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Nonreciprocal effects in nanoelectronic devices offer unique possibilities for manipulating electron transport
and engineering quantum electronic circuits for information processing purposes. However, a lack of rigorous
theoretical tools is hindering this development. Here, we provide a general input-output description of non-
reciprocal transport in solid-state quantum dot architectures, based on quantum optomechanical analogs. In
particular, we break reciprocity between coherently coupled quantum dots by dissipation-engineering in which
these (so-called) primary dots are mutually coupled to auxiliary, damped quantum dots. We illustrate the general
framework in two representative multiterminal noninteracting models, which can be used as building blocks for
larger circuits. Importantly, the identified optimal conditions for nonreciprocal behavior hold even in the presence
of additional dissipative effects that result from local electron-phonon couplings. Besides the analysis of the
scattering matrix, we show that a nonreciprocal coupling induces unidirectional electron flow in the resonant
transport regime. Altogether, our analysis provides the formalism and working principles towards the realization
of nonreciprocal nanoelectronic devices.
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I. INTRODUCTION

The ability to break reciprocity in nanoscale devices is
crucial for quantum information processing and telecommu-
nication, as the nonreciprocal functionality can protect active
elements against extraneous noise. Reciprocity may be bro-
ken in various ways, such as by introducing asymmetry and
nonlinearity, as in electrical and thermal diodes. Recently, sig-
nificant attention has been given to engineering nonreciprocal
transmission amplitudes in quantum optomechanical systems
based on the interference between coherent couplings and
dissipative effects [1–18]. The analogous effect for electron
transport is also highly desirable, as proposals for quantum
information processing and computing platforms are based
on electronic networks such as quantum dot arrays [19] or
superconducting qubit circuits [20]. However, engineering
nonreciprocal behavior in electronic systems—based on bal-
ancing coherent and dissipative couplings—remains almost
unexplored, besides a recent study on a specific double quan-
tum dot setup [21]. One concrete challenge is that for electron
flow, one needs to control the charge current, which inte-
grates over electrons in the full bias window, rather than only
focus on the transmission probability at a particular energy.
Much remains, therefore, to be learned about how to engi-
neer nonreciprocal interactions in general electronic settings.
Particularly, it is desirable to establish a simple yet general
theoretical tool fitting for this task.

Here, we employ a recent theoretical advance, termed the
generalized input-output method (GIOM) [22,23] to address
this challenge, and describe nonreciprocal nanoelectronic de-
vices. Within the framework of the GIOM, the influence of

fermionic environments exerted on electrons is encoded in
generalized input and output fields, and the system dynam-
ics is described by Heisenberg-Langevin equations (HLEs),
thereby establishing a complete analogy to theoretical de-
scriptions of quantum optomechanical systems. Building
upon this input-output picture, we generate nonreciprocal
couplings in electronic systems through dissipation engineer-
ing [4]. Focusing on solid-state quantum dot architectures, a
simple yet general strategy to induce nonreciprocal coupling
between quantum dots lies in building interference between
coherent (Hamiltonian) inter-dot couplings, and dissipative
interactions. This interference is controlled by an applied,
tunable magnetic field, which builds complex-valued coherent
tunneling elements [21].

We employ this mechanism in our setup by introducing
primary and auxiliary quantum dots. The primary quantum
dots construct the circuit of interest between two electrodes,
termed “left” (L) and “right” (R). To control the direction-
ality of electrons towards say the R electrode, the primary
dots are mutually coupled to auxiliary quantum dots, which
experience strong dissipation (loss) induced by additional
fermionic reservoirs. In the large damping limit, one can adia-
batically eliminate the auxiliary dots, resulting in an effective
dissipative interaction between primary quantum dots. Non-
reciprocal coupling is generated by balancing this induced
dissipative interaction against the inherent coherent hopping
processes, and the directionality of electron transmission at
the L and R interfaces is controlled by an external magnetic
field. Figures 1 and 3 present three-dot and four-dot examples
with two primary dots (d1, d2) and one or two auxiliary dots
(a1, a2).

2469-9950/2020/102(12)/125416(18) 125416-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9963-9052
https://orcid.org/0000-0002-8027-8920
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.125416&domain=pdf&date_stamp=2020-09-11
https://doi.org/10.1103/PhysRevB.102.125416


JUNJIE LIU AND DVIRA SEGAL PHYSICAL REVIEW B 102, 125416 (2020)

To illustrate the utility and generality of our approach, we
study two minimal models consisting of three or four dots,
which mimic two different situations in which direct coherent
hopping between the two primary dots may or may not be
present, as in Figs. 1 and 3, respectively. Larger networks
can be built based on these minimal building blocks. In the
noninteracting scenario, we easily identify optimal conditions
for efficient nonreciprocal charge transmission from the exact
HLEs and the scattering matrix obtained from the input-
output relation. This analysis expands the scope of a previous
study [21], and provides more insights into the underlying
mechanism in general settings. As HLEs allow a simple yet
exact solution for the charge current, we examine nonequilib-
rium configurations and demonstrate a unidirectional charge
transport due to nonreciprocal couplings, without engineer-
ing the spectral densities of the fermionic reservoirs [24,25].
We further address the impact of electron-phonon couplings
on nonreciprocal interaction engineering: By introducing a
polaron-dressed scattering matrix, we show that the con-
ditions for optimal nonreciprocal charge transmission are
unaffected by the presence of local electron-phonon coupling.

Altogether, in this study we (i) describe a general
framework for building nonreciprocity in electronic circuits,
analyzed through the scattering matrix and the charge current,
(ii) study two central models with nonreciprocal behavior
induced by countering direct or indirect coherent coupling
by an engineered dissipation, and (iii) rigorously show that
local electron-phonon interaction does not affect conditions
for nonreciprocity.

The paper is organized as follows. In Sec. II, we introduce
the general setup and the input-output scheme based on the
GIOM. In Sec. III, we illustrate how to generate nonreciprocal
behavior through dissipation-engineering using two minimal
models. Signatures of nonreciprocal interactions in nonequi-
librium charge transport are demonstrated in Sec. IV. We
address the impact of electron-phonon coupling and nonengi-
neered dissipation on nonreciprocity in Sec. V and conclude
in Sec. VI with some final remarks.

II. MODEL AND INPUT-OUTPUT METHOD
FOR CHARGE TRANSPORT

The general setup includes coherently coupled quan-
tum dots and fermionic environments, described by the
Hamiltonian [21,26] (hereafter, h̄ = 1, e = 1, kB = 1 and
Fermi energy εF = 0)

H = Hcoh + Hdiss. (1)

Here, Hcoh is the coherent system Hamiltonian, and it in-
cludes both primary and auxiliary quantum dots. It includes
fermionic operators and only quadratic terms. We specify this
term in Sec. III. We are interested in controlling the charge
current entering and leaving the primary dots. Auxiliary dots
serve to prepare the nonreciprocal interaction. For simplicity,
for each dot we only include a single electronic level [21,26]
with annihilation operators {dn} and {am} for the primary
and auxiliary dots, respectively. Hdiss includes dissipative-
damping terms of all dots, in the form of particle loss to

independent metallic leads [21,26],

Hdiss =
∑
k,n

[
εd

kncd,†
kn cd

kn + t d
kn

(
cd,†

kn dn + d†
n cd

kn

)]

+
∑
k,m

[
εa

kmca,†
km ca

km + t a
km

(
ca,†

km am + a†
mca

km

)]
. (2)

The first row describes the coupling of the primary dots
(counted by n) to the source and drain metal leads. cd

kn anni-
hilates an electron with energy εd

kn in the lead that couples to
the n primary dot with t d

kn the tunneling rate. The superscript
“d” highlights that these dissipation terms affect primary
dots. The second row describes the coupling of auxiliary
dots (counted by m) to their own metal leads, which induce
dissipation. The definitions for auxiliary dots are similar to
those of primary dots, with the superscript “a” marking terms
related to the auxiliary dots. The damping effects induced by
the different sets of metallic leads are characterized by the
spectral densities �n(ε) = π

∑
k (t d

kn)2δ(ε − εd
kn) and κm(ε) =

π
∑

k (t a
km)2δ(ε − εa

km). Note that in our work, we follow con-
ventions from the charge transport literature, with � as a width
parameter induced by the source and drain electrodes, and κ

serving as a damping rate constant due to auxiliary reservoirs.
Notably, in the quantum optics literature the opposite conven-
tion is used, with κ as the coupling rate to the input and output
physical ports, and � the engineered-bath damping rate [4].

We now briefly introduce the input-output equations for the
above electronic system. More details on the GIOM can be
found in Refs. [22,23]. Interpreting as the initial conditions,
generalized input fields from metallic leads are defined as

dn,in(t ) = 1√
2π

∑
k

t d
kne−iεd

kn (t−t0 )cd
kn(t0),

am,in(t ) = 1√
2π

∑
k

t a
kme−iεa

km (t−t0 )ca
km(t0), (3)

with t0 the initial time at which the dynamical evolution be-
gins. Generalized output fields, dn,out, am,out, relate to input
fields through the following input-output relations:

dn,out (t ) = dn,in(t ) − i

√
2

π
�ndn(t ),

am,out (t ) = am,in(t ) − i

√
2

π
κmam(t ). (4)

We emphasize that in the wide band limit [27], the dot-lead
hybridization energies �n and κm are treated in an exact man-
ner in the GIOM. For simplicity, we set �n = � and κm = κ

hereafter. For our purposes, we consider the strong damping
limit for the auxiliary dots such that κ defines the largest
energy scale in the system.

Defining column vectors Fβ = ({dn,β}, {am,β})T (β =
in, out), O = ({dn}, {am})T and a diagonal matrix K =
diag({�}, {κ}), the above boundary conditions can be recast
into

Fout (t ) = F in(t ) − i

√
2

π
K · O(t ). (5)

Within the framework of the GIOM, dynamical evolution of
an arbitrary system operator O is described by a so-called
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Heisenberg-Langevin equation (HLE)

Ȯ = i[Hcoh,O]− − i
∑

n

Ln
± − i

∑
m

Am
±, (6)

where

Ln
± ≡ ∓(i�d†

n +
√

2πd†
n,in )[O, dn]±

+ [O, d†
n ]±(−i�dn +

√
2πdn,in ),

Am
± ≡ ∓(iκa†

m +
√

2πa†
m,in )[O, am]±

+ [O, a†
m]±(−iκam +

√
2πam,in ). (7)

The top signs apply if O is a fermionic operator; the bottom
signs apply if O is bosonic. The second situation is relevant
once we consider electronic systems with nonzero electron-
phonon couplings. In that scenario, O can be a phononic
operator, see Sec. V for a detailed discussion. We defined
[A, B]− ≡ [A, B] and [A, B]+ ≡ {A, B} representing the quan-
tum commutator and anticommutator, respectively. For the
vector O, we thus have [22]

Ȯ(t ) = M · O(t ) + C · F in(t ), (8)

where we introduced a time-independent drift matrix M
and a coefficient matrix C whose detailed forms are model-
dependent.

To engineer nonreciprocal interactions between two pri-
mary dots, one should find a directionality condition in which
one dot is influenced by the other, but not vice versa, in the
spirit of cascaded quantum systems [4,28,29]. Moreover, for
nonreciprocal interactions to be efficient in quantum signal
transmission, we should further tune the system in such a
way that the reflection of injected electrons at primary dots
can be suppressed. This later condition is referred to as the
impedance matching condition.

