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Conductance of gated junctions as a probe of topological interface states
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Energy dispersion and spin orientation of the protected states at an interface between topological insulators and
nontopological materials depend on the charge redistribution, strain, and atomic displacement at the interface.
Knowledge of these properties is essential for applications of topological compounds, but direct access to them
in the interface geometry is difficult. We show that conductance of a gated double junction at the surface of
a topological insulator exhibits oscillations and a quasilinear decay as a function of gate voltage in different
regimes. These give the values for the quasiparticle velocities along and normal to the junction in the interface
region, and determine the symmetry of the topological interface states. The results are insensitive to the boundary

conditions at the junction.
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I. INTRODUCTION

Topological materials [1-3] acting as components of super-
conducting or spin-based electronic devices promise metrics
exceeding current charge-based technologies [4—6]. These
functionalities are enabled by the spin-momentum locking of
the states localized at the interfaces between topologically
trivial and nontrivial compounds. The details of this spin tex-
ture as a function of the in-plane momentum control the types
of proximity-induced superconducting order [7,8], spin accu-
mulation under transport current [9,10], and the gap opening
under exchange fields [1,8]. Proposed applications of topolog-
ical insulators (TIs) commonly assume that the interface states
have the same linear Dirac-type dispersion and helical spin
texture as the states at vacuum TI termination [3]. Under this
assumption, once material advances eliminated contribution
of the bulk states and allowed tuning of the chemical poten-
tial [11,12], the interface-based devices should have become
achievable.

However, topological interface states (TIS) are not guaran-
teed to be similar to the surface states. Generically, interfaces
have lower symmetry than surfaces due to strain, lattice re-
construction, polar charge redistribution, broken bonds, etc.
Symmetry breaking (in the absence of fine tuning) simulta-
neously distorts the Dirac cone and breaks the helicity of the
topological states inducing an out-of-plane spin component
[13,14] thereby dramatically changing the response to the
exchange field [14] and types of the induced superconducting
orders [15]. Therefore, it is highly desirable to have straight-
forward tests of the symmetry breaking in the TIS.

Direct access (ARPES or scanning tunneling spectroscopy)
to the TIS is very challenging due to the capping material,
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and indirect optical measurements (e.g., Kerr rotation [5,16])
are often hard to interpret. