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Exact solution for the heat conductance in harmonic chains
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We present an exact solution for the heat conductance along a harmonic chain connecting two reservoirs at
different temperatures. In this model, the end points correspond to Brownian particles with different damping
coefficients. Such analytical expression for the heat conductance covers its behavior from mesoscopic to very
long one-dimensional quantum chains and validates the ballistic nature of the heat transport in the latter example.
This implies the absence of the Fourier law for classical and quantum harmonic chains. We also provide a
thorough analysis of the normal modes of system which helps us to satisfactorily interpret these results.
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I. INTRODUCTION

Fourier law in classical macroscopic systems is a well-
tested phenomenological statement for both liquids and solids.
It states that the heat flux density JE , which is the amount of
heat that flows through a unit area per unit time, can be locally
expressed as

JE = −κ∇T, (1)

where κ is the thermal conductivity and T the local tempera-
ture. This dependence on the temperature gradient implies that
if we connect two thermal reservoirs by a bar with thermal
conductivity κ , the heat flux will decrease with the length
of the bar. However, since the work of Rieder et al. [1],
it has been shown that modeling the solid connecting the
reservoirs as a harmonic chain leads to a heat flux which
is independent of the length of the bar. This implies that
the thermal conductance does not depend on the number
of oscillators, which is a characteristic of ballistic transport.
This behavior is known as anomalous heat conduction. Rieder
analysis however takes only classical effects into account and
relies on approximations on the coupling mechanism with the
reservoirs, white noise, and Gaussian statistics. An anomalous
temperature profile was also found along the bar. The temper-
ature of the bar is constant until we reach oscillators very near
its endpoints where it starts decreasing (increasing) and then
sharply increases (decreases) to reach the temperature of the
hot (cold) reservoir [1]. As pointed out by Refs. [2,3], this
result is believed to be a feature of integrable systems.

A large effort was made to take into account quantum
effects, different coupling mechanisms, mass disorder, and
go beyond the Gaussian approximation [2–18]. Of particular
importance is the work by Segal et al. [16] where numerical
studies using restricted Hartree-Fock methods have hinted
an 1/N dependence on the heat flux. However, the exact
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solution of a linear chain coupled with two distinct reservoirs
taking into account colored noise and non-Gaussian statistics
remains elusive [8,9]. For a review on the subject of transport
in one-dimensional systems, we refer to [11–13].

A second approach to the problem of heat conduction
through mesoscopic devices is based on Landauer theory
[19–28]. Changing the formalism of Landauer theory to
phonons, an expression for the heat conduction through a
molecular junction was derived [29–31]. Also based on the
quantization of the electrical conductance [32,33], a quantum
thermal conductance was proposed [29–31] and measured
experimentally soon afterwards [34].

A third approach which has gained a lot of momentum in
the last decade uses the formalism of dynamical semigroups
[35] to study one-dimensional chains described by the spin
1/2 XXZ and Fermi-Hubbard models [36–40]. For a review
on this approach we refer to Ref. [12].

In this contribution, we study the heat transport in meso-
scopic systems for both quantum and classical regimes fol-
lowing the first approach, that is, using quantum Brownian
motion formalism for open quantum system [35,41,42]. For
such, we consider a finite harmonic chain whose endpoints are
coupled to thermal reservoirs, held at different temperatures.
In Sec. II we present the model we use throughout the paper
and establish the expression which describes the exchange of
heat between the thermal reservoirs via the harmonic chain,
namely, the heat flux. In Sec. III we propose the method by
which we find an analytical solution for the thermal conduc-
tance in terms of an integral which can be solved numerically.
In Sec. IV we study the normal modes of our system when
the coupling constants are the same on both ends of the chain.
The discussion of different coupling constant is presented in
the Supplemental Material Ref. [43]. In Sec. V we show how
to perturbatively obtain an expression of the normal modes in
the limit of large number of particles in the chain. In Sec. VI
we present the closed analytical expression of the heat flux
through the harmonic chain for both quantum and classical
underling mechanics, and we discuss the thermal conductance
in the appropriate limit on which this quantity can be defined.
Finally, we present our conclusions in Sec. VII.