We point out that the directionality condition can be
obtained by adiabatically eliminating auxiliary degrees of
freedom involved in HLEs for primary dots in the large
damping limit. However, the impedance matching condition
cannot be inferred from HLEs. To obtain both conditions
simultaneously, one should resort to the scattering matrix
S̃(ω) in the Fourier space, which relates input and output
fields through F̃out (ω) = S̃(ω) · F̃ in(ω), as was done in quan-
tum optomechanical systems [1–6,9–12,14–16]. Our GIOM
indeed offers such a scattering matrix description. To this
end, we consider Eqs. (5) and (8) in the frequency domain

via Fourier transform, F̃out (ω) = F̃ in(ω) − i
√

2
π

K · Õ(ω) and

Õ(ω) = (−iωI − M)−1CF̃ in(ω) with I the identity matrix.
Together, we obtain the scattering matrix

S̃(ω) = I − i

√
2

π
K · (−iωI − M)−1 · C, (9)

without actually solving the coupled dynamical evolution
problem, Eq. (8). An efficient nonreciprocal interaction be-
tween primary dots j and k corresponds to maximizing the
forward transmission coefficient |S̃ jk|2 while minimizing the
reverse transmission |S̃k j |2, as well as suppressing the re-
flections |S̃ j j |2 and |S̃kk|2 with impedance matching. Hence,
Eq. (9) provides a general recipe for engineering nonrecip-
rocal interactions in quantum dot systems. This treatment

FIG. 1. A three-dot system with a loop phase φ. Electrons tun-
nel between primary dots with the coherent tunneling g. λ is the
tunneling term between primary and auxiliary dots. Each dot is
tunnel-coupled to a metallic lead whose chemical potential can be
externally controlled. The auxiliary dot a is strongly coupled to a
fermionic reservoir with the damping rate κ . Nonreciprocal behavior
results from the interference between the coherent couplings g and λ

and the dissipative rate κ .

is exact (under the wide band limit): Unlike quantum mas-
ter equations of motion based on the Lindblad formalism,
the GIOM is nonperturbative. Furthermore, the GIOM for-
malism provides a simple, flexible framework that can be
readily implemented for quantum dot circuits with complex
connectivity.

III. ENGINEERING NONRECIPROCAL
INTERACTIONS: CASE STUDIES

To illustrate the utility of the above general discussion and
Eq. (9) on nonreciprocal interaction engineering, we study
two cases: In the three-dot model, engineered dissipation
counteracts direct couplings between the primary dots to in-
duce nonreciprocity. In contrast, in the four-dot model the
two primary dots do not directly couple, and two auxiliary
dots with engineered dissipation build up the nonreciprocal
coupling between the primary dots.

A. Three-dot system: Direct coherent coupling
between primary dots

We first consider the case in which a direct coherent tun-
neling of electrons between the primary dots is presented.
For demonstration purposes, we adopt a minimal three-dot
system, with two primary dots (1 and 2) and one damped
auxiliary dot (a), as shown in Fig. 1.

The coherent part of the total Hamiltonian takes the form

Hcoh =
∑

n=1,2

εnd†
n dn + [gd†

1 d2 + λa†(d1 + d2) + H.c.].

(10)
Here, dn (a) is the annihilation operator for the primary dot
n (auxiliary dot a), εn is the corresponding electronic on-site
energy for the primary dot n (the on-site energy of the auxil-
iary dot is set at zero, as it plays a negligible role in the large
damping limit). g (λ) is the coherent coupling between the two
primary dots (between primary dots and the auxiliary dot).
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To break the time-reversal symmetry between the two
dots, an external magnetic field that pierces through the
closed loop formed between the three dots is applied. Due
to the Aharonov-Bohm (AB) effect, the coherent tunneling
amplitudes g and λ gain AB phase factors. To be more
precise, let us express the hoping terms in Eq. (10) as
|g|eiφ1 d†

1 d2 + |λ|eiφ2 a†d1 + |λ|eiφ3 a†d2 + H.c. with real AB
phase factors satisfying φ1 + φ2 − φ3 = φ ≡ 2π�/�0. Here,
the loop phase φ is determined by the magnetic flux � en-
closed by the closed loop and the flux quantum �0 = h/e.
Notably, the loop phase is gauge invariant under a gauge trans-
formation by adding to the vector potential of the magnetic
field a gradient of a scalar, as the integration of a gradient
of a function over a closed loop is identically zero. Never-
theless, we can have local gauge freedom under local U (1)
group operation, for instance, d1 → eiχ1 d1, with the constraint
that the accumulation of additional phase factors along the
closed loop should be zero. Hence, we adopt here a gauge in
which λ is real and g = |g|eiφ carries the loop phase without
modifying the overall physics. In the following, we just use
the Hamiltonian Eq. (10) but assume that g is complex. We
remark that our setup is distinct from the quantum-dot AB
interferometer of Refs. [30–32]. There, the closed loop in-
volved the metal-dot couplings, which therefore gained phase
factors. In contrast, here the closed loop is formed between
the different dots, therefore, tunneling elements in Eq. (2) do
not gain phase factors. We also set the levels to be identical,
εn = εd . This ensures that nonreciprocity emerges here due to
the combination of complex coherent coupling and dissipation
engineering, and not due to the energetic asymmetry between
the dots.

We write down the corresponding HLEs for annihilation
operators using Eq. (6) (explicit time dependence is sup-
pressed)

ḋ1 = −iεd d1 − �d1 − igd2 − i
√

2πd1,in − iλa,

ḋ2 = −iεd d2 − �d2 − ig∗d1 − i
√

2πd2,in − iλa,

ȧ = −κa − i
√

2πain − iλ(d1 + d2), (11)

where we denoted Ȧ ≡ dA/dt , g∗ is the complex conjugate
of g. In the large damping limit, with κ as the largest energy
scale, one can adiabatically solve the last HLE [4], yielding

a = −i

√
2π

κ
ain − i

λ

κ
(d1 + d2). (12)

To justify this approximated solution, one can solve
the third equation of Eq. (11) formally, a(t ) =

−i
√

2π
∫ t
−∞ e−κ (t−τ )ain(τ )dτ − iλ

∫ t
−∞ e−κ (t−τ )[d1(τ ) +

d2(τ )]dτ . In the large damping limit, one can approximate
the exponential function as a Dirac delta function,
e−κ (t−τ ) � δ(t − τ )/κ , and Eq. (12) is recovered. This
approximation holds when the exponential decay is faster
than the dynamics of ain and d1,2, whose dynamics is dictated
by other energy scales in the problem, �, λ, g, εd .

Inserting Eq. (12) into the HLEs for d1, d2, we find

ḋ1 = −Zd1 −
(

λ2

κ
+ ig

)
d2 − i

√
2πd1,in − λ

κ

√
2πain,

ḋ2 = −Zd2 −
(

λ2

κ
+ ig∗

)
d1 − i

√
2πd2,in − λ

κ

√
2πain, (13)

with Z = iεd + � + λ2/κ . Note that the coherent coupling
involves g in the first line of Eq. (13) and g∗ in the second line.
Therefore, the two coupling terms may cancel, but only in
one of the above two equations. Here we set the directionality
condition

g = i
λ2

κ
, (14)

which results in a nonreciprocal interaction: Dot 2 is driven
by dot 1 but not vice versa, as dot 1 is not influenced by dot 2.
This directionality can be reversed by tuning the phase of g:
Let g = |g|eiφ . Considering the opposite loop phase φ → −φ

(this can be achieved by reversing the direction of the applied
magnetic field), Eq. (14) turns into |g|e−iφ = iλ2/κ which is
just the condition g∗ = iλ2/κ .

Notably, a more general directionality condition can be
identified from the exact solution of Eq. (11), directly in
the Fourier space without invoking the adiabatic elimina-
tion. By combining the HLEs for d1 and a in the Fourier’s
space, we find d̃1(ω)[� + iεd − iω + λ2/(κ − iω)] = (−ig −
λ2/(κ − iω))d̃2(ω) + · · · . The terms that are not explicitly
written here depend on the input fields. By removing the
dependence of d̃1(ω) on d̃2(ω) we identify a frequency-
dependent directionality condition, g = iλ2/(κ − iω). Obvi-
ously, Eq. (14) is recovered in the large damping limit by
dropping the imaginary part in the denominator.

To identify an optimal configuration, we turn to the scat-
tering matrix by utilizing Eqs. (12) and (13) (for simplicity,
only the elements of the upper left 2 × 2 matrix are listed as
it corresponds to the scattering matrix for the primary two-dot
system)

S̃11(ω) = [i(εd − ω) + λ2/κ]2 − �2 − (λ2/κ + ig)(λ2/κ + ig∗)

[i(εd − ω) + λ2/κ + �]2 − (λ2/κ + ig)(λ2/κ + ig∗)
,

S̃12(ω) = 2�(λ2/κ + ig)

[i(εd − ω) + λ2/κ + �]2 − (λ2/κ + ig)(λ2/κ + ig∗)
,

S̃21(ω) = 2�(λ2/κ + ig∗)

[i(εd − ω) + λ2/κ + �]2 − (λ2/κ + ig)(λ2/κ + ig∗)
,

S̃22(ω) = S̃11(ω). (15)
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Intriguingly, one can readily obtain the directionality condi-
tion Eq. (14) by setting S̃12(ω) = 0.

We recall that in the scattering formalism, S̃11(ω) is the
reflection amplitude, of an electron of energy ω to arrive
towards dot 1 from lead L, and be scattered back to that same
electrode. Similarly, S̃12(ω) is the transmission amplitude, for
an incoming electron from the L side to be absorbed at dot
1, and be transmitted to the R terminal through dot 2. The
directionality condition requires S̃12(ω) = 0, yet allows the
reverse transmission process, S̃21(ω) 	= 0.

Applying the directionality condition, the scattering matrix
elements reduces to ([S̃d (ω) ≡ S̃(ω)|g=iλ2/κ ]

S̃d,11(ω) = S̃d,22(ω) = i(εd − ω) + λ2/κ − �

i(εd − ω) + λ2/κ + �
,

S̃d,12(ω) = 0,

S̃d,21(ω) = 4�λ2/κ

[i(εd − ω) + λ2/κ + �]2
. (16)

We can further suppress reflections, that is, diagonal elements
of the scattering matrix. In the resonance limit (i.e., ω = εd ),
one immediately finds that S̃d,11 = S̃d,22 = 0 when tuning

� = λ2

κ
. (17)

In analogy to quantum optomechanical systems, we refer to
this relation as an impedance matching condition. Notably,
this condition cannot be inferred from the HLEs Eq. (11).

We point out that S̃d,21(εd ) = 1 when Eq. (17) holds, which
corresponds to a maximum nonreciprocity between the two
primary dots. However, this maximum nonreciprocity only
occurs for the resonant situation, with |ω − εd | 
 �, while
the directionality condition Eq. (14) holds for all frequencies.
The behavior of scattering matrix elements as functions of
the tunneling element g and the frequency ω is depicted in
Fig. 2, from which we clearly observe the optimal conditions,
as well as parameter ranges where an efficient nonreciprocal
interaction can be achieved. The directionality condition is
analyzed in Fig. 2(a). In Fig. 2(b), the directionality condition
is satisfied, and we test the resonance condition, which is
required for impedance matching.

