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Plasmons and screening in finite-bandwidth two-dimensional electron gas
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The dynamical and nonlocal dielectric function of a two-dimensional electron gas with finite-energy
bandwidth is computed within a random-phase approximation. For large bandwidth, the plasmon dispersion
has two separate branches at small and large momenta. The large-momenta branch exhibits negative quasiflat
dispersion. The two branches merge with decreasing bandwidth. We discuss how the maximum-energy plasmon
mode, which resides at energies larger than all particle-hole continuum, can potentially open a route to low-loss
plasmons. Moreover, we discuss the bandwidth effects on the static screening of the charged and magnetic
impurities.
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I. INTRODUCTION

Since the early 1950s, there has been ongoing inter-
est in the theory of two-dimensional (2D) electronic sys-
tems. This has been partly fueled by the development of
metal-oxide-semiconductor transistors, where the surface-
accumulated charge layers formed in the device behave as a
two-dimensional electron gas (2DEG) [1–3]. The isolation of
atomically thin layers from bulk parent materials [4] has also
boosted this interest, where the theory of 2DEG has served as
a point of reference for the elementary electronic properties of
graphene and other 2D systems [5–9].

The dynamical 2D polarizability, which describes the
screening of the Coulomb potential, is vital for understanding
many physical properties in 2D systems. For example, dy-
namical screening governs the elementary excitation spectra
and gives the collective modes dispersion. Moreover, in a
noninteracting 2D electron gas without spin-orbit coupling,
the static screening dictates the magnetic response via control
over exchange interactions between localized magnetic impu-
rities embedded in the 2D metal, or determines the transport
properties through screened Coulomb scattering by charged
impurities [10,11].

With the 2DEG polarizability now a textbook example cov-
ered in many-body physics [10], we ask a seemingly simple
question: how does the polarizability function get modified
if we restrict the parabolic energy dispersion with an energy
cutoff? This was motivated by recent developments in several
materials system exhibiting isolated electronic bands with
finite bandwidths. This includes TaS2 or NbS2 single layers in
the 2H phase [12], or Si(111):X in the α − √

3 × √
3 phase,

constructed by group-IV adatom X adsorbed on a silicon
surface (111) [13–15]. We show that a finite bandwidth allows
for plasmon modes of quasiflat dispersion and large mo-
menta to emerge. The finite-bandwidth 2DEG (FBW-2DEG)
can also potentially support low-loss plasmon modes that
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are immune to elastic or inelastic scattering-assisted Landau
damping (dissipation via electron-hole pair excitation). We
show that the static polarizability approaches a constant value
at the large-momenta limit and the value can be tuned with
bandwidth and Fermi energy. We find, in FBW-2DEG, that
static Friedel oscillations due to a charged impurity can be
strongly damped as the bandwidth shrinks. However, the
induced spin density due to a magnetic impurity has a large-
distance oscillatory decay similar to the 2DEG, and is not
affected by the bandwidth.

II. DYNAMIC POLARIZABILITY AND PLASMON MODES

We assume an electronic energy dispersion of the form
Ek = h̄2k2/2m for k � kc, and Ek = Ec otherwise. The Fermi
energy and momentum are denoted with EF and kF , re-
spectively. Accordingly, we introduce Ēc = Ec/EF and k̄c =
kc/kF . In Fig. 1, the main symbols pertaining to FBW-2DEG
electron energy dispersion are illustrated. In this work, we
assume k̄c > 1.

The dielectric function in the random-phase approximation
reads

ε(q , ω) = 1 + e2

2ε0κq
P(q , ω), (1)
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FIG. 1. The 2DEG and FBW-2DEG electron energy dispersions.
The dotted line is the Fermi energy.
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FIG. 2. The loss function for (a) 2DEG, (b) Ec = 1.5 eV, and (c) Ec = 0.5 eV, all at a fixed EF = 0.1 eV. (d) The same as (c), for EF =
0.02 eV. The solid and dashed black lines denote upper and lower boundaries of the PHC, respectively. η = 5 meV is assumed.

with the Lindhard polarizability given as

P(q , ω) = − 2

S
∑

k

fk − fk+q

Ek − Ek+q + h̄ω + iη
, (2)

where S is the sample area and κ is the background dielectric
constant. We use m/m0 = 0.5, EF = 0.1 eV, and κ = 2.5,
unless denoted otherwise. We assume zero temperature. The
undamped plasmon modes correspond to zeros of the dielec-
tric function. For finite broadening, where Im P �= 0, the loss
function, defined as L(q , ω) = − Im [1/ε(q, ω)], is used to
visualize the low-loss plasmon modes which appear as sharp
peaks [16].