2469-9950/2020/102(12)/125401(8) 125401-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5089-1441
https://orcid.org/0000-0003-0638-6189
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.125401&domain=pdf&date_stamp=2020-09-01
https://doi.org/10.1103/PhysRevB.102.125401


WEIDERPASS, MONTEIRO, AND CALDEIRA PHYSICAL REVIEW B 102, 125401 (2020)

II. THE MODEL

The particular setup we use to describe our system is
schematically shown in Fig. 1. It is composed of a finite
chain of N particles of mass m, each of which is coupled
to its nearest neighbors by harmonic springs with frequency
ω0. Besides, the endpoint particles are also coupled to two
distinct thermal baths, L and R, held at temperatures TL and
TR, respectively. We then assume that the coupling between
the endpoint particles and the environments can be cast into
the well-known form of a particle coupled to a bath of
noninteracting harmonic oscillators [35,41,42] which, with a
specific choice of the so-called spectral function (see below),
has been used in the literature to describe quantum Brownian
motion. Therefore, the system’s dynamics is governed by the
Hamiltonian

H =
N∑

j=1

P2
j

2m
+

N−1∑
j=1

mω2
0

2

(
Xj+1 − Xj

)2

+
∑
a,i

[
p2

ai

2mai
+ mai ω

2
ai

2

(
qai − Cai Xa

mai ω
2
ai

)2
]
, (2)

where the sets {Xj, Pj} and {qai, pai} refer to the canonical co-
ordinates of the chain and both reservoir (a = L, R) particles,
respectively. We have also identified X1 := XL and XN := XR

in Eq. (2), in order to shorten the notation. Moreover, mai,
ωai, and Cai are, respectively, the masses, frequencies, and
coupling constants of each environment oscillator.

In order to ensure that the endpoints perform Brownian
motion, we have to model the spectral function, Ja(ω), of
each reservoir by

Ja(ω) := π

2

∑
i

C2
ai

maiωai
δ(ω − ωai ) = ηaω �(� − ω), (3)

where �(� − ω) is the heavyside function, � is a high
frequency cutoff, and ηa is the damping constant, which
shows up in the Langevin equation. Writing the Heisenberg
equations of motion for all the operators involved in (2) and
following the standard procedure to eliminate the environment
coordinates thereof [35,41,42], we end up with

Ẍ1 + ηL

m
Ẋ1 − ω2

0(X2 − X1) = FL(t )

m
, (4)

Ẍ j − ω2
0(Xj+1 − 2Xj + Xj−1) = 0, 2 � j < N, (5)

ẌN + ηR

m
ẊN + ω2

0(XN − XN−1) = FR(t )

m
, (6)

in the long time (� → ∞) approximation. Here, FL,R(t )
corresponds to fluctuating forces which average to zero and
possesses nonvanishing correlations, that is,

1

2
〈{Fa(t ), Fb(t ′)}〉

= ηah̄δab

π

ˆ ∞

0
dωω coth

(
h̄ω

2kBTa

)
cos(ω(t ′ − t ))

= ηah̄δab

2π

ˆ ∞

−∞
dωω coth

(
h̄ω

2kBTa

)
e−iω(t ′−t ), (7)

TL TR

X1 X2 XN

FIG. 1. Model of an harmonic chain coupled to thermal reser-
voirs at temperatures TL and TR. This chain is described by the set of
coupled equations (4)–(6).

for a, b = L, R. In Eq. (7), the angle brackets refer to the
thermal average (expectation value over the bath degrees of
freedom).

Similar versions of this model have already been studied
using white instead of the colored noise [17], Born-Markov
approximation (which fails to capture quantum effects like
entanglement [8,9,14]), numerical methods [16], or treating
the coupling perturbatively [15]. However, we here provide
an analytical solution for the heat flux along a chain connect-
ing two identical reservoirs at different temperatures, in the
stationary regime. Such expression provides a fully quantum
mechanical description of the heat transfer along the chain.