B. Four-dot system: Indirect coherent coupling between
primary dots

We now turn to the situation in which the primary dots are
not directly connected. To this end, we consider a four-dot
system as shown in Fig. 3, a minimal model that consists two
primary dots and two auxiliary dots. The coherent part of the
total Hamiltonian in Eq. (1) reads

Hcoh =
∑

n=1,2

εnd†
n dn +

∑
m=1,2

δma†
mam + [g11d1a†

1 + g12d1a†
2

+ g21d2a†
1 + g22d2a†

2 + H.c.], (18)

where dn (am) is the annihilation operator for the primary dot
n (auxiliary dot m), εn (δm) is the corresponding electronic
on-site energy for primary dot n (auxiliary dot m), g11,12,21,22

are the coherent hopping rates between primary and auxiliary
dots. We again set εn = εd . Here, the on-site energies for
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0.6

0.8

1

-2 -1 210
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0.4

0.6

0.8

1

FIG. 2. Nonreciprocal behavior in the three-dot model of Fig. 1.
(a) Scattering matrix elements in Eq. (15) at frequency ω = εd as
a function of the tunneling element g. We set � = λ2/κ . The phase
of g is fixed such that arg[g/(λ2/κ )] = π/2. (b) Scattering matrix
elements in Eq. (16) as a function of frequency ω, when the direc-
tionality condition as well as as the impedance matching condition
are fulfilled. In both panels, we set � = εd = 1.

auxiliary dots are important, in particular, we will see below
that one needs to set δ1 	= δ2 so as to ensure the directionality
condition to be fulfilled, similar to the situation in quantum
optomechanical systems [10,11].

To determine optimal conditions for nonreciprocal interac-
tion, we again resort to the HLEs for annihilation operators by

FIG. 3. A four-dot system with a loop phase φ enabling nonre-
ciprocal interaction engineering: Electrons can hop between primary
and auxiliary dots with coupling rates g11,12,21,22 and each dot is
tunnel-coupled to a fermionic reservoir whose chemical potential can
be externally controlled.
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using Eq. (6) together with Eq. (18),

ḋ1 = −iεd d1 − �d1 + ig∗
11a1 + ig∗

12a2 − i
√

2πd1,in,

ḋ2 = −iεd d2 − �d2 + ig∗
21a1 + ig∗

22a2 − i
√

2πd2,in,

ȧ1 = −iδ1a1 − κa1 + ig11d1 + ig21d2 − i
√

2πa1,in,

ȧ2 = −iδ2a2 − κa2 + ig12d1 + ig22d2 − i
√

2πa2,in. (19)

In the large damping limit in which κ defines the largest
energy scale, one can adiabatically solve HLEs for auxiliary
operators, yielding

a1 = −i

√
2π

κ + iδ1
a1,in + i

g11

κ + iδ1
d1 + i

g21

κ + iδ1
d2,

a2 = −i

√
2π

κ + iδ2
a2,in + i

g12

κ + iδ2
d1 + i

g22

κ + iδ2
d2. (20)

Inserting them into the HLEs for d1, d2, we find

ḋ1 = −
(

iεd + � + |g11|2
κ + iδ1

+ |g12|2
κ + iδ2

)
d1 − �d2

− i
√

2πd1,in + g∗
11

√
2π

κ + iδ1
a1,in + g∗

12

√
2π

κ + iδ2
a2,in,

ḋ2 = −
(

iεd + � + |g21|2
κ + iδ1

+ |g22|2
κ + iδ2

)
d2 − �d1

− i
√

2πd2,in + g∗
21

√
2π

κ + iδ1
a1,in + g∗

22

√
2π

κ + iδ2
a2,in, (21)

here, we denoted � = g∗
11g21

κ+iδ1
+ g∗

12g22

κ+iδ2
and � = g∗

21g11

κ+iδ1
+ g∗

22g12

κ+iδ2
.

A nonreciprocal interaction between the two primary dots
is achieved by letting � = 0 while keeping � finite, that is,
we consider a situation in which primary dot 2 is influenced
by primary dot 1 but not vice versa. Similar to the three-dot
system, we take all hopping rates to be real except g21 with a
loop phase φ, g21 = |g21|eiφ . To clarify the analytical results,
we further assume that each auxiliary dot is equally coupled to
both primary dots such that g11 = |g21| = λ1 and g12 = g22 =
λ2. Hence the directionality requirement � = 0 corresponds
to the following loop phase:

eiφ = −κ + iδ1

κ + iδ2

λ2
2

λ2
1

. (22)

As can be seen, nonreciprocal interaction is absent if δ1 = δ2

since then eiφ is a real number and both � and � vanish.
Similar to the three-dot case, we can reverse the direction of
the nonreciprocal interaction at the opposite loop phase.

To gain more insights into the optimal configuration, we
examine the scattering matrix obtained from Eqs. (20) and
(21) in the Fourier space (for simplicity, only the elements of
the upper left 2 × 2 matrix are listed as it corresponds to the
scattering matrix for the primary two-dot system by choosing
the basis order d1, d2, a1, a2):

S̃11(ω) = [i(� − ω) + �][i(� − ω) + � − 2�] − ��

[i(� − ω) + �]2 − ��
,

S̃12(ω) = 2��

[i(� − ω) + �]2 − ��
,

-2 -1 0 1 2

0

0.1

0.2

0.3

-2 -1 210

0

0.1

0.2

0.3

FIG. 4. Scattering matrix elements in Eq. (23) as a function of
frequency ω for (a) δ/� = 0 and (b) δ/� = 5, when the direction-
ality condition as well as as the impedance matching condition are
fulfilled. We set �/� = 1 and κ/� = 10.

S̃21(ω) = 2��

[i(� − ω) + �]2 − ��
,

S̃22(ω) = S̃11(ω), (23)

where we denoted � = εd − λ2
1δ1

κ2+δ2
1

− λ2
2δ2

κ2+δ2
2
, � = � + λ2

1κ

κ2+δ2
1

+
λ2

2κ

κ2+δ2
2
. We readily obtain the directionality condition Eq. (22)

by letting S̃12(ω) = 0.
Considering the on-resonance situation with ω = � and

impedance matching the system with � = 2� or equivalently

� = λ2
1κ

κ2 + δ2
1

+ λ2
2κ

κ2 + δ2
2

, (24)

we obtain the following scattering matrix elements:

S̃11(�) = S̃22(�) = S̃12(�) = 0, S̃21(�) = �

2�
(25)

under the directionality condition � = 0 [cf. Eq. (22)]. The
expression for S̃21(�) further highlights the necessity of δ1 	=
δ2 for the appearance of nonreciprocal interactions as � ∝
δ1 − δ2 when the directionality condition is fulfilled.

The behavior of the scattering matrix elements as a func-
tion of frequency is depicted in Fig. 4. In the calculation,
we choose λ1 = λ2 = λ, δ1 = −δ2 = δ such that � = 2� iδ

κ+iδ
when the directionality condition is applied. In Fig. 4(a),
we show that there is simply no tunneling between two pri-
mary dots when δ1 = δ2 = 0; the transmissions |S̃12(ω)|2 =
|S̃21(ω)|2 = 0 indicate that electrons from primary dots are all
absorbed by auxiliary dots. Trivially, there is also no nonre-
ciprocity in this case. When δ1 	= δ2 as depicted in Fig. 4(b),
we can achieve nonreciprocity. However, we should point out
that here the scattering matrix cannot be optimized to the
ideal case in which |S̃21(�)|2 = 1, in contrast to the three-dot
system. In principle. |S̃21(�)|2 = δ2/(κ2 + δ2) approaches 1
when δ � κ , but this is at odds with our assumption that κ

corresponds to the largest energy scale in the problem.
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IV. NONEQUILIBRIUM CHARGE TRANSPORT

So far, we discussed nonreciprocity for charge transport by
studying the properties of the scattering matrix, with ω as the
energy of an incoming electron, [see Eq. (9)]. However, unlike
in optomechanical systems, where it is sufficient to analyze
the behavior at a particular frequency [4], for electron trans-
port the observable is the electrical current, integrated over
electron transmission within the bias window. While the direc-
tionality condition does not depend on frequency, impedance
matching relies on the resonance condition to eliminate reflec-
tions, see the discussion of Eq. (17). As such, it is clear that we
cannot exactly satisfy the zero reflection condition for the net
charge current, and it is important to analyze the extent of non-
reciprocity in the behavior of the current at finite bias voltage.

In this section, we analyze signatures of nonreciprocal
interaction from the perspective of charge transport, when
chemical potentials of the attached primary leads are tuned to
be different. We require that chemical potentials of auxiliary
leads are much smaller than those of primary leads so as to
ensure that electrons and noise from the auxiliary leads do not
transmit to the primary system, a feature favored by quantum
signal processing applications. We adopt a convention that
forward voltage bias corresponds to μL > μR.

As such, nonreciprocity for the charge current corresponds
to observing JL(−V ) 	= JR(V ) (V > 0), that is, the current
towards the left metal (from the right electrode since the
auxiliary electrodes cannot feed in electrons) in the reverse
(negative) bias regime is different from the current reaching
the right electrode from the left one in the forward bias regime.

Observables of interest are the steady-state charge currents
out of left (L) and right (R) lead (currents are defined positive
when flowing from the electrodes towards the dots). In the
context of GIOM, they have the following formally exact
definitions in the Heisenberg picture [22] [it is sufficient to
work with input fields due to input-output relations Eq. (4)]

JL = 2(
√

2π Im〈d†
1 d1,in〉 − �〈d†

1 d1〉),

JR = 2(
√

2π Im〈d†
2 d2,in〉 − �〈d†

2 d2〉). (26)

Here “Im” refers to an imaginary part, the ensemble averages
are performed with respect to an initial factorized state for
dots and leads. Specifically, we assume that the metallic leads
are initially in their thermal equilibrium states characterized
by the Fermi-Dirac distribution nv

F (ε) = {exp[(ε − μv )/T ] +
1}−1 with μv the corresponding chemical potential and T
the temperature. With the initial thermal equilibrium states,
statistics for input fields can be defined (see Appendix A
for details). As the GIOM conserves the total charge in the
metal-dots system [22], the current flowing into the auxiliary
leads can be inferred from charge conservation.

Unless otherwise stated, we assume in the following charge
current calculations that the system has been tuned to satisfy
both the directionality condition and the impedance matching
condition [cf. Eqs. (14) and (17) for the three-dot system,
Eqs. (22) and (24) for the four-dot system].

A. Three-dot system

To obtain steady-state charge currents for the three-dot
system, we should first solve Eq. (13) in the steady-state limit,

FIG. 5. Charge currents out of left lead (JL , solid line) and right
lead (JR, dashed-dotted line) as a function of voltage bias V for
(a) resonant transport with εd/� = 1 and (b) off-resonant transport
with εd/� = 20. The left and right insets in (a) show ideal charge
transfer pathways (as indicated by green arrows) in the large reverse
and forward bias regimes, respectively. We set μL = V/2, μR =
−V/2, μa/� = −50, and T/� = 0.5. Other parameters are selected
so as to satisfy Eqs. (14) and (17).

and then insert those solutions into definitions Eq. (26). A
straightforward evaluation leads to (details can be found in
Appendix B)

JL =
∫

dε

2π

4�2

4�2 + (εd − ε)2

[
nL

F (ε) − nA
F (ε)

]
, (27)

JR =
∫

dε

2π

4�2

4�2 + (εd − ε)2

[
nR

F (ε) − nA
F (ε)

]

−
∫

dε

2π

16�4

[4�2 + (εd − ε)2]2

[
nL

F (ε) − nA
F (ε)

]
. (28)

As can be seen, JL is independent of the right lead influ-
ence due to the nonreciprocal interaction. On the contrary,
JR has contributions from both the left lead and the auxiliary
reservoir. Noting that we consider the parameter regime of
μa 
 min(μL, μR), which ensures that no electrons as well
as noise from the auxiliary reservoir transmit to the system.
Therefore, according to Eqs. (27) and (28), JL is always posi-
tive (electron leave the L lead), irrespective of the direction of
the voltage bias between the two primary dots, while JR can
become negative, thereby allowing electrons from the left lead
to reach into the right one.