For 2DEG, i.e., when Ec → ∞, the plasmon dispersion has
the analytic form (η → 0) [17]:

ω̄2 = 2q̄TFq̄

(
1+ q̄

q̄TF

)2(
1+ q̄3

2 q̄TF
+ q̄4

4 q̄2
TF

)/(
1+ q̄

2q̄TF

)
,

(3)

where ω̄ = h̄ω/EF , q̄ = q/kF , q̄TF = qTF/kF , and qTF =
me2/2π h̄2κε0 is the Thomas-Fermi wave vector for the
2DEG. We note that Eq. (3) gives a valid description for
q � qc, the critical wave vector at which the plasmon mode
touches the 2DEG particle-hole continuum (PHC). The plas-
mon dispersion ceases to exist for q > qc [see Fig. 2(a)]. This
critical wave vector can be determined via [17]

q̄2
c

q̄TF
+ q̄3

c

2q̄2
TF

= 1, (4)

where q̄c = qc/kF .
When a cutoff is introduced, two changes are evident [see

Fig. 2(b)]: (1) The PHC is reconfigured, and the maximum
energy for single-particle transitions is now limited by the
bandwidth. (2) In addition to low-q plasmon modes which
resemble the plasmons in 2DEG, another plasmon branch
appears at large q, with energies close to Ec. With decreasing
bandwidth, the two branches merge; see Fig. 2(c). We note
that decreasing EF at a given bandwidth has a similar effect
as increasing bandwidth at a fixed EF , i.e., we start with one
branch which evolves into two separate branches at smaller
EF ; see Figs. 2(c) and 2(d).

These trends can be followed via a semianalytical model,
valid for a clean sample (η → 0) at zero temperature. The
model is built upon the following argument: in Eq. (2), for
q � kc − kF , Ek+q = h̄2|k + q|2/2m and the polarizability is

identical to that of a 2DEG. For q � kc + kF , we have Ek+q =
Ec. For kc − kF � q � kc, Ek+q = Ec only if kc − q � k � kF

and 0 � θ � θ0, where θ is the angle between k and q, and

θ0 = cos−1

(
k2

c − k2 − q2

2kq

)
(5)

is the angle at which |k + q| = kc. Likewise, for kc � q �
kc + kF , Ek+q = h̄2|k + q|2/2m, only if q − kc � k � kF and
θ0 � θ � π . Accordingly, the closed-form relations for the
imaginary part of the polarizability, within different phase
space defined in Fig. 3(a), can be obtained as

Im P(q̄ , ω̄) = m

2π h̄2

1

q̄2
[
√

4q̄2 − (ω̄ − q̄2)2

−
√

4q̄2 − (ω̄ + q̄2)2] (6a)

in region i: 0 � ω̄ � min {−(q̄ − 1)2 + 1, Ēc − 1};

Im P(q̄ , ω̄) = m

2π h̄2

1

q̄2

√
4q̄2 − (ω̄ − q̄2)2 (6b)

in region ii: max {−(q̄ − 1)2 + 1, (q̄ − 1)2 − 1} � ω̄ �
min {(q̄ + 1)2 − 1, Ēc − 1};

Im P(q , ω) = m

2π h̄2

1

q̄2

[√
4(Ēc − ω̄)q̄2 − (ω̄ − q̄2)2

−
√

4q̄2 − (ω̄ + q̄2)2
]

+ m

π h̄2 cos−1

(
ω̄ − q̄2

2q̄
√

Ēc − ω̄

)
(6c)

in region iii: Ēc − 1 � ω̄ � −(q̄ − 1)2 + 1 (note that this
region appears only if k̄c �

√
2);

