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Interference and shot noise in a degenerate Anderson-Holstein model
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We study the transport properties of an Anderson-Holstein model with orbital degeneracies and a tunneling
phase that allows for the formation of dark states. The resulting destructive interference yields a characteristic
pattern of positive and negative differential conductance features with enhanced shot noise, without further
asymmetry requirements in the coupling to the leads. The transport characteristics are strongly influenced by the
Lamb-shift renormalization of the system Hamiltonian. Thus, the electron-vibron coupling cannot be extracted
by a simple fit of the current steps to a Poisson distribution. For strong vibronic relaxation, a simpler effective
model with analytical solution allows for a better understanding and moreover demonstrates the robustness of
the described effects.
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I. INTRODUCTION

Mechanical degrees of freedom can leave clear signatures
in the transport characteristics of a nanojunction, as revealed,
for example, by elastic and inelastic electron tunneling spec-
troscopy of single molecule junctions [1–5]. The study of
mechanical oscillations in nanojunctions extends, neverthe-
less, far beyond the spectroscopic level. Vibrations correlate
with the electronic structure of the molecule [6] and the
symmetry of the electronic excitation [7], they also reveal
coherent electron-nuclear coupling [8]. Moreover, the mutual
influence between the mechanical and the electronic dynamics
can range from being a small perturbation to a large one. In the
latter case nonperturbative effects are visible in the Franck-
Condon blockade [9–11] with associated electronic avalanche
[12], in the bistability even in non-equilibrium conditions
[13] suppressed, though, by electronic correlation [14], in the
regular shuttle dynamics [15,16] with virtually vanishing shot
noise [17], in run away modes [18,19] which ultimately bring
to molecular dissociation.

The Anderson-Holstein model [20,21] (AHM) is the min-
imal model for the description of vibronic effects in an
interacting nanojunction. It consists of a spinful interacting
level coupled to a vibrational mode and to noninteracting elec-
trodes. Despite its simplicity, AHM comprises several regimes
defined by the mutual relations among its four energy scales:
the charging energy U , the vibronic excitation energy h̄ω,
the electron-vibron coupling λ, and the level broadening h̄�

caused by the coupling of the nanojunction to the electrodes.
For example, the study of the shot noise and full counting
statistics for an AHM [22] has revealed electronic avalanches
dynamics [9,23] and hysteretic or switching behavior [24–27]
in the Frank-Condon blockade, sub-Poissonian noise due to
relaxation [28] and absorption side bands in the Coulomb
blockade regime [29].

Suspended carbon nanotubes (CNTs) are ideal systems to
study vibronic effects in interacting nanojunctions and have
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stimulated an intense research activity. Several transport ex-
periments in these systems [10,30,31] indeed show clear indi-
cations for vibrational excitations, with characteristic Poisson
distributed steps, as predicted for an AHM with thermally
equilibrated vibrons [32]. Suspended CNTs are also excellent
electromechanical resonators [33–38] with quality factors up
to 106 [39,40]. Even tailoring of the electron-vibron cou-
pling with gate voltages [41,42], electronic injection position
[43–45] or magnetic fields [46] has been demonstrated.

The transport characteristics of CNT quantum dots still
present, though, puzzling additional features, not captured
by the simple AHM, as the alternating positive and negative
differential conductance (PDC/NDC) at the vibrational side
bands [10,30]. The alternance of PDC/NDC at bosonic side
bands has so far been attributed to large asymmetries in the
tunneling coupling of the CNT levels to the leads [47–49],
combined with level splittings of the order of half of the
vibrational energy [10,11,43,44] or to image-charge effects
[50]. An extension of the Anderson Holstein model including
the electron-vibron coupling also in the exchange parameter
has been proposed to explain the switching in the coupling
to phonons in a suspended CNT quantum dot [42]. All these
models however fail to explain the strong drop in current at
large bias voltages, as they instead predict a current satura-
tion. Additionally, in the theoretical prediction the NDC has
the form of clearly defined steps [11,43], contrasting with
the much smoother behavior exhibited by the measurements
[10,30,46].

Recent experiments on CNTs have demonstrated quantum
interference as a further source of NDC [51], which yields to
coherent population trapping and dark state formation. Similar
effects have been reported for triple dots [52–54], semicon-
ductor nanowires quantum dots [55,56] and single molecule
junctions [57,58]. Necessary condition for the occurrence of
such phenomenon is the presence of two orbitally degenerate
states, supported in the CNT by the valley degree of freedom.
The control of such a degree of freedom goes under the name
of valleytronics. This concept has been recently extended to
the one of flavortronics [59] for systems with higher system
degeneracies.