The behavior of the steady-state charge currents, JL and
JR, are shown in Fig. 5. We consider both resonant and
off-resonant regimes, noting that the impedance matching
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FIG. 6. Charge currents out of left lead (JL , solid lines) and right
lead (JR, dashed-dotted lines) as a function of voltage bias V for
the ratios α = λ2/(κ�) = 1, 4, 8, relaxing the impedance condition.
The directionality condition is imposed. Other parameters are the
same with Fig. 5(a).

condition, Eq. (17) relies on resonant transport behavior [see
also Fig. 2(b)]. As can be seen from the Fig. 5(a) for the reso-
nant transport case, in the negative bias regime with μL < μR,
electrons out of the right lead are routed into the auxiliary
dot without flowing into the left lead (otherwise JL should
become negative). While in the case of forward (positive) bias,
electrons out of the left lead follow two transport pathways:
One part is transmitted into the right lead and the other part
is absorbed by the auxiliary dot. The corresponding electron
transfer pathways in the reverse and forward bias regimes are
highlighted in the insets of Fig. 5(a). Overall, the intrinsic
dissipation of the auxiliary dot, which takes electrons out
of the system regardless of the transmission direction, is an
essential ingredient for the nonreciprocal interaction engineer-
ing reported here. This figure illustrates one of the main results
of this work, that we observe nonreciprocity for the integrated
charge current, not just the scattering matrix. At high positive
voltage, current flows from the left to the right lead. However,
there is no net current from the right metal to the left one when
we reverse the voltage bias JL(−V ) 	= JR(V ).

In Fig. 5(b), we further consider the off-resonant charge
transport case. In this regime, the second term on the right-
hand side (RHS) of Eq. (28) becomes negligible compared
to the first term, hence JR and JL become symmetric under the
transformation L ↔ R, thereby indicating that there is no non-
reciprocal behavior between the two primary dots: Injected
electrons from both sides are all absorbed by the auxiliary dot
towards its reservoirs. Those features are clearly visible from
Fig. 5(b): Both JL and JR are positive in the whole voltage bias
regime and become almost symmetric about V = 0.

Clearly, the directionality condition is the basis for non-
reciprocal interactions. To highlight that the impedance
matching condition Eq. (17) is also crucial in nonreciprocal
interaction engineering, we show resonant charge current re-
sults without imposing the condition (17) in Fig. 6, based on
the following general expressions [cf. Eqs. (B3) and (B12) in

Appendix B]:

JL =
∫

dε

2π

4�2α

�2(1 + α)2 + (εd − ε)2

[
nL

F (ε) − nA
F (ε)

]
,

JR =
∫

dε

2π

4�λ2/κ

�2(1 + α)2 + (εd − ε)2

[
nR

F (ε) − nA
F (ε)

]

−
∫

dε

2π

16�4α2

[�2(1 + α)2 + (εd − ε)2]2

[
nL

F (ε) − nA
F (ε)

]
.

(29)

Here we introduced the dimensionless ratio α = λ2/(κ�).
Compared to Eqs. (27) and (28), we note that the transmission
functions are modified when α 	= 1, but that the overall trans-
port trends are the same. Hence, we still have a nonreciprocal
behavior as can be seen from this figure, but the contrast
between the forward and reverse bias regimes becomes less
and less significant as α increases. Particularly, for α = 8 and
in the forward regime JR becomes negative only at high bias,
and with a small magnitude. This indicates that one needs
relatively large voltage values to efficiently pump electron
from the left to the right lead against reflection at the primary
dot 1.

In the coherent limit, the charge current obtained from the
GIOM is equivalent to that of the Landauer-Büttiker (LB)
theory [22]. Therefore, we can also directly adopt the mul-
titerminal LB expression [33,34] for the charge current

Jv =
∑
v′ 	=v

∫
dε

2π

[
Tvv′ (ε, φ)nv

F (ε) − Tv′v (ε, φ)nv′
F (ε)

]
, (30)

where the transmission functions Tvv′ (ε, φ) =
Tr[�vGr (ε, φ)�v′Ga(ε, φ)] with �v the dot-lead cou-
pling matrix, [Gr (ε, φ)]−1 = εI − Hcoh(φ) + i

∑
v �v =

[Ga,∗(ε, φ)]−1, here Hcoh(φ) is the matrix form for Hcoh(φ)
with a loop phase φ. I is the identity matrix. As we point
out next, while the LB expression for the current allows us
to infer the directionality condition, it does not address the
impedance matching condition, which requires us to look at
the scattering matrix itself.

For the three-dot system, we have �L = diag(�, 0, 0),
�R = diag(0, �, 0) and �a = diag(0, 0, κ ) and

Hcoh(φ) =
⎛
⎝ εd |g|eiφ λ

|g|e−iφ εd λ

λ λ 0

⎞
⎠. (31)

A direct calculation leads to

TLR(ε, φ) = TRL(ε,−φ) = �2||g|eiφ (ε + iκ ) + λ2|2
D(ε)

,

TLa(ε, φ) = TaL(ε,−φ) = κ�λ2|εd − |g|eiφ − ε − i�|2
D(ε)

,

TRa(ε, φ) = TaR(ε,−φ) = κ�λ2|εd − |g|eiφ − ε + i�|2
D(ε)

,

(32)

here D(ε) = |2λ2(εd + i� − Re[g] − ε) + (ε − iκ )((εd +
i� − ε)2 − |g|2)|2. Interestingly, one can infer the
directionality condition Eq. (14) by letting TLR(ε) = 0 in
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the large damping limit of κ � ε. However, the impedance
matching condition requires studying the other elements of
the scattering matrix. As a comparison, we should point
out that it is impossible to engineer a directionality in
a two-dot system from the LB expression as we always
have TLR(ε) = TRL(ε) = (�2|g|2)/[|(εd − ε + i�)2 − |g|2|2],
thereby highlighting the important role of a damped auxiliary
dot in engineering nonreciprocal interactions.

Complementing the results of Figs. 5 and 6, in Fig. 7 we
present the charge current when eiφ = −1, which leads to
g = g∗ and thus to reciprocal tunneling in Eq. (13). Calcu-
lations are done with the LB expression [cf. Eq. (30) together
with Eq. (32)]. It is evident that the nonreciprocal behavior
is absent, with JL(V ) = JR(−V ), as compared to Fig. 5(a).
Interestingly, we note that the charge currents in the present
case, without directionality condition, are about one order of
magnitude smaller than currents in the optimal configuration
shown in Fig. 5(a). This is because the latter is built upon a
single dot transmission function, 4�2/[4�2 + (εd − ε)2], and
its square according to Eqs. (27) and (28). Hence the nonrecip-
rocal interaction engineering not only induce unidirectional
transport, but also enhances the magnitudes of charge
currents.

B. Four-dot system

We now turn to demonstrate that the charge current in
a nonequilibrium four-dot system also demonstrates nonre-
ciprocity. For simplicity, we take λ1 = λ2 = λ, δ1 = −δ2 = δ

in the following. Steady-state charge currents for the four-dot
system can be obtained in a similar manner as in the three-dot
case (details can be found in Appendix C)

JL =
∫

dε

2π

2�2

4�2 + (εd − ε)2

[
nL

F (ε) − nu
F (ε)

]

+
∫

dε

2π

2�2

4�2 + (εd − ε)2

[
nL

F (ε) − nd
F (ε)

]
, (33)

JR =
∫

dε

2π

2�2

4�2 + (εd − ε)2

[
nR

F (ε) − nu
F (ε)

]

+
∫

dε

2π

2�2

4�2 + (εd − ε)2

[
nR

F (ε) − nd
F (ε)

]

− δ2

κ2 + δ2

∫
dε

2π

4�4

[4�2 + (εd − ε)2]2

[
nL

F (ε) − nu
F (ε)

]

− δ2

κ2 + δ2

∫
dε

2π

4�4

[4�2 + (εd − ε)2]2

[
nL

F (ε) − nd
F (ε)

]

− 4�3δκ

κ2 + δ2

∫
dε

2π

εd − ε

[4�2 + (εd − ε)2]2

[
nu

F (ε) − nd
F (ε)

]
.

(34)

Note that if we take δ = 0, JL and JR become symmetric with
L ↔ R, implying the absence of nonreciprocal interactions as
we pointed out in Sec. III B.

The behavior of the charge currents based on Eqs. (33) and
(34) is shown in Fig. 8. In the calculations, we consider the
parameter regime of μu, μd 
 min(μL, μR), which ensures
that electrons from the auxiliary reservoir do not enter the sys-
tem. Therefore, JL is always positive (current flows outside the

-20 -10 0 1 20 0
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

FIG. 7. Charge currents with reciprocal tunneling elements in a
three-dot system. The currents, out of left lead (JL , solid line) and
right lead (JR, dashed-dotted line) are plotted as a function of the
voltage bias V , and obtained from the Landauer-Büttiker formula.
We set εd/� = 1, |g|/� = 1 with a fixed loop phase φ = π , λ/� = 1,
and κ/� = 100. Other parameters are the same with Fig. 5.

lead) irrespective of the direction of voltage bias between the
two primary dots. On the contrary, JR can become negative.

It is evident that qualitative features of Fig. 8 are similar
to those of Fig. 5 for the three-dot system: In the resonant
transport regime as shown in Fig. 8(a), electrons leaving the
right lead are routed into the auxiliary dots, and electrons do

FIG. 8. Charge currents out of left lead (JL , solid line) and right
lead (JR, dashed-dotted line) as a function of voltage bias V for
(a) resonant transport with εd/� = 1 and (b) off-resonant transport
with εd/� = 20. Left and right insets in (a) show ideal charge
transfer pathways (as indicated by green arrows) in the large re-
verse and forward bias regime, respectively. We set μL = V/2, μR =
−V/2, μu/� = μd/� = −60, εd/� = 1, δ/� = 30, κ/� = 30, and
T/� = 1.
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FIG. 9. Charge currents with reciprocal tunneling elements in a
four-dot system. We show the currents out of left lead (JL , solid line)
and right lead (JR, dashed-dotted line) as a function of voltage bias
V as obtained from the Landauer-Büttiker formula. We set φ = π ,
εd/� = 1, and λ/� = 2. Other parameters are the same with Fig. 8.

not flow into the left lead in the reverse bias regime with
μL < μR. While in the case of forward (positive) bias, the
charge current out of the left lead can flow into the right
electrode. However, due to the presence of two auxiliary dots,
only a small fraction of the electrons can be transmitted into
the right lead, which is in accordance with the fact that S21

cannot reach the maximum value 1 in this setup. In the off-
resonant transport regime, depicted in Fig. 8(b), nonreciprocal
transport is largely suppressed as the negative contributions
on the RHS of Eq. (34) become negligible and the first two
terms on the RHS prevail. This makes JL,R almost symmetric,
JL(−V ) ≈ JR(V ).

For comparison, we study the charge current with real-
valued tunneling elements based on Eq. (30). For the
sake of simplicity, the transmission functions are given in
Appendix D. Results for JL and JR are shown in Fig. 9,
illustrating reciprocity.

