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Dynamic response functions of two-dimensional Dirac fermions with screened
Coulomb and short-range interactions
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We consider a screened Coulomb interaction between electrons in graphene and determine their dynamic
response functions, such as a longitudinal and a transverse electric conductivity and a polarization function
and compare them to the corresponding quantities in the short-range interaction model. The calculations are
performed to all orders for short-range interaction by taking into account the self-energy renormalization of
the electron velocity and using a ladder approximation to account for the vertex corrections, ensuring that the
Ward identity (charge conservation law) is satisfied. Our findings predict a resonant response of interacting
electron-hole pairs at a particular frequency below the threshold qv = ω and further predict an instability for
sufficiently strong interactions.
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I. INTRODUCTION

Response functions of a physical system are measurable
quantities that contain a variety of valuable information about
spectra and interactions of the system’s quasiparticles [1].
For example, the polarization function �(ω, q) determines a
density response to a scalar field oscillating with frequency ω

and wave vector q. Other response functions include dielectric
function ε(ω, q), which determines screening of external elec-
tric field; dynamic conductivity σ jk (ω, q), which determines a
response to an electric field; spin susceptibility, which deter-
mines a response to a magnetic field; and so on. Some of the
functions obey relationships that result from various symme-
tries, such as the time-reversal symmetry, charge conservation,
and the like. For example, as a result of the charge conserva-
tion, the longitudinal conductivity σxx(ω, q) is proportional to
the polarization function �(ω, q). Response functions of two-
dimensional Dirac fermions, such as electrons in graphene [2],
have been studied extensively. The polarization function of the
intrinsic (disorder-free undoped) graphene at zero temperature
is [3,4]

�(ω, q) = − Nq2

16
√

q2v2
0 − ω2

, (1)

where N is the number of fermion species and v0 is the
band Dirac velocity (we set h̄ = 1 throughout this paper).
In graphene, N = 4, due to the spin and valley degeneracy.
The expression (1) indicates (as explained below) that the
uniform (q = 0) conductivity [5] is σ (ω, 0) = Ne2/16 ≡ σ0,
independent of the frequency ω. This value has indeed been
observed in optical experiments [6].

Electron-electron interactions were understood [7,8] to
cause a departure of the conductivity from the value σ0. Sur-
prisingly, to the first order in the interaction strength g =
e2/v0, the numerical value of the interaction correction is

rather small [9–14] σ (ω) = σ0(1 + 0.01e2/v0). This is re-
markable since the electron-electron interaction in intrinsic
graphene is not weak. Indeed, the dielectric function, which
in the mean-field (random phase) approximation is given by
ε(ω, q) = 1 − 2πe2�(ω, q)/q, amounts in the static limit
ω = 0 to a mere constant, ε = 1 + πNe2/8v ≈ 4.4, which
does not change the long-range form of the Coulomb inter-
action. The almost complete disappearance of the interaction
corrections to the conductivity occurs as a result of a peculiar
cancellation of the self-energy and the vertex corrections.

Calculations of finite-q interaction corrections to the con-
ductivity, as well as the higher-order (∼e4) corrections, are
rather challenging. Even in the homogeneous (q = 0) limit,
it remains unknown if the weak sensitivity to the interaction
strength persists beyond the first order in e2. In this paper, we
consider how the response functions of graphene for nonzero
q are affected by a screened Coulomb interaction. We assume
that the screening is of a type produced by a conducting
gate located at distance d/2 from the plane of graphene. The
Coulomb interaction in the momentum space is then

Uq = U0

qd
(1 − e−qd ), U0 = 2πe2d. (2)

The second term in this expression describes interaction with
an image charge induced on the gate. At large momenta
qd � 1 (short distances), the interaction assumes the usual
unscreened Coulomb form Uq → 2πe2/q, and for small mo-
menta qd � 1 (long distances), it tends to a constant: Uq ≈
U0. Some aspects of a fully short-range interaction, where
Uq ≡ U0 for all q, have been previously considered [11,15,16].
The screened interaction (2) allows, on one hand, to col-
lect logarithmic contributions from large momenta, while,
on the other, simplifies calculations of the convergent small-
momenta integrals (compared with the more difficult situation
of the unscreened Coulomb interaction).
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FIG. 1. (a) First-order self-energy diagram, (b) self-energy, and
(c) vertex correction to the polarization function and conductivity to
first order in interaction. The vertex equals 1 for polarization function
and ev0σ̂ for conductivity.

This paper is organized as follows: In Sec. II, the self-
energy (electron velocity renormalization) for the interaction
(2) is calculated. In Sec. III, the first-order interaction correc-
tion to the polarization function is determined for arbitrary
ω and q. In Sec. IV, a similar calculation is carried out
for the first-order current-current correlation function. It is
shown that the longitudinal conductivity and the polariza-
tion function satisfy a relation that follows from the charge
conservation, provided that a proper ultraviolet regularization
procedure is implemented. In Sec. V, we perform calculations
beyond the first-order perturbation theory by summing up an
infinite series of ladder diagrams. Such approach becomes
progressively more accurate in the vicinity of the threshold
for electron-hole pair production, ω ≈ qv. Using the results of
the ladder summation, we show that the response of graphene
becomes resonant at a specific frequency.

II. ELECTRON SELF-ENERGY

We consider the following Hamiltonian describing two-
dimensional Dirac fermions:

H = v0

∑
p

ĉ†
pσ̂ · pĉp + 1

2

∑
p,k,q

Uq(ĉ†
p−qĉp)(ĉ†

k+qĉk ), (3)

where “hats” denote operators in the pseudospin (sublattice)
space and σ̂ stand for the set of Pauli matrices in that space.
The parentheses indicate inner products of pseudospinors.
The usual spin summation, as well as the summation over
fermion flavors (multiple Dirac points), is assumed to be
performed in the Hamiltonian (3). The summation over mo-
menta in Eq. (3) and throughout the paper is understood as
the two-dimensional integral

∑
p ≡ ∫

d2 p/(2π )2, with the
normalization volume (area) set to 1. The Hamiltonian (3) is
known to describe the low-energy properties of a monolayer
graphene. We also assume that the interaction Uq is suffi-
ciently weak at large q and does not cause transitions between
different Dirac points.