2469-9950/2020/102(12)/125422(10) 125422-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9504-1128
https://orcid.org/0000-0003-1968-3908
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.125422&domain=pdf&date_stamp=2020-09-18
https://doi.org/10.1103/PhysRevB.102.125422
http://mailto:milena.grifoni@ur.de


DONARINI, NIKLAS, AND GRIFONI PHYSICAL REVIEW B 102, 125422 (2020)

Motivated by these results and by the puzzling anomalies in
the vibrational fingerprints of the suspended CNTs, we study
in this paper a degenerate AHM, which combines interference
blocking and vibrational excitations. The obtained current
voltage characteristics qualitatively reproduce the ones of
the experiments [10,30] and give for them an alternative
explanation which is based on electrical dark states, and it
does not require orbital asymmetries or carefully tuned level
splittings. A crucial role is played instead by virtual electronic
fluctuations which produce a Lamb-shift-like renormalization
of the system Hamiltonian. As such, the Bloch vector asso-
ciated to the orbitally degenerate states precesses around an
exchange field [57,60–62], modulating in this way the degree
of interference blocking and thus the current and the shot
noise of the nanojunction. The interplay of such pseudospin
precession with the vibrational degree of freedom and the
fingerprints left in the current and noise of a degenerate AHM
represent the main topic of this work. The theory developed
here is not restricted to CNTs. It rather naturally applies to
a whole class of single molecule junctions characterized by
symmetry protected orbital degeneracies [12,57,58,63].

The paper is structured as follows. In Sec. II we present the
degenerate Anderson-Holstein model and the relevant dynam-
ical equations for the reduced density operator. In Sec. III we
present numerical results for the current and the Fano factors,
where interference effects are clearly visible in their associ-
ated stability diagrams. We focus in Sec. IV on the regime of
strong relaxation, which allows us an analytical treatment of
the dynamics and a clear physical interpretation of the results
of Sec. III. Finally, the robustness of the interference features
against various perturbation is discussed in Sec. V and we
draw our conclusions in Sec. VI.

II. DEGENERATE ANDERSON-HOLSTEIN MODEL

The Anderson-Holstein model (AHM) is a standard choice
for the simultaneous description of electron-electron and
electron-vibron interaction in nanodevices [11,16,24,32,64–
67] and several techniques have been applied to study it, rang-
ing from a master equation approach [9] to the more sofisti-
cated multilayer multiconfiguration time-dependent Hartree
[13], the self-consistent diagrammatic approximation [14]
or the real-time pathintegral Monte Carlo approach [68].
Here we consider the AHM with orbital degeneracy, such
to incorporate also quantum interference. We thus consider
the Hamiltonian Ĥ = ĤS + Ĥleads + Ĥtun for a quantum dot
(QD) with spin σ ∈ {↑,↓} and orbital � ∈ {+,−} degrees of
freedom coupled to two leads, see Fig. 1.

All four single particle states in the dot are degenerate
with the onsite energy ε = eVg. Coupling to a phononic mode
results in the system Hamiltonian

ĤS = εN̂ + U

2
N̂ (N̂ − 1)

+ h̄ω

(
a†a + 1

2

)
+ λN̂ (a† + a), (1)

where N̂ = ∑
�σ d†

�σ d�σ . Here, d (†)
�σ destroys (creates) an elec-

tron in the QD. The leads are described as free Fermi
gases with Ĥleads = ∑

αkσ εαkc†
αkσ

cαkσ , where c(†)
αkσ

destroys

FIG. 1. Anderson-Holstein model with orbital degeneracies cou-
pled to two leads. The electron-vibron coupling, characterized by the
strength λ, allows for vibronic excitations induced by the tunneling
of electrons between the leads and the degenerate levels. The current
through the system is controlled by sweeping the bias and the gate
voltages, respectively, Vb and Vg.

(creates) an electron in lead α with momentum k and
spin σ . The nanojunction is brought out of equilibrium
by a voltage drop Vb which enters the chemical potentials
μL = ηeVb and μR = (η − 1)eVb of the electrodes. Addition-
ally, the system is kept at the temperature T and the tun-
neling rates are proportional to the Fermi functions f +

α (x) =
1/(1 + exp[(x − μα )/(kBT )]) and f −

α (x) = 1 − f +
α (x).

The diagonalization of ĤS is commonly obtained via the
polaron transformation eP̂ĤSe−P̂ with P̂ = λ

h̄ω
N̂ (a† − a) [69]

which effectively decouples the electronic and the vibronic
degrees of freedom. The resulting eigenvectors and eigenval-
ues read

|NmSSzLz〉 = e−P̂|NSSzLzm〉0, (2)

ENm = ε̃N + Ũ

2
N (N − 1) + h̄ω

(
m + 1

2

)
, (3)

where the eigenvectors Eq. (2) are obtained by pola-
ronic transformation of the factorized states |NSSzLzm〉0 =
|NSSzLz〉0 ⊗ |m〉. The quantum numbers which fully charac-
terize the electronic many-body states of the system are the
total occupation N , the total spin S, Sz, the imbalance between
orbital occupations Lz = ∑

σ (n+,σ − n−,σ ), and finally the
number of vibronic excitations m. The eigenenergies depend
on the total particle number N , the normalized energies ε̃ =
ε − λ2

h̄ω
, Ũ = U − 2λ2

h̄ω
, and on the vibronic energy h̄ω with its

excitation level m. Hence, the spectrum consists of equidistant
(bosonic) replicas of the electronic energy ground state. No
signature of the bare single particle energy and charging
energy can be observed in the tunneling spectroscopy. We
therefore will drop in the following the tildes and return to U
and ε for the measurable charging and single particle energies.