The stationary regime of this system is achieved when all
the energy transferred from the hotter reservoir to the chain
corresponds exactly to the entire energy transferred from the
chain to the colder reservoir. In other words, the total energy
of the chain must remain constant with time. Since the chain
energy is defined through the expectation value of the chain
Hamiltonian, that is,

Echain =
〈

N∑
j=1

m

2
Ẋ 2

j +
N−1∑
j=1

k

2
(Xj+1 − Xj )

2

〉
, (8)

it is easy to show, using Eqs. (4)–(6), that

d

dt
Echain = 1

2
〈{Ẋ1(t ), FL(t )}〉 − ηL

〈
Ẋ 2

1 (t )
〉

+ 1

2
〈{ẊN (t ), FR(t )}〉 − ηR

〈
Ẋ 2

N (t )
〉
. (9)

Since the coupling to both reservoirs dampens the chain
normal modes, these oscillators are expected to reach the
stationary regime for sufficiently long time regardless of their
initial configuration. In this case, the left hand side of Eq. (9)
vanishes and we can relate the heat flux from the left reservoir
to the left end of the chain, first line of Eq. (9), with the heat
flux from the right end of the chain to the right reservoir,
second line of Eq. (9). Thus, the heat flux from the left
reservoir to the right one can be defined as

JE = lim
t→∞

[
1

2
〈{Ẋ1(t ), FL(t )}〉 − ηL

〈
Ẋ 2

1 (t )
〉]

, (10)

= − lim
t→∞

[
1

2
〈{ẊN (t ), FR(t )}〉 − ηR

〈
Ẋ 2

N (t )
〉]

. (11)

Because all the normal modes die out for sufficiently long
times, the expectation value coincides with the thermal av-
erage.
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III. THE Z TRANSFORM

The scope of this work is to provide an analytic expression
for Eq. (10), hence it is convenient to assume the chain was
put in contact to both reservoirs in the far past, i.e., t → −∞.
Therefore, we can neglect the contribution from the oscillators
initial configuration, given that the normal modes decay after
some time. This allows us to solve Eqs. (4)–(6) via Fourier
instead of Laplace transform in time. Let us denote the Fourier
transform of the variables by a tilde on top of them, that is,

X̃ j (ω) =
ˆ ∞

−∞
Xj (t )eiωt dt . (12)

Therefore, the Heisenberg equations (4)–(6) become

ω2X̃1 + iωηL

m
X̃1 + ω2

0(X̃2 − X̃1) = − F̃L(ω)

m
, (13)

ω2X̃ j + ω2
0(X̃ j+1 − 2X̃ j + X̃ j−1) = 0, j �= 1, N, (14)

ω2X̃N + iωηR

m
X̃N + ω2

0(X̃N−1 − X̃N ) = − F̃R(ω)

m
. (15)

Equations (13)–(15) correspond to an eigenvalue problem
and, in order to solve it, let us define the operator valued
analytic function

X(z, ω) :=
N∑

j=1

X̃ j (ω)

z j
. (16)

This is the finite version of the so-called Z transform, which is
used in signal processing. From this definition, X(z, ω) must
vanish at infinity and cannot have any pole of order N + 1 or
higher at z = 0. The latter imposes that

ffi
X(z, ω)zN+ndz = 0, (17)

for any non-negative integer n. As a consequence of the
Residue Theorem, for any contour C that encloses z = 0, we
obtain

X̃ j (ω) = 1

2π i

ffi
C
X(z, ω)z j−1dz, 1 � j � N. (18)

After some algebra, one can show that X(z, ω) depends only
on the endpoint positions, X̃1 and X̃N as well as on the
fluctuating forces, F̃L and F̃R, i.e.,

X = 1

z2 − (
2 − ω2

ω2
0

)
z + 1

[(
z − 1 − iηLω

mω2
0

)
X̃1 − F̃L

mω2
0

− F̃R

mω2
0 zN−1

+
(

1 − z − iηRωz

mω2
0

)
X̃N

zN

]
. (19)

At this point, it is convenient to introduce the parametriza-
tion ω = 2 ω0 sin θ

2 . This redefinition simplifies the calcula-
tion of residues, given that the denominator can be expressed
in terms of Chebyshev polynomials of second kind, namely

1

z2 − 2z cos θ + 1
=

∞∑
n=1

sin(nθ )

sin θ
zn−1.