Similar to the three-dot system, charge currents in the re-
ciprocal setup are one order of magnitude smaller than those
in optimal nonreciprocal configuration shown in Fig. 8(a). The
disparity results from the fact that the nonreciprocal current
[cf. Eqs. (33) and (34)] involves the single dot transmission
function 2�2/[4�2 + (εd − ε)2] and its square, which are
more efficient in charge transport than the full transmission
function for the four-dot system, see Appendix D. Hence, we
further confirm that nonreciprocal interaction engineering not
only induces unidirectional transport, but also enhances the
magnitude of charge currents.

V. ELECTRON-PHONON COUPLING
AND NONRECIPROCITY

So far we only considered engineering nonreciprocal in-
teraction in noninteracting electron systems. For the purpose
of applications, it is crucial to investigate whether the so-
obtained nonreciprocal behavior persists in the presence of
many-body interactions such as electron-phonon couplings
arising due to the coupling of charge carriers to phonon modes
of the solid-state host material [35–37]. To this end, we take
the three-dot system as an example. The coherent Hamiltonian
in Eq. (10) is extended to comprise collections of phonons

with electron-phonon couplings

HM = Hcoh

+
∑

n=1,2

∑
k

[ωn,kb†
n,kbn,k + γn,kωn,k (b†

n,k + bn,k )d†
n dn]

+
∑

k

[ωa,kb†
a,kba,k + γa,kωa,k (b†

a,k + ba,k )a†a]. (35)

Recall that n = 1, 2 counts primary dots and that the index
a corresponds to the auxiliary dot. We assume that all dots
are coupled to their local phonon environment. Here local
phonons with frequencies {ωl,k} (l = 1, 2, a) are described
by bosonic annihilation operators {bl,k}; electron-phonon cou-
plings are measured by dimensionless coupling strengths,
{γl,k}. The influence of each phonon bath, acting on elec-
trons, is characterized by the spectral density function Il (ω) =
π

∑
k γ 2

l,kω
2
l,kδ(ω − ωl,k ). For simplicity, we assume that the

three dots have the same phonon spectral density, that is,
I (ω) = Il (ω). Without loss of generality, we adopt an Ohmic
spectrum I (ω) = πνωe−ω/ωc with ν a dimensionless electron-
phonon coupling strength and ωc the cutoff frequency of the
phonon bath.

To handle potentially strong electron-phonon couplings,
we perform the small polaron transformation with the unitary

operator G ≡ ∏
n=1,2 D

d†
n dn

n Da†a
a and displacement operators

(l = 1, 2, a)

Dl ≡ exp

[∑
k

γl,k (b†
l,k − bl,k )

]
. (36)

The transformed Hamiltonian then reads

H̆M = GHMG†

= ε̆d

∑
n=1,2

d†
n dn − �a†a + [gd̆†

1 d̆2 + λă†(d̆1 + d̆2) + H.c.]

+
∑

l=1,2,a

∑
k

ωl,kb†
l,kbl,k . (37)

As can be seen, the transformation amounts to the renor-
malization of on-site energies, εd → ε̆d = εd − � with � =∫

dω I (ω)
πω

, and to the dressing of tunneling elements. In the
above expressions, we introduced the polaron operators as

d̆n ≡ D†
ndn, ă ≡ D†

aa. (38)

In the polaron frame, the input-output relation, Eq. (5) is
modified as follows [22]:

Fout (t ) = F in(t ) − i

√
2

π
K · Ŏ(t ). (39)

Recall that Fβ = (d1,β , d2,β , aβ )T (β = in, out), Ŏ =
(d̆1, d̆2, ă)T , and that K = diag(�,�, κ ).

To obtain HLEs for system operators in the polaron frame,
we replace the coherent Hamiltonian in Eq. (6) by H̆M and the
electronic operators in Eq. (7) by their polaron counterparts
[see Eq. (38)]. This derivation was described in detail in
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Ref. [22], yielding

ḋ1 = −(iε̆d + �)d1 − igD1D†
2d2 − i

√
2πD1d1,in − iλD1D†

aa,

ḋ2 = −(iε̆d+ �)d2− ig∗D2D†
1d1 − i

√
2πD2d2,in − iλD2D†

aa,

ȧ = (i� − κ )a − i
√

2πDaain − iλ(DaD†
1d1 + DaD†

2d2).

(40)

In the large damping limit, we adiabatically solve the last HLE

a � −i

√
2π

κ
Daain − i

λ

κ
(DaD†

1d1 + DaD†
2d2), (41)

where we approximated κ − i� � κ since κ � �. Inserting
it into the HLEs for d1, d2, we find

ḋ1 = −
(

iε̆d + � + λ2

κ

)
d1 −

(
λ2

κ
+ ig

)
D1D†

2d2

− i
√

2πD1d1,in − λ

κ

√
2πD1ain,

ḋ2 = −
(

iε̆d + � + λ2

κ

)
d2 −

(
λ2

κ
+ ig∗

)
D2D†

1d1

− i
√

2πD2d2,in − λ

κ

√
2πD2ain. (42)

As can be seen, one can obtain perfect directionality by setting

λ2

κ
+ ig = 0, (43)

which is precisely the directionality condition identified for
a noninteracting three-dot system [cf. Eq. (14)]. Hence,
nonreciprocity can be achieved in the presence of local
electron-phonon couplings, and the directionality condition is
identical with and without this interaction.

Next, we turn to the scattering matrix in the presence of
electron-phonon couplings and study whether the impedance
matching condition, Eq. (17), holds. As the drift matrix and
the coefficient matrix in Eq. (8) become time-dependent,
the previous definition for the scattering matrix is no longer
applicable.

However, we now show that diagonal reflection elements
˘̃S11(ω) and ˘̃S22(ω) can still be identified, allowing to enforce
an impedance matching condition. As a comment, we note
that phonon-scattering effects influence transport from dot 1
to dot 2, thus we cannot identify a single-frequency transmis-
sion element ˘̃S21(ω).

In parallel to polaron operators defined in Eq. (38), we in-
troduce the polaron-dressed input/output fields (β ∈ in, out)

F̆β = (D1d1,β ,D2d2,β ,Daaβ )T (44)

and rewrite the input-output relation Eq. (39) as

F̆out = F̆ in − i

√
2

π
K · O. (45)

We are thus studying the scattering of polarons (phonon-
dressed electrons) in the setup.

We can now proceed precisely as we did through Eqs. (8)
and (9). We formally write down Eq. (40) as follows:

Ȯ(t ) = M̆(t ) · O(t ) + C · F̆ in(t ), (46)

where the matrix M̆ generally depends on the bosonic-bath
operators. However, the equation of motion for d1, Eq. (42),
does not depend on d2 after the directionality condition (43),
thus M̆1,2 = 0. In the frequency domain (with “F” as Fourier’s
transform) we write

−iωd̃1(ω) = −
(

iε̆d + � + λ2

κ

)
d̃1(ω)

− i
√

2π ˘̃d1,in(ω) − λ

κ

√
2πF[D1ain]. (47)

Recall that in our notation, Ŏ corresponds to a polaron-dressed
operator. A tilde symbol, Õ indicates the Fourier’s transform
to the frequency domain. Together with Eq. (45), which con-
nects the input and output fields on site “1,” we identify the

reflection element ˘̃d1,out (ω) = ˘̃S11(ω) ˘̃d1,in(ω) as

˘̃S11(ω) = i(ε̆d − ω) + λ2/κ − �

i(ε̆d − ω) + λ2/κ + �
. (48)

Next, shifting attention to the EOM for d2, we note that M̆2,1

depends on bosonic operators (thus on time), leading to a
convolution in the frequency domain, corresponding to the
phonon scattering processes. In Fourier’s space we write

−iωd̃2(ω) = −
(

iε̆d + � + λ2

κ

)
d̃2(ω) − i

√
2π ˘̃d2,in(ω)

− λ

κ

√
2πF[D2ain] − 2λ2

κ
F[D2D†

1d1], (49)

without explicitly writing down the last two terms. How-
ever, due to the directionality condition the last term does
not depend on the input field d2,in. Thus, together with

Eq. (45), one can readily extract ˘̃S22(ω), and further find that
˘̃S22(ω) = ˘̃S11(ω).

Equation (48) takes the same form as Eq. (16), except
that the electronic energy is renormalized by electron-phonon
couplings, that is, εd → ε̆d . Hence, we recover the impedance
condition Eq. (17) with ˘̃S11(ε̆d ) = ˘̃S22(ε̆d ) = 0.

Altogether, while the transport towards electrode “2” in-
volves phonon scatterings, importantly, diagonal elements of
the scattering matrix do not depend on bosonic operators, and
hence are time-independent. We found that both directionality
and impedance matching conditions [cf. Eqs. (14) and (17)]
identified in the noninteracting electron scenario survived in
the presence of local electron-phonon couplings. This non-
trivial observation is another central result of our work.

Although with local electron-phonon couplings we re-
trieved the same optimal conditions for nonreciprocal in-
teractions as in the noninteracting case, electron-phonon
interactions surely affect transport of electrons (noting the
off-diagonal elements of ˘̃S involve convolutions between dis-
placement operators and electronic ones) and consequently
the charge current, which is given by (details can be found
in Appendix E),

JL = 2�

∫
dε

2π
G(ε)

[
nL

F (ε) − nA
F (ε)

]
,

JR = 2�

∫
dε

2π
G(ε)

[
nR

F (ε) − nA
F (ε)

]
− 4�2

∫
dε

2π
[G(ε)]2[nL

F (ε) − nA
F (ε)

]
. (50)
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Here we introduced a generalized transmission
function G(ε) = Re[

∫ ∞
0 dτe−(2�+iε̃d −iε)τ B(τ )] with

B(τ ) the phonon correlation function B(τ ) =
exp [− ∫

dω I (ω)
πω2 ( coth(ω/2T )(1 − cos ωτ ) + i sin ωτ )].

As can be seen, Eqs. (27) and (28) are recovered in the
noninteracting limit where B(τ ) = 1.

To get this charge current expression, we decoupled the
electron and phonon correlations, a common approximation
in the polaron frame [22,38–40],

〈d†
1,in(τ )D†

1 (τ )D1(t )d1,in(t )〉
≈ 〈d†

1,in(τ )d1,in(t )〉〈D†
1 (τ )D1(t )〉. (51)

This decoupling amounts to the neglect of back-actions from
the electrons onto the displaced harmonic oscillators. To ac-
cess the regime of validity of this approximation, we turn
to the HLE for the bosonic operator b1,k in the polaron
frame, ḃ1,k = −iω1,kb1,k − i(i�d̆†

1 + √
2πd†

1,in )[b1,k, d̆1]− −
i[b1,k, d̆†

1 ]−(−i�d̆1 + √
2πd1,in ), which can be simplified into

ḃ1,k = −iω1,kb1,k + γ1,kJL, (52)

where we utilized the relations [b1,k,D†
1]− = −γ1,kD†

1,
[b1,k,D1]− = γ1,kD1 and the charge current operator, repre-
senting current out of the left lead JL = 2

√
2π Im[d̆†

1 d1,in] −
2�d†

1 d1. The expression for the phonon correlation function
B(τ ) is obtained by neglecting the last term on the right-
hand-side of Eq. (52), which represents the back-actions
from electrons. Since the charge current JL = 〈JL〉 ∝ � and∑

k γ 2
1,k ∼ ν, we conclude that the approximation Eq. (51) can

be justified when the condition �
√

ν 
 ωc is fulfilled, with ν

the dimensionless electron-phonon coupling strength and ωc

the cutoff frequency of the phonon modes.
In Fig. 10, we show results for JL,R with varying the di-

mensionless electron-phonon coupling strength ν. Compared
to Fig. 5(a), we see that the presence of electron-phonon
coupling suppresses the nonreciprocal behavior in electron
transport: The magnitudes of JL and JR depict a monotonic de-
creasing trend as a function of ν in the whole voltage regime,
in accordance with previous findings [22]. Particularly, the
contrast between JL(−V ) and JR(V ) reduces with increasing
ν.