The tunneling Hamiltonian Ĥtun = ∑
αk�σ tαei�φα c†

αkσ
d�σ +

H.c. incorporates an orbital and lead dependent phase �φα

which ultimately enters in the tunneling rate matrix for the
lead α

�α = �αRα, (4)
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with the bare tunneling rate �α = 2π |tα|2Dα/h̄ proportional
to the density of states at the Fermi level Dα , and the coher-
ence matrix in the orbital basis

Rα =
(

1 aαe2iφα

aαe−2iφα b2
α

)
, (5)

with |aα| < |bα|, bα ∈ R ensuring the positivity of the rate
matrix �α.

The coherence matrix is the central object of our model
as it accounts for the possibility of orbital interference
[51,54,56]. In the following we assume equal coupling of the
orbitals to the lead α, such that bα = 1. Further, in the spirit
of the surface �-point approximation [51] we set aα = 1.

We concentrate on the weak tunneling limit h̄�α � kBT,U
and describe the dynamics of the system using a master
equation for the reduced density matrix �̂ = Trleads{�̂tot}. Such
a matrix is block diagonal in particle number and spin,
due to conservation of these quantities in the total Hamil-
tonian. Moreover, in the limit of fast vibrations, ω � �α ,
the secular approximation [70] also ensures the vanishing of
coherences among states with different vibronic excitation.
Finally, due to the spin isotropy of the leads, we use the
Wigner-Eckart theorem and integrate out Sz. We thus define,
conveniently, the matrix element in the NmS block as �NmS

LzL′
z

=∑
Sz

Tr{�̂|NmSSzLz〉〈NmSSzL′
z|}. To avoid unnecessary com-

plications, we restrict our analysis to the transitions between
states with zero and one electron on the dot. This regime can
be obtained, in the limit of large charging energy U � h̄�,

h̄ω, by tuning the gate and bias voltage in the vicinity of the
zero to one particle resonance. To leading order in the tun-
neling coupling, we obtain the following generalized master
equation (GME):

�̇0m0 = −4
∑
αm′

�αFmm′ f +
α (ε − ωmm′ )�0m0

+
∑
αm′

�αFmm′ f −
α (ε − ωmm′ )Tr

{
Rα�1m′ 1

2
}
,

�̇1m 1
2 = − i

h̄

[
H

1m 1
2

LS , �1m 1
2
]

− 1

2

∑
αm′

�αFmm′ f −
α (ε + ωmm′ )

{
Rα, �1m 1

2
}

+ 2
∑
αm′

�αFmm′ f +
α (ε + ωmm′ )Rα�0m′0, (6)

where [A, B] and {A, B} indicates the commutator (AB − BA)
and the anticommutator (AB + BA) relations, respectively.
Equations (6) describes in and out tunneling processes be-
tween the quantum dot and the leads, as well as the pseudospin
precession due to virtual charge fluctuations involving degen-
erate orbitals. This latter aspect of the system dynamics is cap-
tured by the Lamb-shift Hamiltonian, which explicitly reads:

H
1m 1

2
LS = h̄

2π

∑
αm′

�αRαFmm′

× [pα (ε + ωmm′ ) − pα (ε + U − ωmm′ )], (7)

with ωmm′ = h̄ω(m − m′), and the function pα (x) =
− Re [1/2 + i(x − μα )/(2πkBT )] defined via the digamma

function . Here, �0m0 is the probability of finding the
quantum dot at the same time empty and oscillating with
m vibronic excitations. The one particle component �1m 1

2 is
instead a 2×2 matrix due to the orbital degree of freedom
and, beyond the occupation probability, it carries information
on the pseudospin, whose components are calculated as

Ti =
∑

m Tr
{
ρ1m 1

2 σ i
}

∑
m Tr

{
ρ1m 1

2
} , (8)

with σ i the ith Pauli matrix. The Franck-Condon factors Fmm′

which account for the wave function overlap between the
initial and final vibronic state. They are defined as [11]

Fmm′ = ∣∣〈m|e− λ
h̄ω

(a†−a)|m′〉∣∣2

= e−gg|m′−m|
(

m!

m′!

)sgn(m′−m)[
L|m′−m|

min(m,m′ )(g)
]2

, (9)

with the associated Laguerre polynomials Lk
n (x) and

g = (λ/h̄ω)2 the dimensionless coupling constant.
The model Hamiltonian Eq. (1) and the equation of motion

Eqs. (6) capture the interplay of two effects: vibron assisted
tunneling and interference blocking. On one hand, the se-
quential tunneling ensured by the small tunneling coupling is
modulated by the Franck-Condon factors Fmm′ . The dimen-
sionless electron vibron coupling g = (λ/h̄ω)2 is a measure
of the relevance of the vibron assisted tunneling phenomena.
The coupling g ≈ 3 considered here gives already well defined
Stokes side peaks in the tunneling spectroscopy. Its moder-
ate value, though, keeps the dynamics far from the bistable
Franck-Condon blockade regime with its avalanche dynamics
[9,23] characterized by giant noise. On the other hand, the
phase difference φL �= φR in the electronic rate matrices [see
Eq. (4)] connecting degenerate states supports the formation
of dark states and the pseudospin precession. The interplay
of vibron assisted tunneling and interference blocking is at
the origin of the transport phenomena described in the next
section.