From that, we are able to express X̃ j in terms of X̃1 and F̃L,
that is,

X̃ j (ω) = X̃1(ω)

cos θ
2

[
cos

((
j − 1

2

)
θ
) − iηL

mω0
sin(( j − 1)θ )

]

− F̃L(ω)

mω2
0

sin((N − 1)θ )

sin θ
, 2 � j � N. (20)

Here, θ must be viewed as an implicit function of ω. Taking
j = N in Eq. (20), plugging it into Eq. (19), and imposing
Eq. (17), we are able to express X̃1 solely in terms of F̃L and
F̃R. Thus, the expression for X̃1 can be written as

X̃1(ω) = A(ω)F̃L(ω) + B(ω)F̃R(ω)

mω0 ωD(ω)
, (21)

with

B(ω) = − cos
θ

2
, (22)

A(ω) = 2iαR sin((N − 1)θ ) − cos
((

N − 1
2

)
θ
)
, (23)

D(ω) = sin(Nθ ) + 2i(αL + αR) cos
((

N − 1
2

)
θ
)

+ 4αLαR sin((N − 1)θ ), (24)

where we have defined the dimensionless relaxation constants
for each reservoir as αL,R := ηL,R/2mω0.

IV. NORMAL MODES

The chain normal modes can be obtained by setting the
fluctuating forces to zero in Eqs. (19) and (20) and imposing
the condition (17). This implies that the normal mode dis-
persion is given by ωD(ω)/B(ω) = 0, which is nothing but
the characteristic polynomial coming from Eqs. (13)–(15).
This means that ωD(ω)/B(ω) is as a polynomial of order
2N in ω. From Eq. (20), we can see that the zero-mode
ω = 0 corresponds to a rigid translation of the whole chain,
X̃ j (0) = X̃1(0), and does not contribute to the heat transport.1

The other 2N − 1 roots are the zeros of D(ω)/B(ω).
For the sake of simplicity, the analysis presented in this

section is restricted only to the case when αL = αR = α. For
the general case, we direct the reader to the Supplemental
Material [43]. For αL = αR = α, we have that

D(ω)

B(ω)
= − sec

θ

2

[
sin(Nθ ) + 4α2 sin((N − 1)θ )

+ 4iα cos

((
N − 1

2

)
θ

)]
, (25)

which is a quadratic polynomial in α. The roots of this
polynomial are two complex-valued transcendental equations,
whose solutions correspond to the normal mode dispersion
without the zero mode. They can be written explicitly as

α = i

2

[
sin

θ

2
+ tan

(
N − 1

2
θ

)
cos

θ

2

]
, (26)

α = i

2

[
sin

θ

2
− cot

(
N − 1

2
θ

)
cos

θ

2

]
. (27)

1The stationary heat current depends only on Ẋ1 and not on X1.
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Note that Eqs. (26) and (27) combined are completely equiv-
alent to D(ω)/B(ω) = 0, when αL = αR = α. Since Eqs. (26)
and (27) are implicit functions of ω, it is convenient to work
directly with θ , keeping in mind that ω = 2ω0 sin θ

2 .
Because α is real, we can clearly see that Eqs. (26) and (27)

admit no solution for θ ∈ R. This indicates that D(ω)/B(ω)
has no zeros in the real interval ω ∈ [−2ω0, 2ω0]. In fact, we
show in Ref. [43] that, for θ = ϕ + iξ and ϕ ∈ [−π, π ], the
zeros of Eq. (25) must lie inside the region

− 1

N − 1
ln

(∣∣∣csc
ϕ

2

∣∣∣ +
√

csc2
ϕ

2
+ 1

)
< ξ < 0. (28)

Moreover, the reality condition α = α∗ imposes that

α = i

2

[
sin

θ

2
+ tan

(
N − 1

2
θ

)
cos

θ

2

]
= i

2

[
sin

(
−θ∗

2

)
+ tan

(
−N − 1

2
θ∗

)
cos

(
−θ∗

2

)]
,

(29)

α = i

2

[
sin

θ

2
− cot

(
N − 1

2
θ

)
cos θ

2

]
= i

2

[
sin

(
−θ∗

2

)
− cot

(
−N − 1

2
θ∗

)
cos

(
−θ∗

2

)]
.