Im P(q̄ , ω̄) = m

2π h̄2

1

q̄2

√
4(Ēc − ω̄)q̄2 − (ω̄ − q̄2)2

+ m

π h̄2 cos−1

(
ω̄ − q̄2

2q̄
√

Ēc − ω̄

)
(6d)

in region iv: max {−(q̄ − 1)2 + 1, Ēc − 1} � ω̄ � Ēc − (q̄ −
k̄c)2; and

Im P(q̄ , ω̄) = m

h̄2 (6e)

in region v: q̄ � k̄c and max {Ēc − (q̄ − k̄c)2, Ēc − 1} � ω̄ �
Ēc. We then use Kramers-Kronig transformation to obtain the
real part of the polarizability. In Fig. 3(a), the boundaries
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FIG. 3. (a) The plasmon dispersions obtained numerically (ex-
act) and via semi-analytic model. The dispersions obtained via
Eqs. (3) and (7), and via local model (ω̄ = √

2q̄q̄TF ), are also plotted.
The different regions characterizing the Im P �= 0 are also displayed.
The left panel: Ēc = 15. The right panel: Ēc = 1.5. (b) The real
and imaginary parts of the polarizability (normalized to m/π h̄2) for
zero and 5 meV broadening at q̄ � k̄c + 1 and Ēc = 1.5. (c) 	 vs
bandwidth. The dotted line is the Fermi energy. The arrows denote
the bandwidth at which merging occurs.

of the PHC are illustrated. The plasmon dispersion obtained
from this semianalytic method compares well with the nu-
meric result.

We note that Eq. (3) also gives the plasmon modes in
FBW-2DEG for q̄ � min{q̄c , k̄c − 1} [see Fig. 3(a)]. The
bandwidth at which the two plasmon branches merge can be
followed via k̄c ∼ q̄c + 1. The latter is the condition for the
low-q plasmon branch to jump over the PHC at q̄ = k̄c − 1.
We note that the Ec required for merging increases with the
Fermi level and decreases with κ .

For q̄ � k̄c + 1, a closed-form expression can be obtained
for the plasmon dispersion in FBW-2DEG [see Fig. 3(a)],

ω̄2 = 2Ēc − 1

exp (q̄/q̄TF) − 1
+ Ē2

c . (7)

Interestingly, although the plasmon energy is asymptotically
approaching Ēc for q̄ � k̄c + 1, at zero temperature and η →
0, it does not enter the PHC. This can be tracked by inspecting
the real part of the polarizability for q̄ � k̄c + 1, which reads

Re P(q̄, ω̄) = m

π h̄2 ln

[
Ē2

c − ω̄2

(Ēc − 1)2 − ω̄2

]
. (8)

It is clear that the latter becomes singular at ω̄ = Ēc, which
guarantees a zero for the dielectric function, irrespective of the
q̄ magnitude. This, however, can be relaxed for a finite broad-
ening, as illustrated in Fig. 3(b). For a 2D system sandwiched
between two dielectric mediums, the plasmon momentum is
inversely proportional to the field decay length. This suggests
unprecedented field confinement in FBW-2DEG.

Moreover, for q � qTF ln (EF /	E ), the plasmon energy
varies in the range 	E above Ec, which allows for plasmon
modes with almost constant dispersion to emerge. The onset
q for this quasiflat dispersion can also be tuned with the
dielectric choice or Fermi energy. This allows for tunable
near-field exponential amplification in a setup which has two
FBW-2DEGs separated by a dielectric spacer [18,19].

We next focus on the plasmon mode with maximum en-
ergy, where we introduce 	, denoting its energy relative to
the upper boundary of the PHC; see Fig. 3(a). The importance
of this mode is twofold: (1) Low-loss plasmon. This mode
is arguably protected against Landau damping mediated by
elastic scattering since pure momentum transfer will not be
adequate to bring it into the PHC. Moreover, given 	 �
Ec, damping pathways due to optical phonon inelastic scat-
tering are also quenched. In Fig. 3(c), we show, in FBW-
2DEG, that dielectric engineering is a plausible route to
protect maximum-energy plasmons against both elastic and
inelastic scattering-mediated Landau damping. Also note that
	 vs bandwidth has a maximum which occurs at Ec, well
below the bandwidth required for merging and larger than
Fermi energy. (2) Negative group velocity. We note that the
group velocity changes sign at the momentum pertaining to
the maximum-energy plasmon. This mode occurs at q ∼ kc,
which implies that the onset for negative dispersion can be
tuned via controlling the bandwidth. The tunability of the
group velocity sign allows for interesting phenomena such as
all-angle negative refraction, normal Doppler frequency shift,
or tunable directional plasmon excitation [20–23].