III. CURRENT AND NOISE

The calculation of the transport properties moves from
the Markovian limit of full counting statistics for electron
transport [71–73]. A central role is played in this formal-
ism by the generalized reduced density operator R̂α (χ ) =
Trleads{eiχN̂α �̂tot} which contains the counting field χ . In terms
of R̂α we define the current cumulants cα,n:

cα,n = d

dt

(
∂

∂iχ

)n

ln Tr{R̂α (χ )}|χ=0. (10)

The first two current cumulants are, by rescaling with the
electronic charge e, the current and current noise,

cα,1 = d

dt
〈N̂α〉 = Iα

e
,

cα,2 = d

dt

(〈
N̂2

α

〉 − 〈N̂α〉2
) = Sα

e2
, (11)

where 〈•〉 = Trtot{•�̂tot} indicates the quantum mechanical
average. Both Iα and Sα depend on time and are associated
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to a specific lead. In the stationary limit, though, t → ∞,
IL = −IR and SL = SR. Clearly, the calculation of the current
cumulants requires to know the dynamics of R̂α (χ ). If the
equations of motion Eqs. (6) define a Liouville superoperator
acting on the reduced density matrix L�̂ = ˙̂�, the equation of
motion for the operator R̂α (χ ) reads:

˙̂Rα (χ ) = [L + Jα (χ )]R̂α (χ ) (12)

where we have introduced the superoperator

Jα (χ ) = (eiχ − 1)J +
α + (e−iχ − 1)J −

α (13)

expressed in terms of the counting field χ and the forward and
backward jump superoperators J ±

α . The latter are:

J +
α =

∑
��′σ

(�α )��′D�σ,+ f −
α (ih̄LS)D†

�′σ,−,

J −
α =

∑
��′σ

(�α )��′D�σ,− f +
α (ih̄LS)D†

�′σ,+. (14)

The last two equations contain the system Liouvillean LS =
−i/h̄[ĤS, •], together with the superoperators D�σ,± and
D†

�σ,±, which act on a generic operator Ô as:

D�σ,+Ô = d�σ Ô , D�σ,−Ô = Ôd�σ ;

D†
�σ,+Ô = d†

�σ Ô , D†
�σ,−Ô = Ôd†

�σ . (15)

When projecting on the eigenbasis of the system consistently
with approximations introduced in Eqs. (6), we obtain, for the
(right lead) jump operators:

[J +
R �̂]0m0 =

∑
m′

�RFmm′ f −
R (ε − ωmm′ )Tr

{
RR�1m′ 1

2
}
,

[J +
R �̂]1m 1

2 = 0,

[J −
R �̂]0m0 = 0,

[J −
R �̂]1m 1

2 = 2
∑

m′
�RFmm′ f +

R (ε + ωmm′ )RR�̂0m′0. (16)

Being proportional to the tunneling rates, also the jump op-
erators are dressed with the Franck-Condon factors Fmm′ , due
to the vibronic degree of freedom. Current I and shot noise S
are calculated by iteratively evaluating the following hierarchy
of equations for the stationary generalized reduced density
operator R̂∞ = R̂(t → ∞) [74],

L�̂∞ = 0,

I = eTr{(J +
R − J −

R )�̂∞},
LX̂1∞ = −(J +

R − J −
R − I/e)�̂∞,

S = e2Tr{2(J +
R − J −

R )X̂1∞ + (J +
R + J −

R )�̂∞}, (17)

with the negative electrical charge e. In Eqs. (17) we have
introduced the operator X̂1∞, defined as the case n = 1 of the
more general Taylor coefficient

X̂n∞ = lim
t→∞

(
∂

∂iχ

)n R̂

Tr{R̂}

∣∣∣∣
χ=0

. (18)

We further notice that X̂0∞ = �̂∞. In general, the full counting
statistics is obtained by the recursive solution of the set of

FIG. 2. Stability diagram of (a) differential conductance and
(b) Fano factor. The electron numbers on the QD are indicated in the
Coulomb blockade regions, where the Fano factor is not displayed.
Parameters are U = 10 meV, h̄�L = 10 μeV, h̄�R = 15 μeV,
eVg = 1 meV, h̄ω = 1 meV, λ = 1.8 meV, η = 0.5, kBT = 50 μeV,
φR − φL = 0.25π , h̄�rel = 0.

coupled equations [74]:

cα,k =
k−1∑
k′=0

(
k

k′

)
Tr{(J +

α + (−1)k−k′J −
α )X̂ ′

k}

˙̂Xk = LX̂k +
k−1∑
k′=0

(
k

k′

)
(J +

α + (−1)k−k′J −
α − ck−k′ )X̂k′ . (19)

If we consider the full time dependence of the current
cumulants, the finite frequency noise can be calculated [75].
An example of such calculation for the AHM is given in
Ref. [76].

