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Band bending and zero-conductance resonances controlled by edge electric fields
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We study the band structure and transport property of a zigzag silicene nanoribbon when electric fields are
applied to the edges. It is found that band bending could be induced and controlled by the antisymmetric edge
fields, which can be understood based on the wave functions of the edge states. The highest valence band
and the lowest conduction band coexist in the band-bending region. With the narrowing of edge potentials,
the bending increases gradually. When the edge fields become symmetric, an asymmetric band gap at the
Dirac points can be obtained due to the intrinsic spin-orbit interaction, suggesting a valley-polarized quantum
spin Hall state. The gap could reach a maximum value rapidly and then decrease slowly as the electric fields
increase. Due to the combining effect of the band bending, band-selective rule, and resonant states, many
zero-conductance resonances and resonance peaks appear in different regions, which could be described by the
Fano resonance effect. Furthermore, the band bending and zero-conductance resonances are robust against the
Hubbard interaction. The Hubbard interaction could work as a spin-dependent edge field, together with the edge
electric fields, leading to a spin-dependent band gap and various quantum phases such as metal and half-metal.
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I. INTRODUCTION

Recently, silicene has attracted much attention both the-
oretically and experimentally [1,2], which could potentially
be integrated with well-established silicon technology. Con-
trary to graphene, silicene has a strong intrinsic spin-orbit
interaction (SOI), which could open a gap of approximately
1.55 meV at the Dirac points [3,4]. The buckled structure
of silicene allows us to control the band gap by an ex-
ternal electric field, offering great advantages over gapless
graphene [4,5]. Therefore, many novel properties of silicene
have been demonstrated, including the quantum spin Hall
effect and the topological phase transition by applying an
electric field [3,5].

Numerous studies have researched the band struc-
tures and conductance property of graphene nanoribbons
(GNRs) [6–27] and silicene nanoribbons (SiNRs) [28–42].
Fujita et al. found that GNRs display a striking contrast in
the electronic states depending on the edge shape [7]. Louie
et al. predicted the half-metallicity in nanometer-scale GNRs
by using first-principles calculations, opening a new path to
explore spintronics [9]. Because of the staggered sublattice
potential on the hexagonal lattice due to edge magnetiza-
tion, an energy gap could be opened for zigzag GNRs [10],
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and the spin-polarized valley helical edge states could ap-
pear inside the bulk gap [24]. If the Rashba SOI is stronger
than the intrinsic SOI, the low-energy bands would undergo
trigonal-warping deformation at the Dirac points [18]. In
zigzag GNRs, the scattering processes obey a selection rule
for the band indices, so a barrier potential can play the role
of the band-selective filter [13]. Due to the coupling between
the conducting subbands around the Fermi level, GNRs show
distinctly different transport behaviors, depending on whether
they are mirror symmetric with respect to the midplane be-
tween two edges [19]. Long et al. found that the conductance
through graphene p-n junctions could be strongly enhanced
and exhibit a plateau structure at a suitable range of disor-
ders [16]. The magnetoresistance effect [20,22] and valley
filtering [25–27] in GNR devices have been demonstrated.
Furthermore, the magnetoresistance effect [28–30], spin-
polarized currents [31–35], valley-resolved transport [36,37],
electron delocalization [38], and thermoelectric effects [39]
in SiNRs have also been studied theoretically. In particular,
Rachel and Ezawa found that the quantum spin Hall effect
without edge states could be realized by manipulating various
perturbations at the edges of SiNRs, which can be used for
giant magnetoresistance and spin filters [30]. A silicene-based
spin filter and Y-shaped spin-valley separator were proposed
in field-gated SiNRs by first-principles calculations [32].

The edge potential is an effective method of engineer-
ing the electronic structure in GNRs [43–51]. The electronic
structure close to the Fermi level greatly depends on the
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FIG. 1. (a) The schematic diagram of a silicene device with a
zigzag ribbon, on the two sides of which two electric fields Ez1,z2 are
placed. Nx is the number of unit cells for the center region in the x
direction. The unit cell includes Ny silicon atoms which define the
ribbon width. Nx and W describe the region of the electric fields. The
band structure of a pristine zigzag ribbon for Ny = 48 is shown in
(b). (c) The probability density for the wave functions |�|2 of the
edge states labeled by the arrows in (b), where the black and red
lines are the states at the upper and lower boundaries of the ribbon,
respectively.

choice of terminating atom or group at the edges of GNRs,
leading to the particular device applications by chemically
modifying the edges [43,44]. The edge band dispersion of
zigzag GNRs can be controlled by potentials applied on
the boundary with unit cell length scale, and gapless edge
states with valley-dependent velocity are found [45]. When
the applied edge potential is antisymmetric, the GNR en-
ergy spectrum could open up a gap [48]. A recent study
investigated topological confinement effects of the edge
potentials resulting from electron-electron interactions on
gapless edge states in various magnetic phases of bilayer
zigzag GNRs [49]. Although the armchair GNRs have no edge
states, it is possible to generate and tune the edge states due
to pseudospin-flipped scattering induced by the edge poten-
tial [50]. Experimental investigation indicated that owing to
the sharp edge potential and the linear band structure, resonant
edge magnetoplasmon dissipation in graphene can be lower
than that in GaAs systems [51].