We note that the idea to achieve lossless plasmons in nar-
rowband electronic systems has been explored in the context
of bulk metals via computing the local dielectric function
[12,24]. The local description, by definition, assumes identical
loss for all momenta and gives an incomplete view of the
PHC boundaries. It thus cannot be used to predict the mode
robustness against Landau damping, an intrinsic and major
damping channel in 2D metals [25]. In addition to loss, the
local description cannot correctly account for the features that
arise in the dispersion. In the local limit, q → 0 and for
a clean sample, the polarizability for the FBW is identical
to that of 2DEG. The zeros of the local dielectric function,
which give the local plasmon dispersion are thus given as ω̄ =√

2q̄q̄TF. The latter expression clearly gives no information of
the large-q branch, its merging with the low-q branch, or the
maximum-energy plasmon modes; see Fig. 3(a). These points
suggest that the nonlocal model is a prerequisite to explain the
lossless plasmon that can emerge in FBW 2D metals.

III. STATIC SCREENING AND FRIEDEL OSCILLATIONS

The static limit of the polarizability, ω = 0 with arbitrary
q, is relevant for the screening of charged and magnetic
impurities. In Fig. 4(a), we cover this limit. For a 2DEG with
Ec → ∞, the static polarizability is given by [26]

P(q̄, 0) = m

π h̄2

[
1 − θ (q̄ − 2)

√
1 − 4

q̄2

]
. (9)

This is also valid for FBW-2DEG given that q̄ � k̄c − 1. For
2DEG at a short-wavelength limit, the static polarizability

125408-3



KHALIJI, STAUBER, AND LOW PHYSICAL REVIEW B 102, 125408 (2020)

(a)

0 2 4 6 8

(b) (c)

q

P
(q

  
 ,0

 )

0.5

2

1

1.5

2.5

0

Ec

Ec = 10
Ec = 4
Ec = 2

kF r
2 4 6 108

n
(r

)/
k F

2

-4

0

4

-2

2

n
(r

) (
k F

r)
2

10-2

kF r
5 15 25

0

-2

2
10

P
(r

  
 ,0

 )
kF r

2 4 6 108

0.1

0.7

0.3

0.5

-0.1

Ec

Ec = 4
Ec = 2

P
(r

,0
) (

k F
r)

2

0

-2

2
10

kF r
5 15 25

Ec

Ec = 4
Ec = 2
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distances. (c) Same as (b), for the induced charge density δn(r) (in units of k2

F Ze).

falls off rapidly (with 1/q̄2). For FBW-2DEG, however, given
that q̄ � k̄c + 1, the static polarizability is given by

P(q̄, 0) = 2m

π h̄2 ln

(
Ēc

Ēc − 1

)
, (10)

i.e., a constant value which depends on the bandwidth and
Fermi energy. Moreover, we note that similar to the 2DEG, the
polarizability for FBW also has a kink at q̄ = 2, although its
magnitude at q̄ = 2 increases from that of 2DEG given k̄c � 3.
It is worthwhile to mention that the increase beyond the 2DEG
density of states in the static polarizability for k̄c − 1 � q̄ � 2
can be attributed to the smaller energy denominator in Eq. (2)
at ω = 0, which is now limited by the bandwidth. We note in
passing that the polarizability kink also implies an observable
Kohn anomaly in the FBW-2DEG vibration spectrum [27].