We concentrate here on the zero frequency components.
We employ the Fano factor F = |S/eI| as dimensionless mea-
sure for the noise with respect to its Poissonian value F = 1.
In Fig. 2 we show the stability diagram of the differential
conductance, dI/dVb, and the Fano factor. In the Coulomb
blockade regions (indicated in white) the particle number is
fixed and no current flows through the nanojunction. The Fano
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FIG. 3. Bias traces at eV g = ±0.5 meV, as indicated by the
vertical lines in Fig. 2. (a) Current, (b) differential conductance, and
(c) Fano factor.

factor is not calculated in this parameter regime in which the
cotunneling contribution, discarded in this work, is expected
to dominate the transport characteristics. Current and differ-
ential conductance also vanish at the antiresonance conditions
eVg + ηeVb = −U/2 and eVg + (η − 1)eVb = −U/2, due to
interference blocking. Such a condition is obtained when the
Lamb-shift correction only contains the contribution of the
drain. The pseudospin precession dynamics is hindered and
the blocking is perfect [57]. Interestingly, this antiresonance
only results in a moderate super Poissonian shot noise (F ≈ 6)
as compared to the large values of the Fano factor (F ≈ 20)
which can be observed at the edge of the one electron
Coulomb diamond. For a better quantitative analysis we show
cuts through the stability diagram at eVg = ±0.5 meV in
Fig. 3. Here, for completeness, we kept the values in the
Coulomb blockade regions, not displayed in the stability
diagram of Fig. 2(b), and one at least appreciates the divergent
Fano factor at small biases Vb → 0 associated to the thermal
Johnson-Nyquist noise.

The interplay between the electronic interference and the
vibron assisted tunneling is clearly visible in the I-V charac-
teristics of Fig. 3(a).

Interference blocking associated to the valley degree of
freedom sets the smooth behavior of the current, which, for
positive bias, raises at the resonance condition eVg + ηeVb = 0,
and decreases then until complete interference blocking at
the antiresonance condition eVg + ηeVb = −U/2. The smooth
transition to the complete blocking is set by the (large) energy
scale U and by the shape of the digamma function. The
physics of the junction is governed here by the precession
between the blocking and the conducting states induced by
virtual charge fluctuations [53].

The smaller scale h̄ω which characterizes the I-V char-
acteristics is given, instead, by the electron-vibron coupling.
Vertical gray lines highlight the bias at which new vibronic

excitations enter the transport window. As soon as the mth
vibronic excitation enters the bias window, the current raises
with a step, which is related to the sum of Franck-Condon
factors

∑
n Fn,n+m. Due to the moderate value of the di-

mensionless electron-vibron coupling g = 3.24, the steps are
smaller at higher biases, since, independent of the initial state
n, limm→∞ Fn,n+m = 0.

If the vibrons quickly equilibrate between two consecu-
tive tunneling events at a temperature kBT � h̄ω, the step
height in the I-V curve follows a Poissonian distribution.
Indeed, the Franck-Condon factors for transitions involving
the ground state are F0,m ∝ e−ggm/m! [32]. More concretely,
the fast relaxation excludes a feedback of the current on the
vibronic distribution. Thus, each additional vibron contributes
independently to the current and, if energetically available, is
excited with probability g (independent boson model). The
analysis of the step height distribution allows, in this ap-
proximation, to extract from the I-V characteristics the value
of the dimensionless electron-vibron coupling g = (λ/h̄ω)2.
Such a procedure, though, would even qualitatively fail for the
degenerate Anderson-Holstein model. As seen in Fig. 3, for
example, the third current step is lower than the second one
in clear contradiction to the result g/2 = 1.62 for their ratio
assuming a Poisson distribution with mean value g = 3.24.

In Fig. 3(b) we show the differential conductance through
the system. The presence of degenerate interfering states
explains the appearance, for every vibration assisted tunneling
peak, of a corresponding negative differential conductance
(NDC) valley. Such current peaks with an alternating differ-
ential conductance have been observed in the current volt-
age characteristics of suspended carbon nanotubes [10,30,77]
and have been attributed to strongly asymmetric coupling of
quasidegenerate electronic states [11,43,44] or, in scanning
tunneling microscopy configurations [78], to a half shuttle
dynamics [48].

A different tunneling coupling of the nanotube to the two
leads is not surprising and can be easily and independently
verified (e.g., by analyzing the strength or the slope of the
corresponding resonant lines in the stability diagram). Instead,
an asymmetry between the valley degrees of freedom is more
difficult to imagine. Both wave functions are, in fact, essen-
tially uniform along the nanotube waist. Moreover, an ad hoc
matching of the energy scales of the vibronic excitations with
the one of the electronic level splitting within each shell must
be assumed, in order to reproduce the regular alternance of
positive and negative differential conductance of the experi-
mental results [10,30]. Within the interference blocking pic-
ture, instead, neither an energy scale matching nor tunneling
coupling asymmetry are required. The quasidegeneracy of the
electronic states and the local tunneling necessary for dark
state formation [51] are enough, independent of the vibronic
energy.