In this work, we propose a different kind of edge po-
tential in zigzag SiNRs (ZSiNRs) produced by the electric
fields Ez1,z2 applied to the edges of the ribbon, as shown
in Fig. 1(a), which is different from previous works where
the electric fields are usually applied to the whole ribbon.
Due to the buckled structure of silicene, the electric fields
could generate a staggered sublattice potential e�Ez1,z2, with
2� ≈ 0.46 Å being the vertical separation of the A and B sites
of the two sublattices, which critically distinguishes silicene
from graphene. The edge potentials could greatly affect the
edge states and the band structure. We aim to study the
energy band and the conductance in ZSiNRs controlled by
the edge potentials e�Ez1,z2 as well as discuss the effect of
the intrinsic SOI. It is interesting that the band can be bent

and gapped by local manipulations of edge potentials, de-
pending on the symmetry of the edge potentials e�Ez1,z2. The
conductance presents abundant transport behaviors, such as
zero-conductance resonances and resonance peaks. The cor-
responding density of states (DOS) and local density of states
(LDOS) are discussed. Contrary to previous studies [18,52],
the band bending and zero-conductance resonances are elec-
trically tunable in this work. Taking the exchange field into
account, the zero-conductance resonances could give rise to a
perfect spin polarization. In addition, we also study the effect
of Hubbard interaction and discuss the spin-dependent band
gap and the half-metallicity of ZSiNRs.

This paper is organized as follows. In Sec. II we intro-
duce the effective tight-binding model and the nonequilibrium
Green’s function (NEGF) method. The numerical results and
the discussion are presented in Sec. III. We conclude with a
summary in Sec. IV.

II. THEORETICAL FORMULATION

The low-energy electronic properties in the silicene honey-
comb lattice can be described very well by the tight-binding
model [5,53]. Considering the electric fields, the Hamiltonian
reads

HT B = −t
∑

〈i, j〉,α
c†

iαc jα + i
λSO

3
√

3

∑

〈〈i, j〉〉,α,β

vi jc
†
iα (σz )αβc jβ

+
∑

i,α

e�Ez1,z2ξic
†
iαciα. (1)

The first term describes the nearest-neighbor hopping with
the transfer energy t = 1.6 eV, and c†

iα (ciα) is the electronic
creation (annihilation) operator with spin α at site i. The
second term is intrinsic SOI with λSO = 3.9 meV = 0.0024t ,
which involves spin-dependent next-nearest-neighbor hop-
ping. vi j = +1 (−1) if the next-nearest-neighboring hopping
is counterclockwise (clockwise) with respect to the positive z
axis. σz is the Pauli matrix associated with the spin degree of
freedom. The third term describes the staggered sublattice po-
tential UE1,E2 = e�Ez1,z2 arising from the electric fields Ez1,z2

perpendicular to the silicene sheet, as shown in Fig. 1(a). The
potentials UE1,E2 are applied along two edges of ZSiNRs in
the center region, i.e., edge potential, the size of which is
described by the width W and length Nx. Figure 1(b) shows
that the band structure of the pristine ZSiNRs with width
Ny = 48 and potential UE1,E2 = 0 exhibits a metallic behav-
ior, similar to graphene. The lowest bands at the Fermi level
are not absolutely flat due to the intrinsic SOI, associated with
the helical edge states.

Based on the tight-binding model and Bloch’s theorem, the
band structure of an infinite ZSiNRs with edge potentials can
be calculated. The k-dependent Hamiltonian of the system can
be written as

Hk = H00 + H01eika + H−10e−ika, (2)

where H00 is a unit cell Hamiltonian matrix of one chain, H01

(or H−10) is the coupling matrix with the right-hand (or left-
hand) adjacent cell, and a is the lattice constant. In addition,
the two-terminal conductance G for an electron with energy
E through the silicene ribbon can be calculated by the NEGF
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FIG. 2. (a)–(c) The band structure of ZSiNRs for different values
of the sublattice potential UE and the width W . The position and the
width of the band-bending region as a function of (d) UE with W = 6
and (e) W with UE = 0.2t . The horizontal line denotes the position
of the bottom for the next-lowest conduction band E0 = 0.183t in the
pristine zigzag ribbon. Here, the ribbon width Ny = 48.

method and the Landauer-Büttiker formula as [16,17,54]

G(E ) = e2

h
Tr[	L(E )Gr (E )	R(E )Ga(E )], (3)

where 	L,R(E ) = i[
L,R(E ) − 

†
L,R(E )] is the linewidth func-

tion and Gr (E ) = [Ga(E )]† = 1/(E − Hc − 
L − 
R) is the
retarded Green’s function with the Hamiltonian in the center
region Hc. 
L,R is the self-energy caused by the coupling
between the center and lead regions. The LDOS and DOS can
also be given by the NEGF method [55]:

LDOS = − 1

π
ImGr (E )

= 1

2π
{Gr (E )[	L(E ) + 	R(E )]Ga(E )} (4)

and

DOS = 1

2π
Tr{Gr (E )[	L(E ) + 	R(E )]Ga(E )}. (5)

III. RESULTS AND DISCUSSION

In this section, we study the effect of the edge electric
fields and intrinsic SOI on the band bending, band gap, res-
onant conductance, and spin polarization for a zigzag silicene
nanoribbon by calculating Eqs. (2)–(5). Note that in Figs. 2–6,
we mainly discuss the results of spin-up electrons. Because
of time-reversal symmetry, the band structures of spin-up and
spin-down electrons satisfy E↑(k) = E↓(−k), so conductance
is spin independent. However, when the Hubbard interaction
is considered, the system presents a spin-dependent band gap
and phase transition controlled by the edge electric field.