The first-order correction in Uq to the polarization func-
tion (1) is shown in Fig. 1(b). Solid lines correspond to

time-ordered electron Green’s functions, which in the energy-
momentum representation (and at zero temperature)

Ĝε,k = 1

2

∑
β

1 + βσ̂k

ε − β(v0k − iη)
(4)

are given by a sum over the conduction subband β = 1 (the
upper Dirac cone) and the valence subband β = −1 (the lower
Dirac cone). The operator σ̂k = σ̂ · n is the projection of the
pseudospin operator onto the direction of the electron momen-
tum n = k/k.

The electron self-energy, illustrated in Fig. 1(a), is

	̂p = i
∑

k

U|p−k|
∫

dε

2π
Ĝε,keiε 0+. (5)

Formally, the momentum integral here has a power-law diver-
gence. This divergence simply amounts to a renormalization
of the Fermi energy; the much smaller difference 	p → 	p −
	0 results in the electron velocity renormalization

	p − 	0 = 1

2

∑
k

U|p−k|σ̂k. (6)

From the isotropy of the system, it follows that the self-energy
is 	p − 	0 = pδvpσ̂p, with the velocity correction being

δvp = 1

2p

∑
k

U|p−k| cos θ, (7)

where θ is the angle between k and p. The integral in Eq. (7),
if nonzero, arises from momenta k � p. It is, therefore, suf-
ficient to determine the integral to the linear order in the
external momentum p. Namely, using |p − k| ≈ k − p cos θ ,
and noticing that the p-independent term vanishes because of
the angle integral, we arrive at

δv = − 1

8π

∫ ∞

0
k dk

∂U

∂k
. (8)

This formula implies the absence of a low-k singularity in
the integrand; otherwise (as in the case of the unscreened
Coulomb interaction), the lower limit cannot be extended to
k = 0.

The screened Coulomb interaction (2) leads to a logarith-
mically divergent (at large k) integral in Eq. (8). It can be
regularized, for example, by replacing Uq → Uqe−q/,

δv = e2

4

∫ ∞

0

dk

k
(1 − e−kd )e−k/

= e2

4
ln (d ) + O

(
1

d

)
. (9)

Alternatively, the integral in Eq. (8) can be extended to the
upper limit k = . This only changes the numerical coeffi-
cient under the logarithm in Eq. (9). Since  is only known
by an order of magnitude (being of the order of the inverse
interatomic distance), the two approaches lead to essentially
the same result for the velocity renormalization.

The derived result for δv is valid provided that p � 1/d .
Compared with the unscreened Coulomb interaction case, the
curvature of the electron spectrum is absent. For higher values
of the electron momenta, 1/d � p � , Eq. (8) reproduces
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the usual velocity correction [4] δv = e2

4 ln (/p) after the
lower limit is replaced with p.

Existing experimental capabilities allow, potentially, to
probe the change from the short-range domain (p � 1/d) to
the curved electron spectrum (p � 1/d), but detailed exper-
imental data are still lacking. For example, in Ref. [17] the
distance from graphene to a gate was ∼20–30 nm, which
amounts to d ∼ 50 nm. Accordingly, 1/d ∼ 2 × 105 cm−1.
On the other hand, the lowest momenta probed were p ∼ 1 ×
105 cm−1, i.e., already at the edge of the short-range domain,
but not yet well inside it. In the recent experimental paper
[18], the lowest momenta probed are p ∼ 8 × 104 cm−1, well
below the screening scale 1/d ∼ 107 cm−1, but no data on
velocity renormalization were reported.

In the case of a short-range interaction, where U = U0 for
all momenta, the independence of the general expression (8)
of the momentum p predicts that δv = 0.

III. FIRST-ORDER CORRECTION TO THE
POLARIZATION FUNCTION

Turning now to the interaction corrections, we first con-
sider the polarization function, which is the (time-ordered)
density-density correlation function

�(t, q) = −i
∑

k

〈T ρ(t, q)ρ(0, k)〉, (10)

where

ρ(t, q) =
∑

p

(c†
p(t )cp+q(t )) (11)

is the electron density operator (with the summation over the
fermion species implied). In the frequency representation, the
vertex correction, given by the diagram in Fig. 1(c), amounts
to the integral

�
(1)
V (ω, q) = N Tr

∑
p,p′

U|p−p′|
∫

dε

2π
Ĝε+ p+Ĝε− p−

×
∫

dε′

2π
Ĝε′− p′−Ĝε′+ p′+ , (12)

where ε± = ε ± ω/2 and p± = p ± q/2. The energy integrals
(calculated in the Appendix) are∫

dε

2π
Ĝε+ p+Ĝε− p− = i

�p(1 − σ̂p+ σ̂p− ) + ω(σ̂p+ − σ̂p− )

2
(
ω2 − �2

p

) ,

(13)

where �p = v0(p+ + p−) is the energy of an electron-hole
pair. [The integral involving the primed quantities in Eq. (12)
has the identical value.] The singularity in the right-hand side
of Eq. (12) (as well as in similar integrals encountered below)
should be understood to be regularized by shifting it away
from the real frequencies: ω2 → ω2 + i0 for the time-ordered
polarization function, and ω2 → (ω + i0)2 for the retarded
function. (The two functions coincide when ω > 0.)

It follows from the form of the last expression (which
decreases sufficiently fast for large p, p′ � q) that the
remaining momentum integral over p (and, similarly, the inte-
gral over p′) converges over characteristic momenta ∼q, ω/v0

that are assumed to be much smaller than 1/d . This in-
dicates that the interaction can be approximated with its
zero-momentum value U|p−p′| ≈ U0. Accordingly, the remain-
ing momentum integrals over p and p′ decouple and can be
calculated exactly [19] (see Appendix):∑

p

∫
dε

2π
Ĝε+ p+Ĝε− p− = − iq(qv0 + ωσ̂q)

32v0

√
q2v2

0 − ω2
. (14)

As a result, the first-order vertex correction (12) becomes

�
(1)
V (ω, q) = −U0

Nq2
(
ω2 + q2v2

0

)
2(16v0)2

(
q2v2

0 − ω2
) . (15)

We note that this result has been previously obtained in
Ref. [15].

