somewhat
less pronounced due to the fact that Tc changes less rapidly
as a function of pairing strength in this case, as seen when
comparing Figs. 7(a) and 6(b).

VI. SUMMARY

We have derived and solved the gap equation for magnon-
mediated superconductivity in a TI/FMI bilayer for a
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FIG. 8. (a) Plot of the critical temperature and (b) weights Wi as
functions of the total number of grid points Nk used in the numerical
calculation, for φP = θ = 0, J = 0.1 eV nm2, and momentum cutoff
kF. The critical temperature is normalized to the value at the highest
number of grid points. The figures show an average over five runs,
with the error bars showing the sample standard deviation. The
deviation in the number Nk is due to the way the number of grid
points is set by the adaptive Python library [52].
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general magnetization direction. Neglecting the frequency
dependence of the magnon propagator, we found that only
Amperean-type pairing was possible for easy-axis anisotropy
coupling λ > 0. Tilting the magnetization toward the interface
plane led to an overall shift in the Cooper pair center-of-mass
momenta, and an increase in Tc for Cooper pairs with P
parallel to the magnetization vector.

Including the frequency dependence of the magnon
propagator, we found that odd-frequency, even-momentum
solutions to the gap equations dominated, thus leading to
odd-frequency Amperean pairing. If odd-frequency pairing
is found in such a system, it is an example of a natu-
rally occurring odd-frequency superconductor, in contrast to
odd-frequency pairing due to superconductors coupled to
magnetic or spin-orbit-coupled materials [53–55]. This pos-
sibility should be further investigated by performing a strong
coupling Eliashberg calculation, where also the frequency-
dependent renormalization of the fermion propagator is taken
into account. In addition, there are many other properties
that should be calculated, such as the Meissner response [56]
and the transport properties of the system, which might yield
interesting results.
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APPENDIX A: DETAILS OF THE CALCULATION
OF THE MAGNON-MEDIATED INTERACTION

We rewrite the effective action in Eq. (14) in terms of the
Dirac fermions defined by Eq. (22). We first get

j(q)

= J

βV

∑
k

(
�

†
±(k + q)Pk+q(cos θσx − sin θσz )P†

k �±(k)
�

†
±(k + q)Pk+qσyP†

k �±(k)

)
,

(A1)

and performing the matrix calculations results in

Pk+qσxPk = 1√
nknk+q

(
skrk+q + s∗

k+qrk s∗
ks∗

k+q − rkrk+q

sksk+q − rkrk+q −s∗
krk+q − sk+qrk

)
,

Pk+qσyPk = i√
nknk+q

(
skrk+q − s∗

k+qrk −s∗
ks∗

k+q − rkrk+q

sksk+q + rkrk+q −s∗
krk+q + sk+qrk

)
,

Pk+qσzPk = 1√
nknk+q

(
sks∗

k+q − rkrk+q −s∗
krk+q − s∗

k+qrk

−skrk+q − sk+qrk −sk+qs∗
k + rkrk+q

)
.

We will now assume that the chemical potential μ > M � 0, meaning that the Fermi level will lie in the + fermion band, and
hence only the positive-helicity fermions will be free to interact. We therefore keep only the upper diagonal term in the above
matrices, resulting in

j(q) = Jm̄

βV

∑
k

ψ
†
+(k + q)ψ+(k)√

nknk+q

(
(skrk+q + s∗

k+qrk ) cos θ − (sks∗
k+q − rkrk+q) sin θ

i(skrk+q − s∗
k+qrk )

)
. (A2)

We therefore get, dropping the + subscript on the fields,

δSTI = − J2m̄

4(βV )3

∑
q,k,k′

D(q)
ψ†(k′ + q)ψ†(k − q)ψ (k)ψ (k′)√

nknk−qnk′nk′+q

× [(sk′s∗
k−qrk′+qrk + sks∗

k′+qrk′rk−q)(cos2 θ + 1) + (sk′sks∗
k′+qs∗

k−q − sk′s∗
k′+qrkrk−q

− sks∗
k−qrk′rk′+q + rkrk−qrk′rk′+q − sk′skrk′+qrk−q − s∗

k′+qs∗
k−qrk′rk ) sin2 θ

− (sk′sks∗
k−qrk′+q + sksk′s∗

k′+qrk−q + sks∗
k−qs∗

k′−qrk′ + sk′s∗
k′+qs∗

k−qrk

− sk′rk′+qrkrk−q − skrk−qrk′rk′+q − s∗
k′+qrk′rkrk−q − s∗

k−qrkrk′rk′+q) cos θ sin θ ] (A3)

≡ − J2m̄

4(βV )3

∑
q,k,k′

D(q)�kk′ (q)ψ†(k′ + q)ψ†(k − q)ψ (k)ψ (k′), (A4)

where D(q) and �kk′ (q) are defined in the main text.
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APPENDIX B: HUBBARD-STRATONOVICH DECOUPLING

We perform a Hubbard-Stratonovich decoupling [47] by using the identity

1 =
∫

Dϕ†
qDϕq exp

[
βV

∑
q,k′k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k)

]
. (B1)

Rescaling the bosonic fields ϕq,

ϕ†
q (k′) → ϕ†

q (k′) + 1

(βV )2

∑
p

ψ†
(

p + q

2

)
ψ†

(
−p + q

2

)
Vpk′ (q), (B2)

ϕq(k) → ϕq(k) + 1

(βV )2

∑
p

Vkp(q)ψ
(
−p + q

2

)
ψ

(
p + q

2

)
, (B3)

we get

βV
∑
q,k′,k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k) → βV

∑
q,k′,k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k)

+ 1

βV

∑
q,k

[
ϕ†

q (k)ψ
(
−k + q

2

)
ψ

(
k + q

2

)
+ ϕq(k)ψ†

(
k + q

2

)
ψ†

(
−k + q

2

)]

+ 1

(βV )3

∑
q,k′,k

ψ†
(

k′ + q

2

)
ψ†

(
−k′ + q

2

)
Vk′k (q)ψ

(
−k + q

2

)
ψ

(
k + q

2

)
. (B4)

Hence, we arrive at the functional integral given in Eq. (32).

APPENDIX C: MATERIAL PARAMETERS

Unless otherwise stated, we have used the parameter values presented in Table I.
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