The interplay between orbital degeneracy, interference,
and vibronic excitation has already been investigated [61,79],
although without a systematic study of the current noise.
The latter, as shown in Fig. 3(c), shows maxima in corre-
spondence of the minima of the current, i.e., every time a
new vibronic copy of the interference blocking state hinders
the current, thus provoking further bunching. In this spirit
one also understands why the maximum of the Fano factor
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is reached in correspondence to the first NDC and not
at the complete current blocking (antiresonance condition).
With the charging energy taken much larger that the vibronic
one, the complete interference blocking can only be reached
when several vibronic channels have already entered the trans-
port window. These multiply the possible transport paths of
the electron through the junction, thus hindering the bunching
dynamics.

A bias larger than h̄ω allows one to indefinitely climb up
the regular ladder of the vibronic spectrum via a sequence
of energetically allowed transition: for example, with every
tunneling event depositing a quantum of energy in the me-
chanical degree of freedom. In the model presented so far,
we allowed the vibron to relax uniquely via its coupling to
the dissipative electronic dynamics. Under these conditions
the results must be carefully checked upon truncation of the
number of excitations. We retain up to 30 excitations, with
a cutoff threshold of 10−10 for the population of the most
excited state.

IV. STRONG VIBRATIONAL RELAXATION

The mechanical oscillations in a nanojunction are not
damped only by the electronic reservoirs. Both the intrinsic
anharmonicities of the internal vibrational modes, as well as
the direct coupling to the mechanical degrees of freedom of
the environment, represent further sources of dissipation. In
the absence of external driving, we thus expect, eventually,
thermal equilibration. For simplicity, we refrain from formu-
lating a microscopic model for the mechanical dissipation. We
introduce instead in Eqs. (6) a phenomenological term. The
latter leaves the electronic part of the equations unaffected,
while damping the vibronic excitations towards their thermal
equilibrium. It is adapted from Ref. [23] to the degenerate
AHM. It reads

Lrel�̂
NmS = −�rel

(
�̂NmS − nB(mh̄ω)

∑
m′

�̂Nm′S
)

, (20)

where nB(x) = 1/(exp[x/(kBT )] − 1) is the Bose function
and �rel is a phenomenological relaxation rate. Assuming that
�rel � �α is the largest rate in the system, the stationary
solution for the GME must be of the form

�̂NmS = nB(mh̄ω)
∑

m′
�̂Nm′S, (21)

and we are left with the calculation of the equations of motion
for the electronic part of the density matrix �NS = ∑

m �NmS .
If moreover we concentrate on the regime kBT � h̄ω, fa-
vorable to appreciate the vibrational quantization, only the
ground vibronic state is occupied and the equations of motions
further simplify to

�̇00 =
∑

α

[−4γ +
α �̂00 + γ −

α Tr
{
Rα�1 1

2
}]

, (22)

�̇1 1
2 = − i

h̄

[
Ĥ

1 1
2

LS , �1 1
2
]

+
∑

α

[
2γ +

α Rα�00 − 1

2
γ −

α

{
Rα, �1 1

2
}]

, (23)

FIG. 4. (a) Effective rates and (b) effective precession frequen-
cies as a function of the bias voltage. The parameters are the same as
for Fig. 2, with eVg = −0.5 meV.

with the Lamb-shift Hamiltonian H
1 1

2
LS = h̄

∑
α ωαRα/2. The

effective rates and precession frequencies are

γ ±
α =

∑
m

�αF0m f ±
α (ε ± h̄ωm), (24)

ωα = 1

π

∑
m

�αF0m[pα (ε − h̄ωm) − pα (ε + U + h̄ωm)],

(25)

and, as can be derived from Eq. (9), the Franck-Condon
factors reads F0m = exp(−g)gm/m! .

The effective rates and precession frequencies in Eqs. (24)
and (25) are plotted in Fig. 4 as a function of the bias
voltage. The step heights in the tunneling rates follow the
Poisson distribution F0m, as expected from a model with
equilibrated vibrons at low temperature. The precession fre-
quencies more clearly incorporate the interplay of interference
and electron-vibron coupling. By comparison of Figs. 3 and 4,
the correspondence between the antiresonance condition of
perfect interference blocking for the left to right (right to left)
particle current and the vanishing of the precessing frequency
ωL = 0 (ωR = 0) can be appreciated [57]. Moreover, the
precession frequencies are locally enhanced every time a new
vibronic excitation enters the bias window. In correspondence
to such peaks, the current suppression is reduced, since the
precessing dynamics connects the blocking to the coupled
state [51,54,61].