FIG. 3. The band structure of ZSiNRs for (a) UE = 0.1t , λSO =
0.0024t and (b) UE = 0.3t , λSO = 0.077t . (c) and (d) Band gap
versus UE . The dashed curves in (a) and (c) denote the band structure
and band gap for W = Ny/2, respectively. Here, Ny = 48 and W = 8
unless otherwise noted.

A. Band bending and band gap

First, we discuss the band structure of an infinitely long
nanoribbon in the presence of the edge electric fields where
the length Nx tends to infinite, as shown in Figs. 2 and 3.
Note that the edge fields applied to the two edges are anti-
symmetric in this case, that is, �Ez1 = − �Ez2 = Ez�z, but their
corresponding sublattice potentials UE1,E2 = UE at the edges
are symmetric about the x axis and independent of the spin
degree of freedom. Figures 2(a)–2(c) exhibit the energy band
for different values of the edge potentials UE and the width W .
One can clearly see that the lowest conduction band presents a
bend behavior due to the appearance of the sublattice potential
UE . Importantly, the maximum energy of the highest valence
band becomes larger than the minimal energy of the lowest
conduction band. Therefore, there exists an especial energy
region where both the highest valence band and the lowest
conduction band coexist and overlap, which plays a key role
in the resonant conductance, as shown in the following. A
comparison between Figs. 2(a) and 2(b) indicates that as the
potential UE increases, the band-bending region increases and
shifts up. With the increase of width W , the band bending
is decreased [see Figs. 2(b) and 2(c)]. The further increase
of UE could induce the bend of the next-lowest conduction
band and other higher bands. It should be noted that the
valence band could also be bent when the edge potentials
are negative. Figures 2(d) and 2(e) present the band-bending
region as a function of UE and W , respectively. The bound-
aries of the bending region are denoted by Emin and Emax,
with Emax = UE . E0 is the position of the bottom for the
next-lowest conduction band in the pristine zigzag ribbon (or
the two leads) which can be controlled by the ribbon width
Ny. It is clearly seen that the bending region is broadened
(or narrowed) gradually by UE (or W ). When W increases
to Ny/2, the two edge potentials would be combined into
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TABLE I. The sublattice potentials for spin-up and spin-down electrons at the A (B) sublattice on the upper (lower) edge of the ZSiNRs
under the Hubbard term and the edge electric fields. Superposition 1 (2) is the combined effect of the Hubbard term and the symmetric
(antisymmetric) edge electric fields.

Sublattice

A A B B

Spin index spin up spin down spin up spin down
Hubbard term UH −UH −UH UH

Field Ez1 = Ez2 UE UE −UE −UE

Field Ez1 = −Ez2 UE UE UE UE

Superposition 1 UH + UE −UH + UE −UH − UE UH − UE

Superposition 2 UH + UE −UH + UE −UH + UE UH + UE

one potential which covers the whole area of the nanoribbon,
so the band bending disappears. Therefore, the position and
the width of the band bending can be controlled by the edge
electric fields.

The physical mechanism of band bending can be under-
stood in the light of wave functions of the edge states. We
assume the sublattices on the upper and lower edges of the
ZSiNRs are A and B, respectively, as shown in Fig. 1(a).
Figure 1(c) plots the probability density profile of edge-state
wave functions |�|2 as a function of the atom positions along
the width of the pristine silicene sheet, and the corresponding
edge states are labeled in Fig. 1(b). It can be seen that at
symmetric point ka = 1.0π , the states are localized only at
the edges. However, with the increase of ka, the states are
extended to the whole ribbon. Importantly, the state on the
upper edge is mainly localized at the A sublattice, while the
state on the lower edge is mainly localized at the B sublattice.
For the antisymmetric edge electric fields, the potential UE

at the A sublattice on the upper edge is same as that at the
B sublattice on the lower edge. When the potential UE with
a narrower width is applied to the edges, it greatly affects
the states near ka = 1.0π but has little effect on the states
far away from ka = 1.0π . Thus, the lowest conduction band
and the highest valence band near ka = 1.0π shift up linearly
with UE , while the bands far from ka = 1.0π shift slowly. As
a consequence, the band bending appears. As the width W
broadens, the states and the bands far away from ka = 1.0π

are influenced deeply as well, so the band bending becomes
narrow, consistent with the results in Fig. 2.