(30)

Therefore, if θn is a solution of Eq. (26), so is −θ∗
n . Equiva-

lently, if θn is a solution of Eq. (27), so is −θ∗
n . In terms of

ω, this means that if ωn := ω(θn) is a normal mode frequency,
so is −ω∗

n . This is a consequence of Xj (t ) = X †
j (t ) and holds

true even for the case when αL �= αR. To see that, let us
express the self-adjoint condition of Xj (t ) in terms of its
Fourier components X̃ j (ω) and use that X̃ j (ω) is an analytic
operator-valued function of ω, that is,

X̃ j (ω) = X̃ †
j (−ω) = X̃ j (−ω∗). (31)

This shows that both ωn and −ω∗
n contribute to the same

eigenmode.
Because roots with nonzero real parts always come in pairs,

{ωn,−ω∗
n}, there has to be at least one zero on the imaginary

axis of the ω plane. For imaginary values of ω, we have that
θ = iξ . Plugging it into Eqs. (26) and (27) gives us

α = −1

2

[
sinh

ξ

2
+ tanh

(
N − 1

2
ξ

)
cosh ξ

2

]
, (32)

α = −1

2

[
sinh

ξ

2
+ coth

(
N − 1

2
ξ

)
cosh

ξ

2

]
. (33)

Since the right hand side of Eq. (32) is a monotonically de-
creasing unbounded function, Eq. (32) always admits solution
for ξ < 0. On the other hand, the function on the right hand
side of Eq. (33) possesses a global minimum αc for ξ < 0
and only admits solution for α � αc. The critical value αc

corresponds to the transition between the underdamped case,
with only one root on the imaginary axis, and the overdamped
case, with three zeros on the imaginary axis. It turns out that
there is no explicit formula to αc, however from the inequality

1 <
sinh ξ

2 + coth
(

N−1
2 ξ

)
cosh ξ

2

− e− 1
2 ξ

< 1 − 2

(N − 1)ξ
, (34)

– 2.0 – 1.5 – 1.0 – 0.5 0.0
0.0

0.5

1.0

1.5

N = 10

FIG. 2. Normal mode frequencies on the imaginary axis.

we can show that

1

2
< αc <

1

2
exp

[√
4N − 3 − 1

2N − 2

]√
4N − 3 + 1√
4N − 3 − 1

. (35)

V. LARGE N EXPANSION

From Eq. (28), we see that the normal mode frequencies
which are not on the imaginary axis can be made arbitrarily
close to the real axis, the more we increase the number of
oscillators. In the limit of large N , we can use 1/N as the
expansion parameter and determine the roots of D(ω)/B(ω)
perturbatively in powers of 1/N . This however does not
necessarily capture all the roots on the imaginary axis since
some of them become nonperturbative, as shown in Fig. 2.
Because all nonperturbative zeros must lie on the imaginary
axis, we can deal with them separately. In this 1/N expansion,
we assume that θ can be written in the form

θ =
∞∑

k=1

ϑk

Nk
. (36)

Plugging Eq. (36) into the expression D(ω)/B(ω) and expand-
ing it in powers of 1/N gives us

D(ω)

B(ω)
= cos ϑ1{[(1 + 4αLαR) tan ϑ1 + 2i(αL + αR)]

+ 1

N
[ϑ2 (1 + 4αLαR − 2i(αL + αR) tan ϑ1)

+ϑ1(i(αL + αR) tan ϑ1 − 4αLαR)]} + O(N−2).

(37)

The normal mode dispersion is obtained by equating each
coefficient of this expansion to zero. Here, we restrict the anal-
ysis only to the first two terms. The leading order coefficient
gives us

tan ϑ1 = −2i(αL + αR)

1 + 4αLαR
= i

[(
αL − 1

2

)(
αR − 1

2

)
αLαR + 1

4

− 1

]
,

(38)
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and at order 1/N , we find

ϑ2 = 4αLαR − i(αL + αR) tan ϑ1

1 + 4αLαR − 2i(αL + αR) tan ϑ1
ϑ1,

ϑ2 = 16α2
Lα2

R − 2
(
α2

L + α2
R

)(
4α2

L − 1
)(

4α2
R − 1

) ϑ1. (39)

In the last line, we have replaced tan ϑ1 by the right hand side
of Eq. (38).

The expression (38) only admits solution on the imagi-
nary axis when αL, αR < 1/2 or αL, αR > 1/2. In fact, when
max(αL, αR) > 1/2 and min(αL, αR) < 1/2, the single root
on the imaginary axis become nonperturbative and cannot be
captured by the ansatz (36). Moreover, for αL, αR > 1/2, there
are three zeros on the imaginary axis and two of them become
nonperturbative. In the following, we consider the three cases
separately.