In the limit of large bias we can assume γ −
L = γ +

R = 0, and
the current can be written as

I = 4eγRω2
L cos(�φ)2

2γ 2
R + 2(ωL − ωR)2 + ωL(ωLγR/γL + 4ωR cos(�φ)2)

,

(26)

where γ +
L = γL and γ −

R = γR, and �φ = φR − φL. At large
negative chemical potential drop, the same expression holds
upon exchanging L ↔ R and an overall minus sign.

It is clear from Eq. (26) that the current vanishes as soon as
ωL = 0 or �φ = π/2. While the first condition corresponds
to a perfect interference blocking [53], the second one has a
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FIG. 5. Bias traces of (a) current and (b) Fano factor for different
values of the vibronic relaxation rate compared to the analytical
high relaxation approximation (HRA) change label accordingly from
model to HRA. The remaining parameters are the same as for Fig. 2.

suggestive interpretation in terms of pseudospin accumulation
[61] and is completely analogous to the spin-valve setup
with antiparallel polarized leads [60]. In both cases, though,
the pseudospin on the system ends up aligned antiparallel
to the drain polarization and the corresponding state is a
probability sink. In Fig. 5 we compare the analytical result to
numerical calculations for different vibronic relaxation rates.
The strength of the relaxation rate should be compared to the
renormalized electronic tunneling rates �̃α = �αe−g, giving a
ratio �rel/�̃α ≈ 300 for the strongest vibronic relaxation and
the stronger rate. The current and noise corresponding to the
infinite relaxation limit, depicted in red, are asymptotically
obtained for every bias condition. Despite the dramatic effects
imposed by the vibronic relaxation on the system dynamics,
the current remains qualitatively unchanged and suggests to
interpret the results in terms of an effective temperature. The
vibronic mode would thermalize, even in the absence of a
direct dissipative channel, at an effective temperature set by
the bias and the strength of the electron-vibron coupling. The
Fano factor, though, is more sensitive to the actual dynamics
of the system. Its shape changes qualitatively in the high
relaxation limit, by rapidly getting flatter and lower, thus
revealing the nontrivial vibronic contribution to the transport
even in this regime of moderate electron-vibron coupling.

V. ROBUSTNESS OF INTERFERENCE EFFECTS

The robustness of interference effects under vibron induced
decoherence has been the focus of theoretical [80–83] as
well as experimental investigation [84,85], although mostly
for nanojunction in strong coupling to the electrodes. The in-
terference effects in the degenerate Anderson-Holstein model
presented so far rely on two necessary conditions: the quaside-
generacy of the orbital states and the absence of independent
transport channels connecting both leads, i.e., no basis change
can diagonalize simultaneously both tunneling matrices
[see Eq. (4)]. Deviations from these requirements is detri-
mental for the occurrence of interference. We test here per-
turbations of different kinds, further proving the robustness of

FIG. 6. Bias traces of (a) current and (b) Fano factor for different
values of the off-diagonal elements of the rate matrix. The parameters
are the same as for Fig. 2.

the phenomena described in the previous section. The lifting
of the degeneracy by energies comparable or larger than the
tunneling rates hinders the destructive interference. Several
examples of such behavior have been already presented in
the literature: The sequential tunneling limit of the conduc-
tance canyon [56] of semiconducting wires can be understood
in these terms, as well the quenching of interference in
molecules [61,86], triple quantum dots [54], or the absence
of two-electron dark states due to exchange interaction in the
carbon nanotubes [51]. Different electron vibron couplings of
the degenerate orbital levels are also destroying the interfer-
ence blocking [61].

A. Diagonality of tunneling rate matrices

The most general form of the tunneling rate matrix for a
twofold degenerate level reads:

�α = �0
α (12 + Pα · σ ), (27)

where σ is the vector of the Pauli matrices, thus identifying
the orbital degree of freedom as a pseudospin. The positivity
of the rate matrices is ensured by requiring for the pseudospin
polarization vector |Pα| � 1. By choosing the quantization
axis for such a pseudospin perpendicular to the plane spanned
by the vectors PL and PR one obtains tunneling matrices in the
form:

�α = �0
α

(
1 hαe2iφα

hαe2iφα 1

)
, (28)

to be compared with Eqs. (4) and (5). For simplicity, we
will assume in our analysis the strength of the pseudospin
polarization hα to be the same in the source and drain lead.
The factor 0 � h � 1 allows one to change between the
fully interfering situation (h = 1) and a diagonal rate matrix
(h = 0) in which the junction has the same tunneling channels
to both leads, and interference is quenched. As one can see
at the example of bias traces in Fig. 6, for fully diagonal rate
matrices (h = 0) the interference vanishes completely and the
current consists of regular steps with Poissonian distributed
heights. The Fano factor also shows a strong influence on
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FIG. 7. Bias traces of (a) current and (b) Fano factor for different
values of the full relaxation rate. The parameters are the same as for
Fig. 2.

h as it changes from a strongly super-Poissonian behavior
to sub-Poissonian behavior, with F ≈ 0.5, even at large bias
voltages. For any h > 0 the complete blockade at resonance
is disappearing and already at h ≈ 0.5 NDC is not anymore
observable.