The first-order self-energy correction can be obtained
directly from the zero-order polarization function (1) by notic-
ing that in the case of the screened Coulomb interaction and
q � 1/d , the velocity renormalization (9) does not introduce
any spectrum curvature for relevant momenta. This means
that it is sufficient to replace v0 → v0 + δv in the zero-order
expression (1) and then expand it to the lowest order in δv.
This gives

�
(1)
SE (ω, q) = Nq4v0δv

16
(
q2v2

0 − ω2
)3/2 . (16)

In the case of the short-range interaction, δv = 0 and the
self-energy correction (16) is absent. The absence of velocity
renormalization seems to be consistent with recent numerical
calculations [20].

Comparing the value of the vertex correction to the self-
energy correction, we observe that the vertex correction
dominates for small wave vectors q. In contrast, the self-
energy correction becomes more important at ω ≈ qv0. This
is not surprising since the velocity renormalization results in
a shift of the singular edge of the electron-hole continuum.
Indeed, the line ω = qv0 separates the region (ω > qv0) where
electron-hole pairs can be generated by a field with frequency
ω and wave vector q, from the region (ω < qv0) where no
real electron-hole pairs are excited. In the former region, the
zero-order polarization function (1) is purely imaginary, while
in the latter region it is purely real. The choice of the branch
of the square root is always such that the imaginary part of the
polarization function is negative for positive ω.

IV. FIRST-ORDER CORRECTION TO THE
CURRENT-CURRENT CORRELATION FUNCTION

To test whether an interacting theory makes sensible pre-
dictions, one has to verify that the theory respects charge
conservation. The latter ties a response of the system to an
electrostatic scalar potential to a response to the related vector
electric field.

Suppose that a time- and position-dependent electrostatic
potential φ(ω, q) acts in the system. It causes a charge den-
sity variation that is determined by the polarization function:
δρ(ω, q) = e2�(ω, q)φ(ω, q). According to the charge con-
servation, this charge density must be accompanied by an
electric current j(ω, q) that satisfies the continuity equation

125421-3



M. AGARWAL AND E. G. MISHCHENKO PHYSICAL REVIEW B 102, 125421 (2020)

ωρ(ω, q) = q · j(ω, q). This determines the longitudinal part
(parallel to q) of the current j‖(ω, q) = qωρ(ω, q)/q2. But the
same current can be considered as a response to the electric
field E(ω, q) = −iqφ(ω, q), determined by the system’s con-
ductivity j(ω, q) = σ‖(ω, q)E(ω, q). By comparing the two
results, we can conclude that the two response functions must
be related as

σ‖(ω, q) = ie2ω

q2
�(ω, q). (17)

No such relation exists for the transverse conductivity
σ⊥(ω, q), which determines a response of the system to elec-
tric field that is perpendicular to q. For an isotropic system
(considered here) the conductivity tensor is given by

σ jk (ω, q) = q jqk

q2
σ‖(ω, q) +

(
δ jk − q jqk

q2

)
σ⊥(ω, q). (18)

In the Kubo approach, the electric conductivity is calcu-
lated from the current-current correlation function. Because
the operator of electric current of the Dirac fermions is pro-
portional to their pseudospin j = ev0σ, the conductivity is
determined by the correlator

� jk (t, q) = −i
∑

k

〈T ρ j (t, q)ρk (0, k)〉 (19)

of the pseudospin density

ρ j (t, q) =
∑

p

(c†
p(t )σ̂ jcp+q(t )). (20)

The conductivity, in turn, is determined by the pseudospin
density correlator:

σ jk (ω, q) = i
e2v2

0

ω
�

(0)
jk (ω, q). (21)

Note that in terms of �
(0)
jk (ω, q), the charge conservation

condition (17) can also be represented in the equivalent form

�(0)
xx (ω, q) = ω2

q2v2
0

�(ω, q), (22)

where x is the direction of the wave vector q = qx̂.

A. Self-energy correction

To the zeroth order in the interaction, the longitudinal pseu-
dospin density correlator is

�(0)
xx (ω, q) = −iN Tr

∑
p

∫
dε

2π
Ĝε+ p+ σ̂xĜε− p− σ̂x. (23)

The energy integral here is taken similarly to Eq. (14):∫
dε

2π
Ĝε+ p+ σ̂xĜε− p−

= i
ω(σ̂p+ σ̂x − σ̂xσ̂p− ) + �p(σ̂x − σ̂p+ σ̂xσ̂p− )

2
(
ω2 − �2

p

) . (24)

Multiplying this expression by σ̂x and taking the trace, we
obtain

�(0)
xx (ω, q) = N

∑
p

�pAp

ω2 − �2
p
, (25)

where Ap = 1 − cos(θp+ + θp− ), and θp± denote the angles
that the momenta p± make with the direction of q.

The obtained integral is power-law divergent and predicts
that the conductivity (21) is dependent on the cutoff , in
violation of the charge conservation (17) whose right-hand
side, determined by Eq. (1), is cutoff independent. One way to
regularize this divergence is to subtract from the integrand in
Eq. (25) its zero-frequency value. This results in the following
expression (see Appendix for details):

�(0)
xx (ω, q) → Nω2

∑
p

Ap

�p
(
ω2 − �2

p

)
= − Nω2

16v2
0

√
q2v2

0 − ω2
, (26)

which is consistent with the charge conservation.
The same outcome occurs if one uses dimensional regu-

larization [15]. Let us illustrate the equivalency of the two
approaches using the limit of q = 0 as an example, in which
case the angular integral ensures that Ap can be replaced with
unity. The remaining momentum integral is (a = ω/v0)

Iβ =
∫ ∞

0

pβ d p

a2 − p2 + i0
, (27)

with β = 2. The dimensional regularization approach en-
tertains noninteger number of space-time dimensions and
ultimately amounts to calculating the last integral in the range
−1 < β < 1, where it is convergent, and then analytically
continuing it outside this range, e.g., to 1 < β < 3.