A. Underdamped case 1: αL < 1
2 and αR < 1

2

In this case, all roots are perturbative and we must get 2N −
1 solutions from Eq. (38). Thus, solving for ϑ1,

ϑ1 = nπ − iδ, (40)

for n ∈ Z, such that −N + 1 � n � N − 1 and

δ := arctanh

[
2(αL + αR)

1 + 4αLαR

]
. (41)

Therefore, the roots θn are of the form

θn =
[

1 + 16α2
Lα2

R − 2
(
α2

L + α2
R

)
N

(
4α2

L − 1
)(

4α2
R − 1

)](
nπ

N
− i

δ

N

)
. (42)

B. Underdamped case 2: min(αL, αR) < 1
2 and max(αL, αR) > 1

2

In this case, the imaginary root is nonperturbative and can
be written as

θ+ = −2i ln[2 max(αL, αR)]. (43)

For details check the SM [43]. The other 2N − 2 normal mode
frequencies are the solutions of Eq. (38), namely

ϑ1 = (
n + 1

2

)
π − iδ̃, (44)

for n ∈ Z, such that −N + 1 � n � N − 2 and

δ̃ := arccoth

[
2(αL + αR)

1 + 4αLαR

]
. (45)

The zeros for this case are

θn =
[

1 + 16α2
Lα2

R − 2
(
α2

L + α2
R

)
N

(
4α2

L − 1
)(

4α2
R − 1

)](
n + 1

2

N
π − i

δ̃

N

)
. (46)

C. Overdamped case: αL > 1
2 and αR > 1

2

Here, two of the imaginary roots are nonperturbative and
given by

θL = −2i ln(2αL ) and θR = −2i ln(2αR). (47)

Again, for details we refer to Ref. [43]. The other 2N − 3
roots are the same as in the case when αL, αR < 1/2, with the
exception of the pair of endpoint zeros, that is,

θn =
[

1 + 16α2
Lα2

R − 2
(
α2

L + α2
R

)
N

(
4α2

L − 1
)(

4α2
R − 1

)](
nπ

N
− i

δ

N

)
, (48)

for n ∈ Z, such that −N + 2 � n � N − 2. In Fig. 3, we
compare the numerical values for the roots of equation (25)
with the large N expansion, up to order O(N−3).

VI. THERMAL CONDUCTANCE

In this section, we provide an exact expression for the
heat conductance of a harmonic chain. Again, for calculation
details we refer to Ref. [43]. Plugging expression (21) into
Eq. (10) and using Eq. (7), we end up with the following
expression for the heat current

JE = h̄αLαR

π

ˆ ∞

−∞
dω

ωB(ω)B(−ω)

D(ω)D(−ω)

[
coth

(
h̄ω

2kBTR

)
− coth

(
h̄ω

2kBTL

)]
. (49)

Equation (49) presented this way is physically intuitive, since
the term in square brackets is nothing but the difference be-
tween the Bose-Einstein distribution function of the reservoirs
and the term multiplying it accounts for the normal mode
contribution, that is,

B(ω)

D(ω)
× B(−ω)

D(−ω)
∝

2N−1∏
n=1

1

ω2 − ω2
n

,

where ωn are the normal mode frequencies with the zero mode
removed.

The heat current (49) is an integral over the whole real
line in the variable ω. However, the integrand is an implicit
function of ω and it becomes convenient to express the integral
(49) in terms of θ . This means that the integration contour is a
curve in the θ complex plane, given that there is no real value
of θ that satisfies |ω| > 2ω0. Expressing θ as ϕ + iξ , we have
that

ω = 2ω0

[
sin

(ϕ

2

)
cosh

(
ξ

2

)
+ i cos

(ϕ

2

)
sinh

(
ξ

2

)]
. (50)

From this, we can see that both θ = −π ± iξ , with ξ > 0,
map into the negative branch cut (−∞,−2ω0). Equivalently,
the positive branch cut (2ω0,+∞) also has two preimages,
given by θ = π ± iξ , with ξ > 0. Therefore, there are four
possible ways to define the integral contour in the θ complex
plane and the final result must be independent of this choice.
In this work, we choose the contour C, shown in Fig. 4.