VI. CONCLUSION

A. Discussions

Before concluding, it is useful to discuss the experimental
feasibility of the proposed theoretical setup. We note that the
implementation of our proposal requires the ability to tune a
loop phase in a fully controllable manner. To this end, one can
harness existing experimental advances for the quantum dot
Aharonov-Bohm interferometer (see Ref. [30] and references
therein). We also note that a triple quantum dot system has
been fabricated recently to study effects of electron-photon
couplings [41]. Hence our theoretical predictions can be veri-
fied by state-of-the-art experiments.

Recently, it has been demonstrated that nonreciprocal
couplings can be harnessed to generate persistent photonic
and phononic currents in ring-shaped systems at equilibrium

-20 -10 0 1 20 0
0

0.5

1

-20 -10 0 1 20 0
-0.5

0

0.5

1

FIG. 10. Charge current in the three-dot system as a function
of voltage V , while increasing (top to bottom) the dimensionless
electron-phonon coupling strength ν for (a) JL and (b) JR. The
directionality condition and the impedance matching condition are
fulfilled. We set ωc/� = 10 and ε̃d/� = 1, other parameters are the
same as in Fig. 5(a).

[42,43]. Since our setup—based on a solid-state quantum
dot systems—bears resemblance to the model of Ref. [42],
we expect that our electronic system could similarly support
a persistent electronic current at equilibrium. However, to
observe such a novel phenomenon, we should scale up the
model, as so far we were just concerned with engineering
nonreciprocal couplings between two neighboring primary
dots.

B. Summary

In this work, we developed an input-output scheme, which
allows for exploring nonreciprocal interactions in electronic,
quantum dot systems based on their quantum optomechan-
ical analogs. In particular, Heisenberg-Langevin equations
for electronic operators provide a natural definition for the
scattering matrix, relating input and output fields from the
metallic leads. With this theoretical advance, we constructed
nonreciprocity through dissipation-engineering by utilizing
auxiliary damped dots and identifying optimal conditions for
nonreciprocal interaction in a straightforward manner.

For illustrations, we considered minimal multiterminal
quantum dot models, which can serve as building blocks
for larger networks. In the noninteracting electron scenario,
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we identified directionality condition as well as the so-called
impedance matching condition under which optimal nonre-
ciprocal behaviors emerged. We further showed unidirectional
charge transport in the optimal regime for nonequilibrium
settings, hence one can build quantum diodes by utiliz-
ing nonreciprocal interactions. We also demonstrated that
electron-phonon couplings preserve optimal conditions.

In summary, the main contributions of this work for non-
reciprocal electronic devices are as follows. (i) The GIOM
formalism can be conveniently adopted to identify conditions
for nonreciprocity at the level of the scattering matrix. (ii)
The electrical current, which integrates electrons in the bias
window, maintains signatures of nonreciprocity in the reso-
nant tunneling regime. (ii) Local electron-phonon couplings
preserve nonreciprocal conditions, but overall currents are
gradually suppressed at strong electron-phonon coupling.

We note that the intrinsic dissipation of auxiliary dots,
which takes electron out of the system regardless of the
transmission direction, is an essential ingredient for the non-
reciprocal behavior reported here. However, it also reduces
transmission efficiency between primary dots as can be seen
from the comparison between the four-dot system and the
three-dot counterpart, thereby making use of the proposed
dissipation engineering in large quantum dot networks ineffi-
cient. Further improvements are required, and we leave them
to future works.
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APPENDIX A: STATISTICS FOR INPUT FIELDS

As the input fields depend only on initial conditions, see
Eq. (3), we easily identify the following anticommutation
relations:

{dn,in(t ), d†
n′,in(t ′)} = δnn′�

∫
dε

2π2
e−iε(t−t ′ ), (A1a)

{an,in(t ), a†
n′,in(t ′)} = δnn′κ

∫
dε

2π2
e−iε(t−t ′ ), (A1b)

and the following correlation functions for input fields:

〈dn,in(t )d†
n′,in(t ′)〉 = δnn′�

∫
dε

2π2
e−iε(t−t ′ )[1 − nv

F (ε)
]
,

〈d†
n,in(t ′)dn′,in(t )〉 = δnn′�

∫
dε

2π2
e−iε(t−t ′ )nv

F (ε),

〈am,in(t )a†
m′,in(t ′)〉 = δmm′κ

∫
dε

2π2
e−iε(t−t ′ )[1 − nv′

F (ε)
]
,

〈a†
m,in(t ′)am′,in(t )〉 = δmm′κ

∫
dε

2π2
e−iε(t−t ′ )nv′

F (ε). (A2)

Here, v = L(R) when n = 1(2) for the two primary dots,
v′ = a for the three-dot system and v′ = u, d for the four-dot
system, nv

F (ε) = {exp[(ε − μv )/T ] + 1}−1 is the Fermi-Dirac
distribution with temperature T and chemical potential μv .

APPENDIX B: EVALUATING CHARGE CURRENTS
FOR THE THREE-DOT SYSTEM

To get the steady-state charge currents, we solve Eq. (13)
under the directionality condition, Eq. (14) with the following
stationary solutions for d1,2 in the limit of t0 → −∞:

d1(t ) = −i
√

2π

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ )d1,in(τ )dτ − λ

κ

√
2π

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ )ain(τ )dτ,

d2(t ) = −i
√

2π

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ )d2,in(τ )dτ − λ

κ

√
2π

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ )ain(τ )dτ

− 2
λ2

κ

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ )d1(τ )dτ. (B1)

We first focus on JL as d1 does not depend on d2. Utilizing the correlation functions for the input fields listed in Appendix A,
the involved ensemble averages in JL [see the definition in Eq. (26)] can be evaluated as

〈d†
1 d1,in〉 = i

√
2π�

∫
dε

2π2

nL
F (ε)

� + λ2/κ − iεd + iε
, 〈d†

1 d1〉 = 2
∫

dε

2π

�nL
F (ε) + (λ2/κ )nA

F (ε)

(� + λ2/κ )2 + (εd − ε)2
. (B2)

Inserting them into the definition of JL, we find

JL =
∫

dε

2π

4�λ2/κ

(� + λ2/κ )2 + (εd − ε)2

[
nL

F (ε) − nA
F (ε)

]
. (B3)

Equation (27) of the main text is recovered by imposing the impedance matching condition � = λ2/κ .
For JR, we first have

〈d†
2 d2,in〉 = i

√
2π�

∫
dε

2π2

nR
F (ε)

� + λ2/κ − iεd + iε
. (B4)
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For the average occupation number, we find

〈d†
2 d2〉 = 2π

∫ t

−∞
e−(�+λ2/κ−iεd )(t−τ )dτ

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ ′ )〈d†

2,in(τ )d2,in(τ ′)〉dτ ′

+ λ2

κ2
2π

∫ t

−∞
e−(�+λ2/κ−iεd )(t−τ )dτ

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ ′ )〈a†

in(τ )ain(τ ′)〉dτ ′

+ 4

(
λ2

κ

)2 ∫ t

−∞
e−(�+λ2/κ−iεd )(t−τ )dτ

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ ′ )〈d†

1 (τ )d1(τ ′)〉dτ ′

+ 2λ3

κ2

√
2π

∫ t

−∞
e−(�+λ2/κ−iεd )(t−τ )dτ

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ ′ )〈a†

in(τ )d1(τ ′)〉dτ ′

+ 2λ3

κ2

√
2π

∫ t

−∞
e−(�+λ2/κ−iεd )(t−τ )dτ

∫ t

−∞
e−(�+λ2/κ+iεd )(t−τ ′ )〈d†

1 (τ )ain(τ ′)〉dτ ′. (B5)

The first two terms on the RHS of Eq. (B5) can be simplified as

2
∫

dε

2π

�nR
F (ε) + (λ2/κ )nA

F (ε)

(� + λ2/κ )2 + (εd − ε)2
. (B6)

For the third term on the RHS, we find

8

(
λ2

κ

)2 ∫
dε

2π

�nL
F (ε) + (λ2/κ )nA

F (ε)

[(� + λ2/κ )2 + (εd − ε)2]2
(B7)

by noting

〈d†
1 (τ )d1(τ ′)〉 = 2

∫
dε

2π

e−iε(τ ′−τ )

(� + λ2/κ )2 + (εd − ε)2

[
�nL

F (ε) + (λ2/κ )nA
F (ε)

]
. (B8)

The last two terms on the RHS give

−8

(
λ2

κ

)2(
� + λ2

κ

) ∫
dε

2π

nA
F (ε)

[(� + λ2/κ )2 + (εd − ε)2]2
(B9)

as

〈a†
in(τ )d1(τ ′)〉 = −λ

√
2π

∫
dε

2π2
nA

F (ε)
e−iε(τ ′−τ )

� + λ2/κ + iεd − iε
,

〈d†
1 (τ )ain(τ ′)〉 = −λ

√
2π

∫
dε

2π2
nA

F (ε)
e−iε(τ ′−τ )

� + λ2/κ − iεd + iε
. (B10)

Putting those terms together we get

〈d†
2 d2〉 =

∫
dε

2π

2[(� + λ2/κ )2 + (εd − ε)2]
[
�nR

F (ε) + (λ2/κ )nA
F (ε)

] + 8(λ2/κ )2�
[
nL

F (ε) − nA
F (ε)

]
[(� + λ2/κ )2 + (εd − ε)2]2

. (B11)

Inserting Eqs. (B4) and (B11) into the definition of JR, we find the following expression:

JR =
∫

dε

2π

16�2(λ2/κ )2

[(� + λ2/κ )2 + (εd − ε)2]2

[
nR

F (ε) − nL
F (ε)

] +
∫

dε

2π

4�λ2/κ[(� − λ2/κ )2 + (εd − ε)2]

[(� + λ2/κ )2 + (εd − ε)2]2

[
nR

F (ε) − nA
F (ε)

]

=
∫

dε

2π

4�λ2/κ

(� + λ2/κ )2 + (εd − ε)2

[
nR

F (ε) − nA
F (ε)

] −
∫

dε

2π

16�2(λ2/κ )2

[(� + λ2/κ )2 + (εd − ε)2]2

[
nL

F (ε) − nA
F (ε)

]
. (B12)

After the impedance matching condition, � = λ2/κ , we recover Eq. (28) in the main text.