Since the pole of the integrand is right below the real axis,
we can rotate the integration path until it follows the positive
half of the imaginary axis p = iy:

Iβ =
∫ ∞

0

pβ d p

a2 − p2 + i0
= iβ+1

∫ ∞

0

yβ dy

a2 + y2

= iβ+1 πaβ−1

2 cos
(

πβ

2

) . (28)

Analytical continuation of the obtained result to the range 1 <

β < 3 yields Iβ→2 = iπa/2. It is now easy to verify that the
subtraction of the a = 0 value from the integrand in Eq. (27)
leads to the same result. Indeed, working this time directly in
the range 1 < β < 3 of interest, we write upon the subtraction

Iβ =
∫ ∞

0
dz

[
pβ

a2 − p2 + i0
+ pβ−2

]

= a2
∫ ∞

0

pβ−2 d p

a2 − p2 + i0
= iβ−1a2

∫ ∞

0

yβ−2 dy

a2 + y2

= iβ−1 πaβ−1

2 cos
(

π (β−2)
2

) = −iβ−1 πaβ−1

2 cos
(

πβ

2

) , (29)

which coincides with Eq. (28).
With the help of the zero-order conductivity (26), the first-

order self-energy correction can now be obtained in the same
way as used above to obtain the self-energy contribution to
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the polarization function, by replacing v0 → v0 + δv and ex-
panding to the first order in δv:

(�xx )(1)
SE (ω, q) = Nω2

16v3
0

(
3q2v2

0 − 2ω2
)

(
q2v2

0 − ω2
)3/2 δv. (30)

This result should be added to the first-order vertex correction,
which is calculated in the following section.

B. Vertex correction

Let us turn to the first order, in the screened Coulomb inter-
action (2), vertex correction to the current-current correlation
function given by the diagram in Fig. 1(c) (where now the
vertices are the pseudospin matrices σ̂x):

(
�(1)

xx

)
V (ω, q) = N Tr

∑
p,p′

U|p−p′|
∫

dε

2π
Ĝε+ p+ σ̂xĜε− p−

×
∫

dε′

2π
Ĝε′− p′− σ̂xĜε′+ p′+ . (31)

The energy integrals here are the same as in Eq. (24) (the
integrals involving primed and unprimed quantities have the
same value). Performing the trace operation, we write

(
�(1)

xx

)
V

= −N

2

∑
p,p′

U|p−p′|
�p�p′ApAp′ + ω2BpBp′(

ω2 − �2
p

)(
ω2 − �2

p′
) , (32)

where we denote Bp = cos θp+ − cos θp− . The integrals in
Eq. (32) are formally divergent. To regularize them, we sub-
tract from the integrand its value at zero frequency,

(
�(1)

xx

)
V =−Nω2

2

∑
p,p′

U|p−p′|

×
(
�2

p + �2
p′ − ω2

)
ApAp′ + �p�p′BpBp′

�p�p′
(
ω2 − �2

p

)(
ω2 − �2

p′
) . (33)

Although the subtraction of the zero-frequency value removes
the power-law singularity, the integrals in Eq. (33) still lead to
a logarithmic divergence at large p, p′. Because �p is large at
large momenta, Bp is small there, and Ap → 1, the logarithmic
contribution originates with the term (�2

p + �2
p′ )ApAp′ . Since

the integral is symmetric with respect to p and p′, we can
rewrite the singular part of the ApAp′ contribution as

(
�(1)

xx

)
V −AA = −Nω2

∑
p

�pAp

ω2 − �2
p

∑
p′

U|p−p′|Ap′

�p′
(
ω2 − �2

p′
)

= Nω2
∑

p

(
Ap

�p
− ω2Ap

�p
(
ω2 − �2

p

)
)

×
∑

p′

U|p−p′|Ap′

�p′
(
ω2 − �2

p′
) . (34)

The first term in the parentheses leads to a divergent p
integral. Note that because the p′ integral is convergent, the
singular contribution arises from such momenta that p � p′,
where we can approximate U|p−p′| ≈ Up. In the resulting p
integral, we notice that at large momenta p the integrand
Ap/�p → 1/(2v0 p). We can thus write the p integral, by

separating this singular contribution, as∑
p

(
Ap

�p
− 1

2v0 p

)
Up + 1

4πv0

∫ ∞

0
d pUp. (35)

The first integral is convergent over p ∼ q. Because q � 1/d ,
one can use the small momentum approximation Up = U0,
where this integral vanishes (see Appendix).

The remaining term in (35), upon the regularization Up →
Upe−p/, is only logarithmic:

∫ ∞
0 d pUp = e2 ln(d ). The

cutoff-dependent part of the vertex correction is thus(
�(1)

xx

)
V −AA1 = − Nω2δv

8v3
0

√
q2v2

0 − ω2
. (36)

The total cutoff-dependent portion of the current-current cor-
relation function is the sum of the self-energy (30) and the
vertex correction (36):(

�(1)
xx

)


= Nω2q2δv

16v0
(
q2v2

0 − ω2
)3/2 . (37)

This expression matches exactly the -dependent part (pro-
portional to δv) of the polarization function correction,
Eq. (16), as both corrections satisfy the charge conservation
condition (22). We now further demonstrate that the cutoff-
independent first-order corrections also separately satisfy the
charge conservation condition.

Let us start with the second term in the parentheses in
Eq. (34) that gives rise to a finite integral that converges over
small momenta p, p′ ∼ q, ω/v0 � 1/d . In this integral, it is
sufficient to approximate U|p−p′| ≈ U0. The ensuing momen-
tum integrals are the same as in Eq. (26):

(
�(1)

xx

)
V −AA2 = −Nω4U0

(∑
p

Ap

�p
(
ω2 − �2

p

)
)2

= − Nω4U0(
16v2

0

)2(√
q2v2

0 − ω2
)2

. (38)

The remaining two contributions into the vertex correction
(33) are likewise convergent. It is, therefore, possible to set in
them U|p−p′| = U0. The contribution from the term −ω2ApAp′

in the numerator is

(
�(1)

xx

)
V −AA3 = 1

2
Nω4U0

(∑
p

Ap

�p
(
ω2 − �2

p

)
)2

= Nω4U0

2
(
16v2

0

)2(√
q2v2

0 − ω2
)2

= −1

2

(
�(1)

xx

)
V −AA2.