In terms of θ , the expression for the heat flux becomes

JE = 4h̄ω2
0αLαR

π

ˆ
C

dθ
sin θ

2 cos3 θ
2

[
coth

( h̄ω0
kBTR

sin
(

θ
2

)) − coth
( h̄ω0

kBTL
sin

(
θ
2

))]
[sin(Nθ ) + 4αLαR sin((N − 1)θ )]2 + 4(αL + αR)2 cos2

((
N − 1

2

)
θ
) . (51)
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FIG. 3. Contour plot of equation (25) with the roots approximated by the perturbative technique developed in Sec. V up to O(N−3). The first
line is plotted for N = 5 and the second for N = 10 and the blue (red) points are the perturbative (nonperturbative) roots. The approximation
up to O(N−2) of θn is linear and not able to account for the inflected curve of the distribution of poles.

It is not hard to show that Eq. (51) can be expressed either as the sum over all the integrand residues inside the contour C or
broken up into two real integrals. Here it is convenient to introduce the Debye temperature TD := 2h̄ω0/kB. This definition differs
slightly from the one in textbooks, since we are neglecting the contribution from transverse phonons.

Notice that the full expression for the heat flux (51) is not proportional to the temperature difference �T = TR − TL, but
it is instead proportional to the difference between the Bose-Einstein distributions of each reservoir. Nevertheless, when the
temperature difference �T is much smaller then the average temperature T = 1

2 (TL + TR) and the Debye temperature TD, the heat
current (51) becomes approximately proportional to �T , what allows us to introduce the one-dimensional thermal conductance
as

K = k2
BTD

2π h̄

αLαR

�2

ˆ
C

dθ
sin2 θ

2 cos3 θ
2 csch2

[
1

2�
sin

(
θ
2

)]
[sin(Nθ ) + 4αLαR sin((N − 1)θ )]2 + 4(αL + αR)2 cos2

((
N − 1

2

)
θ
) . (52)

Here, we have introduced the reduced temperature scale � = T/TD, which describes the system in the quantum regime when
� � 1 or classical limit � ∼ 1. In order to study the heat conductance without specific considerations about the materials, it is
useful to define dimensionless heat conductance K̃ = π h̄K/k2

BTD and express (52) as the sum of two real integrals as

K̃ = αLαR

�2

[ˆ π

0
dϕ

sin2 ϕ

2 cos3 ϕ

2 csch2
[

1
2�

sin
(

ϕ

2

)]
[sin(Nϕ) + 4αLαR sin((N − 1)ϕ)]2 + 4(αL + αR)2 cos2

((
N − 1

2

)
ϕ
)

−
ˆ ∞

0
dξ

sinh3 ξ

2 cosh2 ξ

2 csch2
[

1
2�

cosh( ξ

2 )
]

[sinh(Nξ ) − 4αLαR sinh((N − 1)ξ )]2 − 4(αL + αR)2 sinh2
((

N − 1
2

)
ξ
)
⎤⎦. (53)

As one can see from Fig. 5, the thermal conductance of
this model saturates for large N , which refers to a ballistic
transport. This was somewhat expected, since for large N
the normal mode frequencies approach the real axis, which
a characteristic of ballistic transport. Hence, we obtained
through the analytic expression (52) that the Fourier law
cannot be achieved for a harmonic chain without disorder.
This corroborates a well-known result in the literature of 1D
systems (see, for example, Ref. [3], and references therein)
which states that, due to the existence of several conserved
quantities, integrable systems always present ballistic heat
transport. The so-called normal transport, JE ∼ N−1, results
from the nonconservation of linear momentum due either to a
one-body pinning potential or inelastic (dissipative) effects.
Here we should remark that the dissipative motion of the

endpoints of our harmonic chain affects at most its boundary
effects.

VII. CONCLUSIONS

In this contribution we have analyzed the heat transport
between two thermal reservoirs kept at different temperatures
via a one-dimensional harmonic chain whose endpoints are
immersed in each reservoir. We have modeled the latter by
Brownian particles with different damping constants.

Making use of the Z transform we were able to provide
an exact solution to the problem which is valid for any
temperature T of each reservoir and number N of particles in
the chain. This solution is expressed as an ordinary integral
which depends on the thermal occupation number of the
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–

I

II

III

FIG. 4. Contour integration C in the complex θ plane.

harmonic modes coupled to the reservoirs and their frequency
distribution.