The symmetry of the edge electric fields greatly affects
the band structure of ZSiNRs. When the edge electric fields
become symmetric ( �Ez1 = �Ez2 = Ez�z), the corresponding sub-
lattice potentials are antisymmetric about the x axis. The
potential UE at the A sublattice on the upper edge is positive,
while the potential at the B sublattice on the lower edge is
negative (see Table I). Thus, the staggered sublattice potentials
between the A and B sublattices on the edges would separate
the conduction band and valence band, opening a band gap.
Figure 3(a) displays the band structure of ZSiNRs when the
potential UE = 0.1t and W = 8. We may find that a spectral
gap is induced, and the system converts metallic to insulating
behavior. For comparison, when the electric field is applied to
the whole area of the nanoribbon, i.e., W = Ny/2, the band
structure and band gap are presented by the dashed curves in
Figs. 3(a) and 3(c), respectively. Obviously, the energy band
is bent near the valleys when the edge potentials are applied

[see Fig. 3(a)], which can be understood by the edge states
in Fig. 1(c). Furthermore, in contrast to GNRs [48], the gap
width of ZSiNRs at the two Dirac points is not consistent,
and the two valleys are asymmetrical due to the intrinsic SOI.
For stanene with a larger SOI λSO = 0.077t , the asymmetry
of the valleys is more prominent, as shown in Fig. 3(b).
When UE = λSO, the gap at one valley is closed, and a valley-
polarized quantum spin Hall state could form in ZSiNRs. This
feature could be used to realize a valley polarization where the
conductance is contributed only by electrons from one valley.
Figure 3(c) shows the band gap as a function of UE for differ-
ent values of W when Ny = 48. With the increase of UE , the
band gap increases rapidly and reaches the maximum value at
a special value of UE . Then the gap decreases slowly with UE .
Interestingly, the maximum of the band gap is dependent on
the width W . Note that this property is different from the one
when the electric field is applied to the whole ribbon, where
the gap is increased linearly with UE and equal to 2UE [see the
dashed curve in Fig. 3(c)]. Figure 3(d) discusses the effect of
the intrinsic SOI on the band gap with λSO = 0.0024t , 0.033t ,
and 0.077t in silicene, germanene, and stanene. We can find
that when UE < λSO, the gap cannot be opened up. When
UE > λSO, the gap is opened up and increases gradually. Due
to the SOI, the band structure is no longer symmetric, so the
indirect band gap is reduced, which is proportional to 1/λSO.

B. Zero-conductance resonances and spin filter

The band bending would further affect the electron trans-
port through the silicene nanoribbon. Next, we discuss the
conductance through finite ZSiNRs and the effect of band
bending when the edge electric fields are applied to the edges
antisymmetrically. The width of ZSiNRs and the potential are
fixed as Ny = 48 and UE = 0.2t in the following for conve-
nience. Figure 4 presents the conductance [Figs. 4(a) and 4(c)]
and the corresponding band structure [Figs. 4(b) and 4(d)]
when the width and the length of the edge electric fields are
W = 12 and Nx = 100. For contrast, the conductances of the
considered system and the pristine ZSiNRs are labeled by
the black and red curves in Fig. 4(a), respectively. The black
and red curves in Fig. 4(b) represent the energy bands for the
considered system in the center region and the two leads (or
the pristine ZSiNRs), respectively. As expected, the quantized
conductance in pristine ZSiNRs is obtained, which exhibits a
symmetric plateau structure with plateau values at 1, 3, 5, . . .

in units of e2/h. The conductance plateau is proportional to the
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FIG. 4. (a) The conductance G versus Fermi energy through the
system labeled by black curves; the red curves are the conductance
of the pristine zigzag ribbon. (b) The band structures of the center re-
gion (black curves) and the two leads (red curves). (c) and (d) Partial
enlargements of (a) and (b), respectively. The subbands are indexed
in (d). The parameters are set as UE = 0.2t , W = 12, Nx = 100,
and Ny = 48.

number of conducting channels at the Fermi energy, consistent
with the number of subbands at the Fermi energy. Oppositely,
the conductance in the considered system presents a resonance
behavior which is no longer symmetric. The features of reso-
nant conductance for electrons and holes are different in the
multichannel region. The conductance is zero in the region
0 < E < Emin due to the selection rule for the band indices.
In the following, we mainly focus on the resonant conduc-
tance in the region Emin < E < Emax where the band bending
occurs, as shown in Fig. 4(c). Remarkably, it can be found
that many resonance dips with conductance G = 0 appear in
the region Emin < E < E0. In the region E0 < E < Emax, the
resonance dips and the resonance peaks occur simultaneously,
and the peak value trends to 2e2/h. This phenomenon can be
understood based on the band bending, band-selective rule,
and resonant states. The corresponding energy band of the
center region and two leads is shown in Fig. 4(d), and the band
index is specified. The electrons in the even (odd) bands can
be scattered only into the even (odd) bands due to the conser-
vation of the parity of wave functions [13,56]. On the other
hand, the highest valence band and the lowest conduction
band coexist in the band-bending region. In the center region,
bands 0 and −1 coexist at Emin < E < Emax [see Fig. 4(d)]. In
the left and right leads, only band 0 exists at Emin < E < E0,
while bands 0 and 1 coexist at E0 < E < Emax. Therefore,
when the electron with energy E ∈ [Emin, E0] passes through
the system, band 0 in the leads is scattered into band 0 in the
center region, so that the conductance G is usually e2/h and
the plateau arises from nonresonant electron traveling. How-
ever, when the incident energy E consists with the energy of

FIG. 5. (a) The conductance and (b) DOS versus Fermi energy at
Nx = 200. LDOS in the center region at (c) E = E3 = 0.15625t and
(d) E = E8 = 0.17515t . Other parameters are the same as those in
Fig. 4.

resonant modes in band −1 induced by the edge potentials, the
conductance would drop to zero due to the opposite parities
between band 0 in the lead and band −1 in the center region,
resulting in zero-conductance resonance. On the contrary, for
incident energy E ∈ [E0, Emax], the electron in band 1 in the
lead is consistent with band −1 in the center region, so the
same parity leads to the emergence of the resonance peak at
resonant energy in the conductance.