(39)

Finally, the contribution from the BpBp′ term is (see Ap-
pendix)

(
�(1)

xx

)
V −BB

= −1

2
Nω2U0

(∑
p

Bp

ω2 − �2
p

)2

= − Nω2U0q2

2
(
16v0

)2(√
q2v2

0 − ω2
)2

= q2v2
0

2ω2

(
�(1)

xx

)
V −AA2. (40)
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The three contributions (38)–(40) add up to the cutoff-
independent portion of the current-current correlator

(
�(1)

xx

)
non- = − NU0ω

2
(
ω2 + v2

0q2
)

2(16v0)2v2
0

(√
q2v2

0 − ω2
)2

. (41)

One can see that the cutoff-independent part of the polariza-
tion function, Eq. (15), and the cutoff-independent part of the
current-current correlator (41) satisfy the charge conservation
condition (22). Accordingly, we have demonstrated that the
first-order perturbation theory is consistent with the charge
conservation.

Combining the self-energy and the vertex corrections to the
longitudinal conductivity, we can write using identity (21), to
the first order in the interaction,

σ (1)
xx (ω, q) = ie2Nωq2v2

0δv

16v0
(
q2v2

0 − ω2
)3/2 − ie2NU0ω

(
ω2 + v2

0q2
)

2(16v0)2
(
q2v2

0 − ω2
) .

(42)
The first (cutoff-dependent) term arises from large electron
momenta 1/d < p <  and is described by Eq. (37). The
second (cutoff-independent) term comes from small electron
momenta p ∼ ω/v0, q and is described by Eq. (41). The in-
teraction correction is purely imaginary outside the electron-
hole continuum qv0 > ω, but has a real part for qv0 < ω

where generation of real electron-hole pairs is possible. In the
short-range case, only the small momenta contribute to the
interaction correction since δv = 0.

In the limit of q = 0, the conductivity cannot distinguish
between the screened Coulomb and the short-range interac-
tions, and the interaction correction becomes

σ (1)
xx (ω, 0) = ie2NU0ω

2(16v0)2
. (43)

Up to the overall sign, the correction (43) coincides with the
result of Ref. [15].

V. BETHE-SALPETER EQUATION

The polarization function of the noninteracting electrons,
Eq. (1), displays the 1/

√
qv0 − ω singularity near the bound-

ary of the electron-hole continuum ω = qv0. The degree of
this singularity increases in the first-order interaction cor-
rections. In the case of screened Coulomb interaction, the
strongest divergence appears in the self-energy correction,
Eq. (16), where it amounts to a simple shift of the boundary
corresponding to the renormalization of the electron velocity
v0 → v = v0 + δv. However, even after the main singular-
ity is removed, the divergence ∼1/(qv0 − ω) remains in the
vertex correction, Eq. (15). This indicates that for any small
interaction U0 (either screened Coulomb or short range), the
higher-order interaction corrections become important in the
proximity of the (renormalized) boundary of the electron-hole
continuum ω = qv. Physically, this singular behavior is the
result of interaction between an electron and a hole created
upon absorption of the external field with frequency ω, with
the electron and the hole propagating almost parallel [21] to
the momentum q of the external field.

Summing up all the higher-order corrections is virtually
an insurmountable task. We, therefore, focus on the subset

(a) (b)

(c)

FIG. 2. (a) Total polarization function or conductivity corre-
sponding to the vertices 1 or ev0σ̂ , respectively. (b) Second-order
ladder diagram (c) vertex summation to all orders in interaction.

of higher-order contributions with no intersection of the in-
teraction lines (ladder diagrams) which are equivalent to the
Bethe-Salpeter equation. Strictly speaking, the Bethe-Salpeter
ladder, like other similar “noncrossing” approximations (such
as the self-consistent Born approximation for graphene with
disorder), is not well controlled by any small parameter.
Nonetheless, it represents an important starting point whose
predictions could be tested by a comparison with numerical
calculations.

In terms of the vertex function �̂ω,p,q, illustrated in Fig. 2
in the ladder approximation, the polarization function is

�(ω, q) = −i Tr
∑

p

∫
dε

2π
Ĝε+p+ �̂ω,p,qĜε−p− . (44)

According to Fig. 2, the vertex function obeys the following
integral equation:

�̂ω,p,q = 1 + i
∑

k

Up−k

∫
dε

2π
Ĝε+k+ �̂ω,k,qĜε−k− . (45)

A. Short-range interaction

Let us start with the case of the short-range interaction,
where the interaction is strictly constant, Up−k = U0, and
velocity renormalization is absent, v = v0. In this case, de-
pendence of the right-hand side of Eq. (45) on the momentum
p disappears, and the vertex function depends only on the
external ω and q: �̂ω,p,q = �̂ω,q. From the isotropy of the
system, we can conclude that the vertex function �̂ω,q depends
on the direction of vector q in the following way:

�̂ω,q = �0(ω, q) + �1(ω, q) σ̂q. (46)

Substitution of the ansatz (46) into Eq. (45) leads to energy
and momentum integrals. The first of those integrals is given
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by Eq. (14):

−i
∑

k

∫
dε

2π
Ĝε+ k+Ĝε− k− = f (ω, q) + h(ω, q)σ̂q

= − q(qv + ωσ̂q)

32v
√

q2v2 − ω2
. (47)

The second integral differs from the first by presence of the
additional spin operator in the integrand:

−i
∑

k

∫
Ĝε+k+ σ̂qĜε−k− = g(ω, q)σ̂q + h(ω, q), (48)

where the function g(ω, q) is substantially the current-current
correlation function for the noninteracting electrons [see
Eq. (23)] �(0)

xx (ω, q) = 2Ng(ω, q), and is given in Eq. (26).
Remember that the integral leading to the function g(ω, q)
is formally divergent and should be regularized as described
above [by performing the dimensional regularization or,
equivalently, by subtracting the zero-frequency value g(0, q)].
Note that this amounts to performing regularization in every
instance where such diverging integral is encountered, which
happens beginning from the terms of the second order in
U0. More specifically, to order n, the regularization must be
carried out for n − 2 internal rungs of the ladder, with the
two outside rungs only resulting in the convergent expressions
f (ω, q) and h(ω, q).