We next discuss the Fourier transform of the static polariz-
ability, given by

P(r, 0) = 1

4π2

∫
d2q P(q, 0)eiq.r, (11)

which determines the induced spin density at position r due a
magnetic impurity located at the origin [28]. It also gives the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction energy
between two magnetic impurities, where each impurity inter-
acts with the density induced by the other [29]. From Fig. 4(b),
the finite bandwidth does not affect the Friedel oscillations,
which appear in the induced spin density (neither the period
nor the amplitude) at large distances (kF r � 1). However,
close to magnetic impurity, the magnitude of the induced spin
density is strongly decreased.

We consider next an external charge next(r) = Ze δ(r)
screened by FBW-2DEG, which results in an induced charge
density δn(r) [10],

δn(r) = Ze

4π2

∫
d2q

[
1

ε(q, 0)
− 1

]
eiq.r. (12)

According to Fig. 4(c), the induced charge density for FBW
follows the same form as the 2DEG, with an oscillatory
behavior (with wavelength ∼ π/kF ), which oscillates around

zero and decays with 1/r2 at large distances, as verified in the
inset of Fig. 4(c). The oscillation amplitude, however, strongly
decreases for narrower bandwidth.

IV. COMPARISON WITH TIGHT-BINDING MODELS

Here we verify if the attributes predicted by the toy model
are in agreement with the numerical calculations of simple
square and hexagonal lattices in tight-binding (TB) approx-
imation. The motive here is to check if simplifications such
as the extended flat band at large momenta or the cusp at
kc affect the qualitative picture. In the TB model, assuming
one orbital per basis, for the square lattice we have Ek =
−2γ [cos(kxa) + cos(kya)], and for the hexagonal lattice
we have Ek = −2γ [cos(kxa) + 2 cos(kxa/2) cos(kya

√
3/2)].

Here, a and γ denote, respectively, the lattice constant and the
nearest-neighbor hopping amplitude. We set γ to Ec/8 (Ec/9)
for the square (hexagonal) lattice. The panels in Fig. 5 clearly
show that the salient features predicted by the toy model are
indeed present in the TB calculations. These include the two
plasmon branches at large Ec, their merging for narrower
bandwidths, negative group velocity which appears close to
the Brillouin zone (BZ) edge, the increase in 	 with κ , the
kink in the static polarizability, and its evolution with the
bandwidth.

We observed in our numerical TB calculations that at
rather large Ec [> 7 eV for the parameters in Fig. 5(a)], the
second plasmon branch vanishes. To explain this, we note
that the singularity in the toy model polarizability, which
guarantees large-q plasmon existence, has its origin in flat
electronic energy dispersion at large electron momenta [notice
Eq. (8), which describes this singularity is obtained for q �
kc + kF , where Ek+q = Ec for all k � kF ]. For TB models,
however, at very large Ec, the electronic band at large elec-
tron momenta is quasiflat only in a narrow region close to
the BZ edges, and the large-q plasmon branch may vanish
depending on the relative positioning of the Fermi level and
bandwidth.
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FIG. 5. (a) The plasmon dispersion for the square lattice with κ = 2.5 and bandwidths Ec = 2.5 and 0.5 eV. (b) The plasmon dispersion
for a hexagonal lattice with Ec = 0.15 eV and κ = 2.5 and 1. The dashed lines in (a) and (b) denote the upper boundary of the PHC. (c) The
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V. CONCLUSION

In summary, we compute the dielectric function of a
2DEG with finite bandwidth. The dispersing plasmons include
modes which can arguably be immune to Landau damping
mediated by elastic and inelastic scattering. Moreover, the
dispersion has a quasiflat tail which can be extended to large
momenta. In the static limit, the FBW polarizability differs
from the 2DEG, especially in the large-momenta limit where
it saturates to a constant value as opposed to 2DEG where
it falls rapidly to zero. Moreover, the static Friedel charge
and spin-density oscillations due to a charged or magnetic
impurity embedded in FBW-2DEG are computed. The nonan-
alyticity at q = 2kF leads to Friedel oscillations with period
∼π/kF decaying as r−2 at large distances. The oscillation

amplitudes in induced charge increase with the bandwidth,
while the the amplitude remains intact in the induced spin
density.

Note added. Recently, we became aware of Ref. [30] in
which the authors discuss low-damped plasmonic modes in
narrowband electronic systems with the focus on twisted
bilayer graphene.
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