Figure 5 presents the conductance G [Fig. 5(a)] and the
corresponding DOS [Fig. 5(b)] at Nx = 200. Obviously, the
resonance dips and resonance peaks of conductance cor-
respond exactly to the peaks of the DOS. In addition, a
comparison of Figs. 5(a) and 4(c) indicates that as the length
of the center region increases, the number of conductance
resonances gradually increases because more resonant modes
appear in the center region. For E = E3 and E8, the LDOSs
in the center region are displayed in Figs. 5(c) and 5(d),
respectively, corresponding to the certain resonance dips in
Fig. 5(a). Clearly, the standing waves are formed at the zigzag
edges in the center region. When Fermi energy is outside the
band-bending range, i.e., E < Emin or E > Emax, there is no
bound state, so the conductance is 0 or e2/h [see Fig. 4(a)].
This result proves that the bound state induced by the edge
potential offers a resonant channel for conductance.

In fact, the above resonance phenomenon of the conduc-
tance can be described by the Fano resonance effect [57].
Fano resonance is a kind of asymmetric resonance which
arises from the quantum interference effects between the dis-
crete and continuous states. Recently, the Fano resonance of
conductance controlled by the magnetic fields in hexagonal
zigzag graphene rings [52] and bilayer phosphorene nanor-
ings [58] was researched. The formula for the shape of the
Fano resonance profile can be expressed as

T (E ) = T0

1 + q2

(ε + q)2

1 + ε2
, (6)
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FIG. 6. (a)–(c) The Fano resonance peaks marked in Fig. 5(a) ob-
tained by the NEGF method (black curves) and fitted by the
normalized Fano curve (red dashed curves). (d)–(f) DOS correspond-
ing to the Fano resonance in (a)–(c).

with ε = (E − EF )/	 [57]. EF and 	 determine the position
and width of the Fano curve, respectively. T0 is the maximum
value of the peak, and q is a phenomenological shape parame-
ter. Figures 6(a)–6(c) show the Fano resonance curves labeled
by rhombuses in Fig. 5(a) and calculated by Eq. (6), which
match each other perfectly. In particular, the conductance in
Fig. 6(a) clearly exhibits a sharp dip that is followed by a
sharp peak, which is the typical characteristic of asymmetric
Fano resonance. For proper Fermi energy in the band-bending
region, the edge electric fields could induce the bound states
at the edges (see Fig. 5). Meanwhile, the states far away from
ka = 1.0π are always continuous states which are distributed
throughout the ribbon [see Fig. 1(c)]. The bound states at
the edges would interfere with the continuum states in the
whole ribbon, leading to the occurrence of Fano resonance
in the conductance. The corresponding DOS of the Fano
resonance is shown in Figs. 6(d)–6(f). One can see that the
positions of the DOS peaks match very well with the Fano
resonances.

As an application of the zero-conductance Fano resonance,
the system could work as a controllable spin filter by intro-
ducing an exchange field M. In a real experimental condition,
the exchange field M may be quite small. For instance, by
growing the graphene on a ferromagnetic insulator such as
EuO, its magnetization M is only about 5 meV [59]. Thus,
in this system, we consider a small exchange field with M =
0.004t = 6.4 meV, which is also applied on the edges of
ZSiNRs, the same as the potential UE . The corresponding
Hamiltonian is

H = HT B +
∑

i,α

Mic
†
iασzciα. (7)

The spin-dependent conductance as a function of incident
energy is shown in Fig. 7(a). It is evident that both spin-up and
spin-down electrons present the zero-conductance resonance
in the region Emin < E < E0. The characteristic of spin trans-
port can obviously be seen from the spin polarization defined

FIG. 7. (a) The spin conductance G↑,↓ and (b) spin polarization
PS versus Fermi energy at W = 8, Nx = 100, and M = 0.004t .

by PS = (G↑ − G↓)/(G↑ + G↓), as shown in Fig. 7(b), illu-
minating that 100% spin polarization can be reached within
certain energies. The polarization changes sign when the en-
ergy varies between the values that give the resonances for
both spin orientations. Therefore, it is possible to realize a spin
polarization switch by the application of the zero-conductance
resonance and weak exchange splitting.