Numerical solutions of this integral for a small temperature
drop between the two reservoirs have shown us that the energy
transport is ballistic for large N at any typical temperature
scale of the reservoirs. In other words, the thermal conduc-
tance turns out to be independent of N . Actually, this signature
persists even for small N and high temperatures (T � TD). The
thermal conductance only presents a very modest dependence
on N in the extreme quantum regime (T � TD) for N � 10,
and, particularly, for the overdamped case when the motion of
the endpoints of the chain is heavily damped.

(a)

(b)

(c)

K

N

FIG. 5. Heat conductance given by equation (53) as a function of
N for different temperatures and damping parameters, i.e., (a) αL =
αR = 0.2, (b) αL = 0.2 and αR = 5, and (c) αL = αR = 5.

In the absence of the thermal reservoirs, energy is trans-
ferred from one end of the chain to the other through the chan-
nels provided by its normal modes, namely, its longitudinal
phonons. For example, an energy pulse is transmitted through
a coherent superposition of phonons with different frequen-
cies. When the chain is coupled to the reservoirs, these normal
modes acquire imaginary parts which are reminiscent of the
existence of the damped particles at the endpoints of the chain.
No matter what the real part of these frequencies are (they
range roughly from 2ω0 to πω0/N), their imaginary parts are
O(1/N ). Consequently, for macroscopic chains (very large
N), phonons are undamped and the energy transport is bal-
listic. The dependence of the thermal conductance on temper-
ature and damping parameters can be easily understood as we
analyze the transfer of energy from one reservoir to the other.

Suppose a few quanta of energy leave the left reservoir
which is supposed to be at higher temperature than the right
reservoir. This is firstly accomplished by depopulating the
equilibrium distribution of the particle at the left endpoint
of the chain. Subsequently, by the reasoning we have just
employed above, they are ballistically transported to the right
reservoir and tend to overpopulate the equilibrium distri-
bution of the particle at the right endpoint of the chain.
Since both endpoints are connected to thermal reservoirs,
this depopulation (overpopulation) of the left (right) reservoir
is compensated by the absorption (emission) of the missing
(excess) energy from (to) the left (right) reservoir. These
effects involving the equilibrium distribution of energy of
the particles at the endpoints of the chain are the only ones
responsible for the temperature and damping dependence of
the thermal conductance.

The argument we have used above is particularly valid
for N � 1 because, in this case, we can assume that the
equilibrium distribution of the particles at the endpoints of the
chain are very weakly affected by its remaining components.
In other words, the dependence we have discussed is mainly
a boundary effect. However, this ceases to be true as we
reduce the number of particles of the chain because now the
few eigenfrequencies of the system can be quite different
from the natural frequencies of oscillation of the endpoint
particles. This explains that modest dependence of the thermal
conductance on N which shows up only for N � 10 and low
temperatures.

Once this is understood we can safely claim that this
model, although very useful and interesting to be studied,
cannot account for the well-established Fourier law for ther-
mal transport in macroscopic systems. In order to achieve it,
we need to modify the present model by introducing either
disorder or inelastic effects to destroy the ballistic character
of the transport along the chain. In analogy with electric
transport through metallic wires, the former (latter) choice
would be equivalent to the presence of elastic (inelastic)
resistance along the wire.

Finally, it would be desirable to compare our results with
those measured in experiments of heat transport in nanoscopic
systems. A very good candidate to be studied would be, for
example, gold single-chain nanowires [44], which present a
geometrical structure very similar to our theoretical model.
Nevertheless, it is quite well known that thermal transport in
these systems are mainly due to electrons, contrary to our
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present analysis of phonon transport. Even if one is careful
enough to shield the system from the presence of electric
fields, they will be naturally generated in metallic systems
through thermoelectric effects. Therefore, for a faithful com-
parison with our findings, we need to either find an appropriate
device of insulating material or rely on the ingenuity of exper-
imentalists to properly select the effects of phonon transport in
tiny metallic chains. Moreover, to the best of our knowledge,
these experiments are mostly performed with the setup lying
on a substrate, which cannot be represented by our model.
Instead, these are more suitable for being modelled by a chain

of damped oscillators, a natural extension of the present work
that we plan to pursue in the near future.
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[36] M. Žnidaricč, Phys. Rev. Lett. 106, 220601 (2011).
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