We now observe that the substitution of Eq. (46) into
Eq. (45) gives the matrix equation (arguments omitted)

�0 + σ̂q�1 = 1−U0( f + hσ̂q)�0 − U0(gσ̂q + h)�1, (49)

which amounts to two coupled scalar equations

�0(1 + U0 f ) + �1U0h = 1,

�0U0h + �1(1 + U0g) = 0, (50)

whose solutions are

�0 = 1 + U0g

(1 + U0 f )(1 + U0g) − U 2
0 h2

, (51a)

�1 = − U0h

(1 + U0 f )(1 + U0g) − U 2
0 h2

. (51b)

The functions encountered in these expressions satisfy
the identity f g = h2, which follows from the actual expres-
sions for these functions, determined, as explained above, by
Eqs. (14) and (23):

�(ω, q) = 2N f

1 + U0( f + g)

= − 2Nq2v2

32v2
√

q2v2 − ω2 − U0(q2v2 + ω2)
. (52)

In the absence of interactions U0 = 0 we recover the noninter-
acting polarization function (1). The longitudinal conductivity
now follows from Eq. (17). For example, the homogeneous
longitudinal conductivity is

σ‖(ω, 0) = σ0

1 − iU0ω

32v2

. (53)

FIG. 3. Plot of dielectric function ε as a function of dimension-
less parameters qv/ω and U0ω/32v2.

At ω → 0, the conductivity tends to its band value σ0 =
e2N/16. This can be anticipated from the fact that the interac-
tion constant U0 has the dimension of inverse mass, and thus
one must use frequency to construct a (cutoff-independent)
dimensionless coupling strength U0ω/v2. Accordingly, in the
limit of small frequencies, the interaction becomes negligible.

The polarization function (52) has a pole at

ω2 ≈ q2v2

[
1 −

(U0q

16v

)2]
. (54)

The pole signals that the response of the interacting electron
system becomes resonant at frequencies determined by the
last expression.

This expression holds provided that the interaction is suffi-
ciently weak (so that the expression in the parentheses is much
smaller than one). In the limit of large interaction U0, the
zero-frequency response function (52) predicts an instability
at

q∗ = 32v/U0. (55)

The existence of such zero-frequency singularity would indi-
cate that the ground state of the system is unstable with respect
to formation of a charge-density wave.

The polarization function ε(ω, q) describes a static po-
tential Vtot (ω, q) occurring in the system in response to an
external potential Vext (ω, q). This potential Vtot acting in
the system induces density variations ρ(ω, q) = �(ω, q)Vtot ,
which in turn are responsible for the induced part of the
scalar potential Vtot − Vext = U0�(ω, q)Vtot . This gives for the
dielectric function ε(ω, q) = Vext/Vtot = 1 − U0�(ω, q). Fig-
ure 3 demonstrates dependence of the dielectric function on
qv/ω and dimensionless coupling strength U0ω/32v2. The
plot illustrates the existence of the resonance at the frequency
determined by Eq. (54).

B. Screened Coulomb interaction

Let us now turn to the case of the screened Coulomb in-
teraction, where velocity renormalization v0 → v = v0 + δv

is nonzero. As discussed above, v is constant for low (p �
1/d) electron momenta, δv = e2 ln(d )/4, but has curvature
for high momenta p � 1/d: δv = e2 ln(/p)/4. Below we
demonstrate that sufficiently close to the threshold ω = qv,
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the contributions of the high electron momenta are small and
the calculation of the polarization function is similar to that of
the short-range interaction case.

First, let us emphasize that at least for weak Coulomb
interaction, the renormalization of the electron velocity can
be taken to the first order. Indeed, as shown in Ref. [4]
for RPA diagrams and in Ref. [22] for crossing diagrams,
to the second order in the (unscreened) Coulomb interac-
tion, the velocity renormalization is v = v0 + e2 ln(/p)/4 +
C(e4/v0) ln(/p), with C ∼ 1. In other words, no higher
powers of the logarithms arise in the higher orders of the per-
turbation theory. Note that whereas for a suspended graphene
the coupling constant e2/v0 is not small, weak couplings can
be engineered by placing graphene on a substrate with a suf-
ficiently high dielectric constant (which, effectively, reduces
the value of the electric charge e2).

To elucidate the role played by large momenta, consider
the second-order ladder correction with two interaction lines

�
(2)
V (ω, q) = iN Tr

∑
p,p′,p′′

U|p−p′|
∫

dε

2π
Ĝε+ p+Ĝε− p−

× U|p′−p′′|
∫

dε′

2π
Ĝε′− p′−

×
∫

dε′′

2π
Ĝε′′− p′′−Ĝε′′+ p′′+Ĝε′+ p′+ . (56)

The energy integrals over ε and ε′′, corresponding to the
outside rungs, are the same as in Eq. (13). It then follows
(since they decrease sufficiently fast for large p, p′ � q) that
the remaining momentum integrals over p and p′′ converge.
The integral over p′, on the other hand, can extend to much
larger momenta. The 1/q tail of the screened Coulomb in-
teraction (in contrast to the short-range interaction) makes
the p′ integral convergent. Indeed, for large p′ � p, p′′ one
can approximate U|p−p′|U|p′−p′′| ≈ U 2

p′ . The large momentum
contribution is then encountered in the integral that is similar
to the integral in Eq. (25) with the exception of the extra factor
U 2

p′ :

∑
p′

U 2
p′

�p′Ap′

ω2 − �2
p′

= −1

4πv

∫ ∞

0
d p′ U 2

p′ + ω2U 2
0

∑
p′

Ap′

�p′
(
ω2 − �2

p′
) , (57)

where in the last line we separated the ω = 0 contribution.
Using Eq. (2), we obtain that the first integral is a constant∫ ∞

0 d p′ U 2
p′ = 2U 2

0 (ln 2)/d . The second integral amounts to
the function g(ω, q). As a result, the expression in the right-
hand side of (57) becomes

−U 2
0

2πvd
ln 2 − ω2U 2

0

16v2
√

q2v2 − ω2
. (58)

The first term is small compared with the second term (and
hence, the screened Coulomb case maps on the short-range
interaction) provided that (ω − qv0)/qv0 � (qd )2. As can be
easily verified, the resonance (54) falls within this interval if
the interaction coupling constant is weak e2/v � 1.