C. The effect of Hubbard interaction

In the preceding sections we have neglected the Hubbard
interaction. In fact, this interaction can have a significant
impact not only on the band structure but also on the transport
properties. When spin is not considered, there is a doubly
degenerate flat band for the edge state at the Fermi level [see
Fig. 1(b)], which will enhance the electron-electron interac-
tion at the edges. As a consequence, the ZSiNRs are predicted
to have an antiferromagnetic ground state with antiparallel
spin orientation between the two edges [60]. The band gap
appears because of a staggered sublattice potential due to
spin ordered states at the edges [10,60]. The electron-electron
interaction is generally taken to be the Hubbard interaction in
the mean-field approximation. Including the Hubbard interac-
tion, the Hamiltonian for ZSiNRs reads [44,61]

HHubbard = HT B + U
∑

i,α

(〈ni−α〉 − 1/2)niα. (8)

The last term describes the Hubbard interaction, and U in-
dicates the on-site Coulomb repulsion energy between the
opposite spins. U = 1.4 eV for ZSiNRs is parameterized
from the results of spin-unrestricted first-principles calcula-
tion [62]. 〈niα〉 is the average local spin occupation on atom i
for spin α which is solved self-consistently. niα is the particle
number operator.

Before proceeding with the calculation, we discuss the
sublattice potentials induced by the Hubbard term and the
edge electric fields. In analogy with the wave functions in
Fig. 1(c), the spin occupation 〈niα〉 implies that the spin-up
(spin-down) electrons mainly accumulate on the A (B) sub-
lattice of the upper (lower) edge of ZSiNRs [9,44]. Thus, the
Hubbard term could be regarded as a spin-dependent scalar
field which is applied on the A (B) sublattice of the upper
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FIG. 8. The band structure of ZSiNRs in the presence of the
(a) and (b) antisymmetric and (c) and (d) symmetric edge electric
fields calculated by the Hubbard model. Here, the ribbon width
Ny = 64, and field width W = 4. The black curves and red curves in
(c) and (d) are for spin up and spin down, respectively. The magenta
dashed curves in (a) are for the pristine ZSiNRs when the Hubbard
interaction is considered.

(lower) edge, just like the edge electric fields. Table I displays
the sublattice potential for spin up and spin down at the A
(B) sublattice on the upper (lower) edge of the ZSiNRs when
the Hubbard term and the edge electric fields are considered.
We set two potential parameters, UH = U (〈n1α〉 − 1/2) and
UE = e�Ez, in order to describe the sublattice potential. For
the Hubbard term, the spin-dependent edge field could result
in a spin-dependent sublattice potential on the edges, which
has antisymmetric distribution with respect to the x axis for
both spins, where the potential is UH (−UH ) at the A (B)
sublattice on the upper (lower) edge for spin up, while the
potential is −UH (UH ) at the A (B) sublattice for spin down.
The potentials between the two spins are symmetric about the
x axis. Thus, a spin-independent band gap is opened due to the
staggered sublattice potential at the edges [see the magenta
dashed curves in Fig. 8(a)], consistent with the results by
first-principles theory [60]. The symmetric (antisymmetric)
edge electric fields could induce a spin-independent sublattice
potential which has antisymmetric (symmetric) distribution
with respect to the x axis (see Table I). Therefore, it is feasible
to control the energy band of spin-polarized edge states by the
Hubbard term and edge electric fields.

Figure 8 shows the band structure of ZSiNRs calculated
by the Hubbard model. When the edge electric fields are anti-
symmetric, the combined effect of the two kinds of sublattice
potentials generates a spin-dependent asymmetric edge poten-
tial (see superposition 2 in Table I). This asymmetry between
the A and B sublattices on the edges suggests different sub-
lattice potentials, leading to the separation of conduction and
valence bands. When the potentials UH + UE and −UH + UE

are positive at the A and B sublattices, the conduction and
valence bands of the edge states can be shifted up, leading
to the bending of the band. Meanwhile, the sublattice poten-
tials between the two spins are symmetric around the x axis,
leading to the spin-independent band. Therefore, as shown in

FIG. 9. The band gap for spin up and spin down versus the
symmetric edge electric fields calculated by the Hubbard model
with Ny = 64.

Figs. 8(a) and 8(b), a spin-independent band bending occurs
where the highest valence band and the lowest conduction
band coexist but separately, contrary to what is observed in
Fig. 2 with the tight-binding model. The band bending is
more remarkable as the electric field increases [see Fig. 8(b)].
Furthermore, in the Hubbard model, the system undergoes a
phase transition from semiconductor to metal due to the band
bending. When the edge electric fields are symmetric, the total
sublattice potentials for the two spins become antisymmetric
about the x axis, but the potentials between opposite spins are
different (see superposition 1 in Table I), which would gener-
ate a spin-dependent staggered sublattice potential. Thus, the
spin-dependent band gaps are observed where the gap for spin
up is broadened but the gap for spin down is narrowed [see
Figs. 8(c) and 8(d)].

Figure 9 presents the band gap for spin up and spin down
as a function of the symmetric edge electric fields for different
widths W . Under the edge fields, the band gaps of the spin up
and spin down change differently. The band gap for spin down
decreases to zero first and then increases up rapidly, while the
gap for spin up increases monotonously with the electric field.
In particular, when the electric-field-induced potential UE =
e�Ez approaches the maximum of the Hubbard-induced poten-
tial UH ≈ 0.13t , the difference of the total potential between
the A and B sublattices for spin down would tend to zero, so
the band gap for spin down is closed while the gap for spin up
is about 0.09t . Thus, the ZSiNRs become half-metallic. When
UE > UH , the band gap is reopened up. With the increase of
the width W , the effect of electric field becomes more and
more prominent, so the critical electric field for achieving
half-metallicity decreases. Remarkably, the system undergoes
a series of phase transitions from semiconductor to half-metal
to semiconductor. In particular, due to the intrinsic SOI of
silicene, together with the Hubbard term and edge electric
fields, the spin degeneracy can be destroyed, and the energy
band is no longer symmetric near the two valleys. Therefore,
at the critical value of the electric field, the band gap of a
certain spin near a certain valley could be closed while other
gaps remain. As a consequence, a spin- and valley-polarized
quantum anomalous Hall state could be formed in ZSiNRs, as
shown in Fig. 8(d).