APPENDIX C: EVALUATING CHARGE CURRENTS FOR THE FOUR-DOT SYSTEM

Under the directionality condition, Eq. (14), and the impedance matching condition (17), we solve Eq. (21) in the steady-state
limit,

d1(t ) = −i
√

2π

∫ t

−∞
e−(2�+iεd )(t−τ )d1,in(τ )dτ + λ

κ + iδ

√
2π

∫ t

−∞
e−(2�+iεd )(t−τ )a1,in(τ )dτ,

+ λ

κ − iδ

√
2π

∫ t

−∞
e−(2�+iεd )(t−τ )a2,in(τ )dτ,
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d2(t ) = −i
√

2π

∫ t

−∞
e−(2�+iεd )(t−τ )d2,in(τ )dτ − λ(κ − iδ)

(κ + iδ)2

√
2π

∫ t

−∞
e−(2�+iεd )(t−τ )a1,in(τ )dτ

+ λ

κ − iδ

√
2π

∫ t

−∞
e−(2�+iεd )(t−τ )a2,in(τ )dτ − 2�

iδ

κ + iδ

∫ t

−∞
e−(2�+iεd )(t−τ )d1(τ )dτ. (C1)

We first focus on JL as d1 does not depend on d2. By noting the correlation functions for the input fields listed in
Appendix A, the involved ensemble averages in JL [see the definition in Eq. (26)] can be evaluated as

〈d†
1 d1,in〉 = i

√
2π�

∫
dε

2π2

nL
F (ε)

2� − iεd + iε
, 〈d†

1 d1〉 = 2
∫

dε

2π

�nL
F (ε) + (λ2κ/(κ2 + δ2))

[
nu

F (ε) + nd
F (ε)

]
4�2 + (εd − ε)2

. (C2)

Inserting them into the definition of JL we recover Eq. (33) in the main text by noting � = 2λ2κ/(κ2 + δ2).
For JR, we first have

〈d†
2 d2,in〉 = i

√
2π�

∫
dε

2π2

nR
F (ε)

2� − iεd + iε
. (C3)

For the average occupation number, we find

〈d†
2 d2〉 = 2π

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈d†

2,in(τ )d2,in(τ ′)〉dτ ′

+ λ2

κ2 + δ2
2π

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈a†

1,in(τ )a1,in(τ ′)〉dτ ′

+ λ2

κ2 + δ2
2π

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈a†

2,in(τ )a2,in(τ ′)〉dτ ′

+ 4�2 δ2

κ2 + δ2

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈d†

1 (τ )d1(τ ′)〉dτ ′

+ 2�λiδ

(κ − iδ)2

√
2π

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈a†

1,in(τ )d1(τ ′)〉dτ ′

− 2�λiδ

(κ + iδ)2

√
2π

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈d†

1 (τ )a1,in(τ ′)〉dτ ′

− 2�λiδ

(κ + iδ)2

√
2π

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈a†

2,in(τ )d1(τ ′)〉dτ ′

+ 2�λiδ

(κ − iδ)2

√
2π

∫ t

−∞
e−(2�−iεd )(t−τ )dτ

∫ t

−∞
e−(2�+iεd )(t−τ ′ )〈d†

1 (τ )a2,in(τ ′)〉dτ ′. (C4)

The first three terms on the RHS of Eq. (C4) can be simplified as

2
∫

dε

2π

�nR
F (ε) + (λ2κ/(κ2 + δ2))

[
nu

F (ε) + nd
F (ε)

]
4�2 + (εd − ε)2

. (C5)

For the fourth term on the RHS of Eq. (C4), we find

8�2 δ2

κ2 + δ2

∫
dε

2π

�nL
F (ε) + [λ2κ/(κ2 + δ2)]

[
nu

F (ε) + nd
F (ε)

]
[4�2 + (εd − ε)2]2

(C6)

by noting

〈d†
1 (τ )d1(τ ′)〉 = 2

∫
dε

2π

e−iε(τ ′−τ )

4�2 + (εd − ε)2

{
�nL

F (ε) + [λ2κ/(κ2 + δ2)]
[
nu

F (ε) + nd
F (ε)

]}
. (C7)

The last four terms on the RHS of Eq. (C4) give

8�λ2κδ

(κ2 + δ2)2

∫
dε

2π

κ (εd − ε)
[
nu

F (ε) − nd
F (ε)

] − 2�δ
[
nu

F (ε) + nd
F (ε)

]
[4�2 + (εd − ε)2]2

(C8)

by using the following correlation functions:

〈a†
1,in(τ )d1(τ ′)〉 = λκ

κ + iδ

√
2π

∫
dε

2π2
nu

F (ε)
e−iε(τ ′−τ )

2� + iεd − iε
,
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〈d†
1 (τ )a1,in(τ ′)〉 = λκ

κ − iδ

√
2π

∫
dε

2π2
nu

F (ε)
e−iε(τ ′−τ )

2� − iεd + iε
,

〈a†
2,in(τ )d1(τ ′)〉 = λκ

κ − iδ

√
2π

∫
dε

2π2
nd

F (ε)
e−iε(τ ′−τ )

2� + iεd − iε
,

〈d†
1 (τ )a2,in(τ ′)〉 = λκ

κ + iδ

√
2π

∫
dε

2π2
nd

F (ε)
e−iε(τ ′−τ )

2� − iεd + iε
. (C9)

Inserting 〈d†
2 d2,in〉 and 〈d†

2 d2〉 into the definition, we recover Eq. (34) in the main text under the impedance matching condition
� = 2λ2κ/(κ2 + δ2).

APPENDIX D: TRANSMISSION FUNCTIONS FOR THE FOUR-DOT SYSTEM

We organize the primary and auxiliary dots in the following order: (1, 2, u, d ). The dot-lead coupling matrices read
�L = diag(�, 0, 0, 0), �R = diag(0, �, 0, 0), �u = diag(0, 0, κ, 0), and �d = diag(0, 0, 0, κ ). The matrix form for the coherent
Hamiltonian takes the following form:

Hcoh(φ) =

⎛
⎜⎜⎝

εd 0 λ λ

0 εd λeiφ λ

λ λe−iφ δ 0
λ λ 0 −δ

⎞
⎟⎟⎠. (D1)

A direct calculation leads to

TLR(ε, φ) = TRL(ε,−φ) = �2λ4|(e−iφ + 1)(ε + iκ ) + (e−iφ − 1)δ|2
|(ε − εd − i�)2[(ε − iκ )2 − δ2] − 4λ2(ε − εd − i�)(ε − iκ ) − 2λ4(cos φ − 1)|2 ,

TLu(ε, φ) = TuL(ε,−φ) = �κλ2|λ2(e−iφ − 1) + (ε + δ − iκ )(ε − εd − i�)|2
|(ε − εd − i�)2[(ε − iκ )2 − δ2] − 4λ2(ε − εd − i�)(ε − iκ ) − 2λ4(cos φ − 1)|2 ,

TLd (ε, φ) = TdL(ε,−φ) = �κλ2|λ2(e−iφ − 1) + (ε − δ + iκ )(ε − εd + i�)|2
|(ε − εd − i�)2[(ε − iκ )2 − δ2] − 4λ2(ε − εd − i�)(ε − iκ ) − 2λ4(cos φ − 1)|2 ,

TRu(ε, φ) = TuR(ε,−φ) = �κλ2|λ2(1 − e−iφ ) + e−iφ (ε + δ − iκ )(ε − εd − i�)|2
|(ε − εd − i�)2[(ε − iκ )2 − δ2] − 4λ2(ε − εd − i�)(ε − iκ ) − 2λ4(cos φ − 1)|2 ,

TRd (ε, φ) = TdR(ε,−φ) = �κλ2|λ2(e−iφ − 1) + (ε − δ − iκ )(ε − εd − i�)|2
|(ε − εd − i�)2[(ε − iκ )2 − δ2] − 4λ2(ε − εd − i�)(ε − iκ ) − 2λ4(cos φ − 1)|2 . (D2)

APPENDIX E: EVALUATING CHARGE CURRENTS FOR THE THREE-DOT SYSTEM IN THE PRESENCE
OF ELECTRON-PHONON COUPLINGS

In the polaron frame, the charge current definitions are modified as [22]

JL = 2(
√

2π Im〈d̆†
1 d1,in〉 − �〈d†

1 d1〉), JR = 2(
√

2π Im〈d̆†
2 d2,in〉 − �〈d†

2 d2〉). (E1)

To get the steady-state charge currents, we solve Eq. (42) under the directionality condition (14) and the impedance matching
condition (17) in the limit of t0 → −∞:

d1(t ) = −i
√

2π

∫ t

−∞
e−(2�+iε̃d )(t−τ )D1(τ )d1,in(τ )dτ − λ

κ

√
2π

∫ t

−∞
e−(2�+iε̃d )(t−τ )D1(τ )ain(τ )dτ,

d2(t ) = −i
√

2π

∫ t

−∞
e−(2�+iε̃d )(t−τ )D2(τ )d2,in(τ )dτ − λ

κ

√
2π

∫ t

−∞
e−(2�+iε̃d )(t−τ )D2(τ )ain(τ )dτ

− 2�

∫ t

−∞
e−(2�+iε̃d )(t−τ )D2(τ )D†

1 (τ )d1(τ )dτ. (E2)

Similar to Appendix B, we first evaluate the ensemble averages involved in JL,

〈d̆†
1 d1,in〉 = i

√
2π

∫
dτe−(2�−iε̃d )(t−τ )〈d†

1,in(τ )D†
1 (τ )D1(t )d1,in(t )〉

≈ i
√

2π�

∫
dε

nL
F (ε)

2π2

∫ ∞

0
e−(2�−iε̃d +iε)τ B∗(τ )dτ. (E3)
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In the second line, we decoupled tje electron and phonon correlations, a standard approximation in the polaron frame
[22,38–40],

〈d†
1,in(τ )D†

1 (τ )D1(t )d1,in(t )〉 ≈ 〈d†
1,in(τ )d1,in(t )〉〈D†

1 (τ )D1(t )〉. (E4)

Here, we introduced the phonon correlation function B(t − τ ) = 〈D†(t )D(τ )〉; note that we neglect the dot subscript since, for
the sake of simplicity, the phonon environments are assumed to have identical spectral density functions. By assuming an initial
thermal equilibrium state for the phonon environments in the polaron frame, we recover the standard form

B(τ ) = exp

[
−

∫
dω

I (ω)

πω2
(coth(ω/2T )(1 − cos ωτ ) + i sin ωτ )

]
. (E5)

Similarly, we find

〈d†
1 d1〉 = 2�

∫
dε

nL
F (ε) + nA

F (ε)

2π

∫ t

−∞
dτ

∫ t

−∞
dτ ′ei(ε−ε̃d )(τ−τ ′ )e−2�(2t−τ−τ ′ )B(τ − τ ′)

= 4�

∫
dε

nL
F (ε) + nA

F (ε)

2π
Re

[∫ t

−∞
dτ

∫ τ

−∞
dτ ′ei(ε−ε̃d )(τ−τ ′ )e−2�(2t−τ−τ ′ )B(τ − τ ′)

]

=
∫

dε
nL

F (ε) + nA
F (ε)

2π
Re

[∫ ∞

0
dτe−(2�+iε̃d −iε)τ B(τ )

]
. (E6)

Here “Re” refers to the real part. Inserting them into the definition of JL, we find

JL = 2�

∫
dε

2π
Re

[∫ ∞

0
dτe−(2�+iε̃d −iε)τ B(τ )

][
nL

F (ε) − nA
F (ε)

]
. (E7)

We note that Eq. (27) in the main text is recovered when B(τ ) = 1, namely, in the coherent limit of noninteracting electrons.
As for ensemble averages involved in JR, we follow similar procedures and find

〈d†
2 d2,in〉 = i

√
2π�

∫
dε

nR
F (ε)

2π2

∫ ∞

0
e−(2�−iε̃d +iε)τ B∗(τ )dτ, (E8)

and

〈d†
2 d2〉 =

∫
dε

nR
F (ε) + nA

F (ε)

2π
Re

[∫ ∞

0
dτe−(2�+iε̃d −iε)τ B(τ )

]

+ 2�

∫
dε

2π

[
nL

F (ε) − nA
F (ε)

](
Re

[∫ ∞

0
dτe−(2�+iε̃d −iε)τ B(τ )

])2

. (E9)

Consequently, we get the following expression for JR:

JR = 2�

∫
dε

2π
Re

[∫ ∞

0
dτe−(2�+iε̃d −iε)τ B(τ )

][
nR

F (ε) − nA
F (ε)

]

− 4�2
∫

dε

2π

(
Re

[∫ ∞

0
dτe−(2�+iε̃d −iε)τ B(τ )

])2[
nL

F (ε) − nA
F (ε)

]
. (E10)

The noninteracting expression, Eq. (28) in the main text, is recovered when B(τ ) = 1.