C. Transverse conductivity

Turning now to the transverse conductivity σ⊥(ω, q), we
can write the pseudospin density correlation function

�yy(ω, q) = −i Tr
∑

p

∫
dε

2π
Ĝε+p+ �̂ω,p,qĜε−p− σ̂y, (59)

in terms of the vertex function �̂ω,p,q, shown in the ladder
approximation in the same Fig. 2. The corresponding equation

�̂ω,p,q = σ̂y + i
∑

k

Up−k

∫
dε

2π
Ĝε+k+ �̂ω,k,qĜε−k− (60)

differs from Eq. (45) by the presence of the pseudospin oper-
ator σy.

As before, for the short-range interaction the right-hand
side of Eq. (60) does not depend on the momentum p, and
the vertex function depends only on the external ω and q:
�̂ω,p,q = �̂ω,q. As can be readily verified, the vertex function
�̂ω,q reduces to a single scalar function:

�̂ω,q = �2(ω, q) σ̂y. (61)

Substitution of Eq. (61) into (60) leads to the following energy
and momentum integral:

−i
∑

k

∫
Ĝε+k+ σ̂yĜε−k− = k(ω, q)σ̂y, (62)

where the function k(ω, q) is substantially the transverse
current-current correlation function for the noninteracting
electrons, �(0)

yy (ω, q) = 2Nk(ω, q), which is calculated in the
Appendix,

k(ω, q) =
√

q2v2 − ω2

32v2
. (63)

Like the integral in g(ω, q), the integral in Eq. (61) is formally
divergent and should be regularized. The regularization can be
performed by subtracting the zero frequency and momentum
value k(ω, q) → k(ω, q) − k(0, 0), which results in the value
(63).

Interestingly, unlike the longitudinal conductivity, see
function g(ω, q) for which the same result is obtained re-
gardless of whether the value g(0, q) or g(0, 0) is subtracted
(as the difference between these two values is zero), for the
transverse conductivity k(0, q) �= k(0, 0). Accordingly, the
regularization procedure k(ω, q) → k(ω, q) − k(0, q) leads to
a result that is different [23] from Eq. (63). For the transverse
conductivity, there is no charge conservation (as the induced
charge is zero) to guide one in selecting the right regulariza-
tion procedure.

We notice, however, that the latter regularization would
lead to the transverse conductivity having a negative imag-
inary part; this would differ from the imaginary part of the
noninteracting σ⊥, which is positive (for qv > ω).
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Using Eq. (63), we obtain from Eq. (60) that

�2(ω, q) = 1

1 + U0k(ω, q)
. (64)

This gives the transverse conductivity in the Bethe-Salpeter
approximation

σ⊥(ω, q) = 2ie2v2N

ω

k(ω, q)

1 + U0k(ω, q)

= 2ie2v2N
√

q2v2 − ω2

ω(32v2 + U0

√
q2v2 − ω2)

. (65)

In the limit of q = 0, the transverse conductivity (65) coin-
cides with the longitudinal conductivity (53), as required by
the isotropy of the system in the homogeneous limit.

At large momenta qv � ω, the transverse conductivity
(65) tends to a constant σ⊥ → 2ie2v2N/(ωU0) that depends
on the interaction U0. (The longitudinal conductivity vanishes
in the same limit.)

VI. SUMMARY AND CONCLUSIONS

We have calculated the first-order corrections to the po-
larization function �(ω, q) and the longitudinal conductivity
σ (ω, q) for a screened Coulomb interaction and compared
them to the corresponding quantities in the short-range in-
teraction model. We have verified that divergent integrals are
regularized (using dimensional regularization or by subtract-
ing the ω = 0 contributions from divergent integrals) in a way
that ensures charge conservation (the Ward identity). Based
on the understanding of the first-order perturbation theory,
we have solved the Bethe-Salpeter equation for the polariza-
tion operator to collect the increasingly singular (near ω =
qv) perturbative corrections. Sufficiently close to the bound-
ary of the electron-hole continuum, the screened Coulomb
interaction leads to the same results as the short-range in-
teraction model, with one exception that in the former case
the boundary is shifted as a result of the interaction-induced
renormalization of the electron velocity.

These findings predict a resonant response of interacting
electron-hole pairs below the threshold qv = ω, at the fre-
quency (54), and further predict an instability (revealed in the
zero-frequency response) for sufficiently strong interactions.
It should be emphasized that the Bethe-Salpeter approach
is somewhat uncontrolled, as it neglects crossing diagrams
(diagrams that describe virtual processes having multiple
electron-hole pairs in the intermediate states). Although a nat-
ural starting point, this approach remains to be tested further
(e.g., via numerical simulations).
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APPENDIX: CALCULATION OF INTEGRALS

(i) To carry out the momentum integral [see Eq. (14) where
v0 is replaced with v],

I1 =
∑

p

∫
dε

2π
Ĝε+ p+Ĝε− p−

= i
∑

p

v(p+ + p−)(1 − σ̂p+ σ̂p− ) + ω(σ̂p+ − σ̂p− )

2[ω2 − v2(p+ + p−)2]
, (A1)

it is convenient to shift momentum, p → p + q/2, so that
1 − σ̂p+ σ̂p− → 1 − σ̂p+qσ̂p and σ̂p+ − σ̂p− → σ̂p+q − σ̂p. Us-
ing σ̂p = σ̂q cos θp + σz×q sin θp (where z is the direction
perpendicular to the plane of graphene and θp, as before, is
the angle that the direction of p makes with the vector q)
and noticing that the integrals of the sine terms vanish by
symmetry, we can write

I1 = i
∑

p

1

2[ω2 − v2(p + |p + q|)2]
(v(p + |p + q|)

× (1 − cos θp,p+q) + ωσq(cos θp+q − cos θp)), (A2)

where θp,p+q is the angle between vectors p and p + q. To
calculate the integral, we use the absolute values p and k =
|p + q| as new variables, to replace the angle variable θp in
the integral over d2 p = p d p dθp with k. To make use of the
new variables, we first notice the identity

∫ ∞

0
dk

k

pq
δ

(
k2 − p2 − q2

2pq
− cos θp

)
= 1, (A3)

and express cosines of the encountered angles via p and k:

1 − cos θp,p+q = p + q cos θp

k
= q2 − (k − p)2

2kp
,

cos θp+q − cos θp = p cos θp + q

k
− cos θp

= (k + p)[q2 − (k − p)2]

2pkq
. (A4)

The integral over dθp now leads to the following expression:

∫ 2π

0
dθpδ

(
k2 − p2 − q2

2pq
− cos θp

)

= 4pq√
[(k + p)2 − q2)(q2 − (k − p)2]

. (A5)

Because in the remaining integrals over d p dk in Eq. (A2) the
integrand depends only on the sum k + p and the difference
k − p, this suggests rotating the integration variables k + p =
qx and k − p = qy, to factorize the integrals as follows:

I1 = iq2(vq + ωσq)

2π2

∫ ∞

1

dx x√
x2 − 1 (ω2 − q2v2x2)

×
∫ 1

−1
dy

√
1 − y2 = − iq(qv + ωσ̂q)

32v
√

q2v2 − ω2
. (A6)
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(ii) To calculate the momentum integral in Eq. (35) (v0 is
replaced with v),

I2 =
∑

p

(
Ap

�p
− 1

2vp

)
Up, (A7)

where Ap = 1 − cos(θp+ + θp− ) and �p = v(p+ + p−), we
shift momentum p → p + q/2, and rewrite the above integral
as

I2 =
∑

p

(
1 − cos(θp + θp+q)

v(p + |p + q|) − 1

2vp

)
Up. (A8)

As above, we use the absolute values p and k = |p + q|
as new variables to replace the angle variable θp in the
integral over d2 p = p d p dθp with k. The cosine in the in-
tegrand is simplified as 1 − cos(θp + θp+q) = (k + p)2[q2 −
(k − p)2]/2pkq2 and using the identity in Eq. (A3) gives

I2 = U0

2π2q2v

∫
d p dk

(k + p)
√

q2 − (k − p)2√
(k + p)2 − q2

−
∫

d p
U0

4πv
. (A9)

In the last line we noticed that only small values of momentum
p are important to the integral where U (p) ≈ U0.1 The first
integral is simplified by rotating the integration variables k +
p = qx and k − p = qy:

I2 = U0

4πv

(
q

2

∫ 2/q

1
dx

x√
x2 − 1

−
∫ 

0
d p

)
= 0. (A10)

The integrals in the parentheses exactly cancel each other and
give zero.

(iii) To calculate the integral in Eqs. (26) and (38) (v0 is
replaced with v),

I3 =
∑

p

Ap

�p
(
ω2 − �2

p

) , (A11)

where Ap = 1 − cos(θp+ + θp− ) and �p = v(p+ + p−), we
shift momentum p → p + q/2, and rewrite the above integral
as

I3 =
∑

p

1 − cos(θp + θp+q)

v(p + |p + q|)[ω2 − v2(p + |p + q|)2]
. (A12)

As before, the encountered cosines in the integrand are
expressed via p and k = |p + q|, and using the iden-
tity in Eq. (A3), 1 − cos(θp + θp+q) = (k + p)2[q2 − (k −
p)2]/2pkq2,

I3 = 1

2π2q2v

∫
d p dk

(k + p)
√

q2 − (k − p)2√
(k + p)2 − q2[ω2 − v2(p + k)2]

.

(A13)
Rotating the integration variables k + p = qx and k − p = qy
[see Eq. (A6)],

I3 = − 1

16v2
√

q2v2 − ω2
. (A14)

1The corrections coming from the momentum dependence of inter-
action will be proportional to qd ln(1/(qd )), and are thus small for
qd � 1.

(iv) To calculate the integral in Eq. (40) (v0 is replaced with
v),

I4 =
∑

p

Bp

ω2 − �2
p
, (A15)

where Bp = cos θp+ − cos θp− and �p = v(p+ + p−) we shift
momentum p → p + q/2, and rewrite the above integral as

I4 =
∑

p

cos θp+q − cos θp

ω2 − v2(p + |p + q|)2
. (A16)

From Eq. (A4), we see that the integral I4 is related to I3 so
that I4 = qvI3,

I4 = − q

16v
√

q2v2 − ω2
. (A17)

(v) To the zeroth order in the interaction, the transverse
pseudospin density correlator is

k(ω, q) = − i

2
Tr

∑
p

∫
dε

2π
Ĝε+ p+ σ̂yĜε− p− σ̂y. (A18)

Taking the energy integral,∫
dε

2π
Ĝε+ p+ σ̂yĜε− p−

= i
ω(σ̂p+ σ̂y − σ̂yσ̂p− ) + �p(σ̂y − σ̂p+ σ̂yσ̂p− )

2
(
ω2 − �2

p

) . (A19)

Multiplying this expression by σ̂y and taking the trace, we
obtain

k(ω, q) = 1

2

∑
p

�pCp

ω2 − �2
p
, (A20)

where Cp = 1 + cos(θp+ + θp− ) and �p = v(p+ + p−). θp±
denote the angles that the momenta p± make with the di-
rection of q. Using the same method as in the rest of this
Appendix, namely, shifting the momentum p → p + q/2,
making use of the variables p and k = |p + q|, and then
rotating them by k + p = x and k − p = y, we arrive at
the following integral (note that Cp = (p − k)2[(p + k)2 −
q2]/2pkq2):

k(ω, q) = v

16π

∫ ∞

q

dx x
√

x2 − q2

(ω2 − v2x2)
. (A21)

The obtained integral is power-law divergent. To regularize
this divergence we subtract from the integrand in Eq. (A21)
its zero frequency and momentum value. This is done in
two steps k(ω, q) → k(ω, q) − k(0, 0) as follows: [k(ω, q) −
k(0, q)] + [k(0, q) − k(0, 0)],

k(ω, q) → ω2

16πv

∫ ∞

q

dx
√

x2 − q2

x(ω2 − v2x2)

+ 1

16πv

( ∫ ∞

0
dx −

∫ ∞

q
dx

√
x2 − q2

x

)
.

(A22)

The integral in the parentheses gives π/2 so that the above
expression reproduces Eq. (63).
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