As discussed in the preceding section, the band bend-
ing could lead to the zero-conductance resonance. Figure 10
shows the conductance [Fig. 10(a)] and DOS [Fig. 10(b)]
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FIG. 10. (a) The conductance and (b) DOS versus Fermi energy
at Nx = 100. Other parameters are the same as those in Fig. 8(b).

calculated by the Hubbard model, corresponding to the band
structure in Fig. 8(b). One can clearly see that many resonance
dips appear in the conductance, that is, zero-conductance res-
onance, corresponding to the peaks of the DOS. The result is
similar to that calculated by the tight-binding model in Figs. 4
and 5.

IV. CONCLUSION

In summary, we have systematically studied the band
bending, band gap, and zero-conductance Fano resonance
controlled by the edge electric fields, Hubbard interaction,
and intrinsic SOI in a ZSiNRs using the NEGF method.
The antisymmetric edge fields could induce a controllable
band-bending region where the highest valence band and

the lowest conduction band coexist. As a consequence, the
conductance presents many resonance dips with G = 0 and
resonance peaks with G = 2e2/h, which relate to the Fano
resonance effect. The resonance matches very well with the
DOS and the LDOS. Based on the zero-conductance reso-
nances, a perfect spin filter could be achieved. The symmetric
edge fields could open an asymmetric band gap at the two
valleys controlled by the intrinsic SOI, which could lead to a
valley-polarized quantum spin Hall state. Furthermore, similar
to the edge electric fields, the Hubbard interaction could be
regarded as a spin-dependent scalar field acting on the edges.
Together with the edge electric fields, the Hubbard interaction
could give rise to a phase transition from semiconductor to
metal or half-metal.

Compared with previous literature on the Fano resonance
effect in two-dimensional materials, the model produced by
the electric fields in this paper is simpler and easier to im-
plement experimentally. In addition, the obtained results can
be generalized to other two-dimensional materials such as
germanene and stanene. Finally, we hope the results such as
the electrically tunable band bending and zero-conductance
resonance will benefit the understanding and application of
silicene.

ACKNOWLEDGMENTS

This work was supported by the NSFC (Grants No.
11974153 and No. 11921005), National Key R and D Program
of China (Grant No. 2017YFA0303301), the Strategic Prior-
ity Research Program of the Chinese Academy of Sciences
(Grant No. XDB28000000), and the Natural Science Founda-
tion of Shandong Province (Grant No. ZR2017JL007).

[1] L. C. Lew Yan Voon, J. Zhu, and U. Schwingenschlögl, Appl.
Phys. Rev. 3, 040802 (2016).

[2] M. Houssa, A. Dimoulas, and A. Molle, J. Phys.: Condens.
Matter 27, 253002 (2015).

[3] C. C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802
(2011).

[4] N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, Phys. Rev. B
85, 075423 (2012).

[5] M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).
[6] D. J. Klein, Chem. Phys. Lett. 217, 261 (1994).
[7] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J.

Phys. Soc. Jpn. 65, 1920 (1996).
[8] D. A. Areshkin, D. Gunlycke, and C. T. White, Nano Lett. 7,

204 (2007).
[9] Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444,

347 (2006).
[10] Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97,

216803 (2006).
[11] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie,

Phys. Rev. Lett. 99, 186801 (2007).
[12] L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
[13] J. Nakabayashi, D. Yamamoto, and S. Kurihara, Phys. Rev. Lett.

102, 066803 (2009).
[14] O. Hod, J. E. Peralta, and G. E. Scuseria, Phys. Rev. B 76,

233401 (2007).

[15] T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio,
Phys. Rev. Lett. 98, 196803 (2007).

[16] W. Long, Q.-F. Sun, and J. Wang, Phys. Rev. Lett. 101, 166806
(2008).

[17] Q.-F. Sun and X. C. Xie, Phys. Rev. Lett. 104, 066805 (2010).
[18] P. Rakyta, A. Kormányos, and J. Cserti, Phys. Rev. B 82,

113405 (2010).
[19] Z. Li, H. Qian, J. Wu, B.-L. Gu, and W. Duan, Phys. Rev. Lett.

100, 206802 (2008).
[20] W. Y. Kim and K. S. Kim, Nat. Nanotechnol. 3, 408 (2008).
[21] T. C. Li and S.-P. Lu, Phys. Rev. B 77, 085408 (2008).
[22] F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, Phys.

Rev. Lett. 102, 136810 (2009).
[23] E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, Phys.

Rev. B 79, 075407 (2009).
[24] Z. Qiao, S. A. Yang, B. Wang, Y. Yao, and Q. Niu, Phys. Rev.