B. Full relaxation

We also test a full relaxation including vibronic as well as
electronic degrees of freedom via the term

Ltot
rel�̂

NmS = −�tot
rel

(
�̂NmS − �̂NmS

th

∑
m′�

�̂Nm′S
��

)
, (29)

where in the thermal density matrix �0mS
th = nB(mh̄ω) and

�1mS
th = nB(mh̄ω)12/2 is diagonal in the orbital degree of

freedom. Figure 7 displays the current and Fano factor for
different values of the total relaxation rate. This type of relax-
ation destroys the interference as soon as the total relaxation
rate becomes of the order of the tunneling rates. For larger
total relaxation rates the steplike current behavior of vibronic
systems is recovered together with sub-Poissonian statistics,
as previously reported in the literature [28].

Destructive interference occurs, in principle, for all phase
differences �φ �= 0 between the left and the right tunneling
processes. However, the smaller �φ the more sensitive is
the system to independent processes of relaxation towards
the thermal solution which bring the current to its incoherent
limit. This phenomenon, already shown in the absence of
vibrational degrees of freedom (see the supplementary in-
formation of Ref. [51]) is not qualitatively modified in the
degenerate Anderson-Holstein model by the presence of the
mechanical degrees of freedom.

VI. CONCLUSIONS

Motivated by experiments on suspended CNT quantum
dots [10,30,31,46] and by the recent observation, again on

CNTs, of coherent population trapping, we have studied the
interplay of quantum interference and vibronic degrees of
freedom in the transport through an interacting nanojunction.
The model of choice is the degenerate Anderson-Holstein
model [61], in which the single interacting level is replaced
by a pair of orbitally degenerate ones. The different tunneling
phases of these levels towards the two leads support interfer-
ence phenomena and thus coherent population trapping. We
calculate for this system both the current and the current noise,
expressed using the Fano factor as an indicator of the transport
dynamics.

The current voltage characteristics appear as a superposi-
tion of vibron assisted tunneling and quantum interference.
The first is responsible for the steplike increase of the current
whenever a new vibronic excitation enters the transport win-
dow. Interference, instead, modulates the current on a larger
energy scale: It induces the negative differential conductance
following each current step and, ultimately, the complete cur-
rent suppression at the antiresonance conditions eVg + ηeVb =
−U/2 and eVg + (η − 1)eVb = −U/2.

The precession dynamics between the coupled and the
decoupled states plays a central role in the understanding
of the degenerate Anderson-Holstein model. The analytic
expression for the current derived in the strong relaxation
limit clearly emphasizes this aspect through a pronounced
dependence on the precession frequency. The latter, in turn,
depends on the bias and the gate voltage, showing how all-
electrical control of the coherent dynamics of an interacting
electromechanical system can be obtained.

Finally, the robustness of the effects presented so far is ana-
lyzed. Beyond the lifting of the electronic degeneracy, already
extensively considered in the literature [51,54,56,61,84] par-
ticular emphasis has been given to the degree of pseudospin
polarization and the strength of electronic as well as vibronic
relaxation.

The degenerate Anderson-Holstein model, with its inter-
play of interference and vibron assisted tunneling, represents
an interesting and rich playground for the understanding of
the transport characteristics of interacting electromechanical
systems with a degenerate electronic spectrum. In particular,
the combined analysis of its current and current noise char-
acteristics suggests an alternative interpretation of controver-
sial measurements on suspended CNT quantum dots, which
emphasises the role of Lamb-shift corrections and pseudospin
precession for these nanojunctions.
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APPENDIX: LIOUVILLE SPACE

This effective model can be written in Liouville space
where the equation takes the form ˙̂� = L�̂ and where �̂ =
(�̂00, �̂

1 1
2

−�−�, �̂
1 1

2
�� , �̂

1 1
2

−��, �̂
1 1

2
�−�)ᵀ. The Liouvillian and current
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operators read

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4γ + γ − γ − γ̃ −∗ γ̃ −

2γ + −γ − 0 1
2 (iω̃∗ − γ̃ −∗) 1

2 (−iω̃ − γ̃ −)

2γ + 0 −γ − 1
2 (−iω̃∗ − γ̃ −∗) 1

2 (iω̃ − γ̃ −)

2γ̃ + 1
2 (iω̃ − γ̃ −) 1

2 (−iω̃ − γ̃ −) −γ − 0

2γ̃ +∗ 1
2 (−iω̃∗ − γ̃ −∗) 1

2 (iω̃∗ − γ̃ −∗) 0 −γ −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

J +
R =

⎛
⎜⎜⎜⎜⎜⎝

0 γ −
R γ −

R ei�φγ −
R e−i�φγ −

R

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, J −

R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

2γ +
R 0 0 0 0

2γ +
R 0 0 0 0

2e−i�φγ +
R 0 0 0 0

2ei�φγ +
R 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (A2)

with φR − φL = �φ, γ̃ ± = ei�φγ ±
L + e−i�φγ ±

R , ω̃ = ei�φωL + e−i�φωR, and γ ± = γ ±
L + γ ±

R .
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