[1] M. Hafezi and P. Rabl, Optomechanically induced non-
reciprocity in microring resonators, Opt. Express 20, 7672
(2012).

[2] L. Ranzani and J. Aumentado, A geometric description of non-
reciprocity in coupled two-mode systems, New J. Phys. 16,
103027 (2014).

[3] L. Ranzani and J. Aumentado, Graph-based analysis of nonre-
ciprocity in coupled-mode systems, New J. Phys. 17, 023024
(2015).

[4] A. Metelmann and A. A. Clerk, Nonreciprocal Photon Trans-
mission and Amplification Via Reservoir Engineering, Phys.
Rev. X 5, 021025 (2015).

[5] F. Ruesink, M. Miri, A. Alù, and E. Verhagen, Nonreciprocity
and magnetic-free isolation based on optomechanical interac-
tions, Nat. Commun. 7, 13662 (2016).

[6] X.-W. Xu, Y. Li, A.-X. Chen, and Y.-x. Liu, Nonrecipro-
cal conversion between microwave and optical photons in
electro-optomechanical systems, Phys. Rev. A 93, 023827
(2016).

[7] X.-W. Xu, A.-X. Chen, Y. Li, and Y.-x. Liu, Single-photon
nonreciprocal transport in one-dimensional coupled-resonator
waveguides, Phys. Rev. A 95, 063808 (2017).

[8] X.-W. Xu, A.-X. Chen, Y. Li, and Y.-x. Liu, Nonreciprocal
single-photon frequency converter via multiple semi-infinite

125416-17

https://doi.org/10.1364/OE.20.007672
https://doi.org/10.1088/1367-2630/16/10/103027
https://doi.org/10.1088/1367-2630/17/2/023024
https://doi.org/10.1103/PhysRevX.5.021025
https://doi.org/10.1038/ncomms13662
https://doi.org/10.1103/PhysRevA.93.023827
https://doi.org/10.1103/PhysRevA.95.063808


JUNJIE LIU AND DVIRA SEGAL PHYSICAL REVIEW B 102, 125416 (2020)

coupled-resonator waveguides, Phys. Rev. A 96, 053853
(2017).

[9] Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F.
Sun, G. Guo, and C. Dong, Experimental realization of op-
tomechanically induced non-reciprocity, Nat. Photon. 10, 657
(2016).

[10] N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D.
Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg,
Nonreciprocal reconfigurable microwave optomechanical cir-
cuit, Nat. Commun. 8, 604 (2017).

[11] G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J.
Aumentado, and J. D. Teufel, Demonstration of Efficient Non-
reciprocity in A Microwave Optomechanical Circuit, Phys. Rev.
X 7, 031001 (2017).

[12] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt,
A. A. Clerk, and O. Painter, Generalized non-reciprocity in an
optomechanical circuit via synthetic magnetism and reservoir
engineering, Nat. Phys. 13, 465 (2017).

[13] S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle,
O. Painter, and J. M. Fink, Mechanical on-chip microwave
circulator, Nat. Commun. 8, 953 (2017).

[14] S. Barzanjeh, M. Aquilina, and A. Xuereb, Manipulating the
Flow of Thermal Noise in Quantum Devices, Phys. Rev. Lett.
120, 060601 (2018).

[15] D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J.
Kippenberg, and A. Nunnenkamp, Quantum-Limited Direc-
tional Amplifiers with Optomechanics, Phys. Rev. Lett. 120,
023601 (2018).

[16] H. Xu, L. Jiang, A. A. Clerk, and J. G. E. Harris, Nonreciprocal
control and cooling of phonon modes in an optomechanical
system, Nature 568, 65 (2019).

[17] L. Mercier de Lépinay, E. Damskägg, C. F. Ockeloen-Korppi,
and M. A. Sillanpää, Realization of Directional Amplification
in a Microwave Optomechanical Device, Phys. Rev. Appl. 11,
034027 (2019).

[18] L. Mercier de Lépinay, C. F. Ockeloen-Korppi, D. Malz, and
M. A. Sillanpää, Nonreciprocal Transport Based on Cavity
Floquet Modes in Optomechanics, Phys. Rev. Lett. 125, 023603
(2020).

[19] D. Loss and D. P. DiVincenzo, Quantum computation with
quantum dots, Phys. Rev. A 57, 120 (1998).

[20] M. H. Devoret and R. J. Schoelkopf, Superconducting cir-
cuits for quantum information: An outlook, Science 339, 1169
(2013).

[21] D. Malz and A. Nunnenkamp, Current rectification in a double
quantum dot through fermionic reservoir engineering, Phys.
Rev. B 97, 165308 (2018).

[22] J. Liu and D. Segal, Generalized input-output method to quan-
tum transport junctions. I. general formulation, Phys. Rev. B
101, 155406 (2020).

[23] J. Liu and D. Segal, Generalized input-output method to quan-
tum transport junctions. II. applications, Phys. Rev. B 101,
155407 (2020).

[24] E. Mascarenhas, F. Damanet, S. Flannigan, L. Tagliacozzo, A. J.
Daley, J. Goold, and I. de Vega, Nonreciprocal quantum trans-
port at junctions of structured leads, Phys. Rev. B 99, 245134
(2019).

[25] F. Damanet, E. Mascarenhas, D. Pekker, and A. J. Daley, Con-
trolling Quantum Transport Via Dissipation Engineering, Phys.
Rev. Lett. 123, 180402 (2019).

[26] M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S.
Fahlvik, C. Thelander, M. Leijnse, and H. Linke, A quantum-
dot heat engine operating close to the thermodynamic efficiency
limits, Nat. Nanotechnol. 13, 920 (2018).

[27] N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Inelas-
tic scattering in resonant tunneling, Phys. Rev. B 40, 11834
(1989).

[28] H. J. Carmichael, Quantum Trajectory Theory for Cascaded
Open Systems, Phys. Rev. Lett. 70, 2273 (1993).

[29] C. W. Gardiner, Driving a Quantum System with the Output
Field from Another Driven Quantum System, Phys. Rev. Lett.
70, 2269 (1993).

[30] G. Hackenbroich, Phase coherent transmission through interact-
ing mesoscopic systems, Phys. Rep. 343, 463 (2001).

[31] S. Bedkihal and D. Segal, Dynamics of coherences in the
interacting double-dot Aharonov-Bohm interferometer: Exact
numerical simulations, Phys. Rev. B 85, 155324 (2012).

[32] S. Bedkihal and D. Segal, Magnetotransport in Aharonov-Bohm
interferometers: Exact numerical simulations, Phys. Rev. B 90,
235411 (2014).

[33] R. Landauer, Spatial variation of currents and fields due to
localized scatterers in metallic conduction, IBM J. Res. Dev.
1, 223 (1957).

[34] M. Büttiker, Absence of backscattering in the quantum hall
effect in multiprobe conductors, Phys. Rev. B 38, 9375
(1988).

[35] V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G.
Bawendi, Electron and hole relaxation pathways in semicon-
ductor quantum dots, Phys. Rev. B 60, 13740 (1999).

[36] D. P. S. McCutcheon and A. Nazir, Model of the Optical
Emission of A Driven Semiconductor Quantum Dot: Phonon-
Enhanced Coherent Scattering and Off-Resonant Sideband
Narrowing, Phys. Rev. Lett. 110, 217401 (2013).

[37] A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F.
Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon,
J. Mørk, R. Hostein, and V. Voliotis, Probing Electron-Phonon
Interaction through Two-Photon Interference in Resonantly
Driven Semiconductor Quantum Dots, Phys. Rev. Lett. 118,
233602 (2017).

[38] M. Galperin, A. Nitzan, and M. A. Ratner, Resonant inelastic
tunneling in molecular junctions, Phys. Rev. B 73, 045314
(2006).

[39] S. Maier, T. L. Schmidt, and A. Komnik, Charge transfer statis-
tics of a molecular quantum dot with strong electron-phonon
interaction, Phys. Rev. B 83, 085401 (2011).

[40] R. Seoane Souto, R. Avriller, R. C. Monreal, A. Martín-Rodero,
and A. Levy Yeyati, Transient dynamics and waiting time dis-
tribution of molecular junctions in the polaronic regime, Phys.
Rev. B 92, 125435 (2015).

[41] J. V. Koski, A. J. Landig, M. Russ, J. C. Abadillo-Uriel, P.
Scarlino, B. Kratochwil, C. Reichl, W. Wegscheider, Guido
Burkard, Mark Friesen, S. N. Coppersmith, A. Wallraff, K.
Ensslin, and T. Ihn, Strong photon coupling to the quadrupole
moment of an electron in a solid-state qubit, Nat. Phys. 16, 642
(2020).

[42] M. Keck, D. Rossini, and R. Fazio, Persistent currents by reser-
voir engineering, Phys. Rev. A 98, 053812 (2018).

[43] Z. Denis, A. Biella, I. Favero, and C. Ciuti, Permanent Direc-
tional Heat Currents in Lattices of Optomechanical Resonators,
Phys. Rev. Lett. 124, 083601 (2020).

125416-18

https://doi.org/10.1103/PhysRevA.96.053853
https://doi.org/10.1038/nphoton.2016.161
https://doi.org/10.1038/s41467-017-00447-1
https://doi.org/10.1103/PhysRevX.7.031001
https://doi.org/10.1038/nphys4009
https://doi.org/10.1038/s41467-017-01304-x
https://doi.org/10.1103/PhysRevLett.120.060601
https://doi.org/10.1103/PhysRevLett.120.023601
https://doi.org/10.1038/s41586-019-1061-2
https://doi.org/10.1103/PhysRevApplied.11.034027
https://doi.org/10.1103/PhysRevLett.125.023603
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1126/science.1231930
https://doi.org/10.1103/PhysRevB.97.165308
https://doi.org/10.1103/PhysRevB.101.155406
https://doi.org/10.1103/PhysRevB.101.155407
https://doi.org/10.1103/PhysRevB.99.245134
https://doi.org/10.1103/PhysRevLett.123.180402
https://doi.org/10.1038/s41565-018-0200-5
https://doi.org/10.1103/PhysRevB.40.11834
https://doi.org/10.1103/PhysRevLett.70.2273
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1016/S0370-1573(00)00084-3
https://doi.org/10.1103/PhysRevB.85.155324
https://doi.org/10.1103/PhysRevB.90.235411
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.60.13740
https://doi.org/10.1103/PhysRevLett.110.217401
https://doi.org/10.1103/PhysRevLett.118.233602
https://doi.org/10.1103/PhysRevB.73.045314
https://doi.org/10.1103/PhysRevB.83.085401
https://doi.org/10.1103/PhysRevB.92.125435
https://doi.org/10.1038/s41567-020-0862-4
https://doi.org/10.1103/PhysRevA.98.053812
https://doi.org/10.1103/PhysRevLett.124.083601