B 84, 035431 (2011).
[25] D. Gunlycke and C. T. White, Phys. Rev. Lett. 106, 136806

(2011).
[26] A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Nat. Phys. 3,

172 (2007).
[27] S.-G. Cheng, H. Liu, H. Jiang, Q.-F. Sun, and X.-C. Xie, Phys.

Rev. Lett. 121, 156801 (2018).
[28] C. Xu, G. Luo, Q. Liu, J. Zheng, Z. Zhang, S. Nagase, Z. Gao,

and J. Lu, Nanoscale 4, 3111 (2012).

125426-8

https://doi.org/10.1063/1.4944631
https://doi.org/10.1088/0953-8984/27/25/253002
https://doi.org/10.1103/PhysRevLett.107.076802
https://doi.org/10.1103/PhysRevB.85.075423
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1016/0009-2614(93)E1378-T
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1021/nl062132h
https://doi.org/10.1038/nature05180
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/PhysRevLett.99.186801
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevLett.102.066803
https://doi.org/10.1103/PhysRevB.76.233401
https://doi.org/10.1103/PhysRevLett.98.196803
https://doi.org/10.1103/PhysRevLett.101.166806
https://doi.org/10.1103/PhysRevLett.104.066805
https://doi.org/10.1103/PhysRevB.82.113405
https://doi.org/10.1103/PhysRevLett.100.206802
https://doi.org/10.1038/nnano.2008.163
https://doi.org/10.1103/PhysRevB.77.085408
https://doi.org/10.1103/PhysRevLett.102.136810
https://doi.org/10.1103/PhysRevB.79.075407
https://doi.org/10.1103/PhysRevB.84.035431
https://doi.org/10.1103/PhysRevLett.106.136806
https://doi.org/10.1038/nphys547
https://doi.org/10.1103/PhysRevLett.121.156801
https://doi.org/10.1039/c2nr00037g


BAND BENDING AND ZERO-CONDUCTANCE RESONANCES … PHYSICAL REVIEW B 102, 125426 (2020)

[29] J. Kang, F. Wu, and J. Li, Appl. Phys. Lett. 100, 233122 (2012).
[30] S. Rachel and M. Ezawa, Phys. Rev. B 89, 195303 (2014).
[31] X. T. An, Y. Y. Zhang, J. J. Liu, and S. S. Li, New J. Phys. 14,

083039 (2012).
[32] W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and

A. Bansil, Nat. Commun. 4, 1500 (2013).
[33] C. Núñez, P. A. Orellana, L. Rosales, R. A. Römer, and F.

Domínguez-Adame, Phys. Rev. B 96, 045403 (2017)
[34] B. Rzeszotarski and B. Szafran, Phys. Rev. B 98, 075417

(2018).
[35] W.-T. Lu, Y.-F. Li, and H.-Y. Tian, Nanoscale Res. Lett. 13, 84

(2018).
[36] H. Pan, X. Li, H. Jiang, Y. Yao, and S. A. Yang, Phys. Rev. B

91, 045404 (2015).
[37] Y. Li, H. B. Zhu, G. Q. Wang, Y. Z. Peng, J. R. Xu, Z. H. Qian,

R. Bai, G. H. Zhou, C. Yesilyurt, Z. B. Siu, and M. B. A. Jalil,
Phys. Rev. B 97, 085427 (2018).

[38] Y.-Y. Zhang, W.-F. Tsai, K. Chang, X.-T. An, G.-P. Zhang, X.-
C. Xie, and S.-S. Li, Phys. Rev. B 88, 125431 (2013).

[39] K. Zberecki, M. Wierzbicki, J. Barnas, and R. Swirkowicz,
Phys. Rev. B 88, 115404 (2013).

[40] M. Ezawa and N. Nagaosa, Phys. Rev. B 88, 121401(R) (2013).
[41] Kh. Shakouri, H. Simchi, M. Esmaeilzadeh, H. Mazidabadi, and

F. M. Peeters, Phys. Rev. B 92, 035413 (2015).
[42] N. B. Le, T. D. Huan, and L. M. Woods, Phys. Rev. Appl. 1,

054002 (2014).
[43] D. Gunlycke, J. Li, J. W. Mintmire, and C. T. White, Appl. Phys.

Lett. 91, 112108 (2007).
[44] D. Gunlycke, D. A. Areshkin, J. Li, J. W. Mintmire, and C. T.

White, Nano Lett. 7, 3608 (2007).
[45] W. Yao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 102, 096801

(2009).

[46] Y.-T. Zhang, H. Jiang, Q.-F. Sun, and X. C. Xie, Phys. Rev. B
81, 165404 (2010).

[47] S. Bhowmick and V. B. Shenoy, Phys. Rev. B 82, 155448
(2010).

[48] W. Apel, G. Pal, and L. Schweitzer, Phys. Rev. B 83, 125431
(2011).

[49] K. W. Lee and C. E. Lee, Phys. Rev. B 97, 115106 (2018).
[50] C.-H. Chiu and C.-S. Chu, Phys. Rev. B 85, 155444

(2012).
[51] N. Kumada, P. Roulleau, B. Roche, M. Hashisaka, H. Hibino,
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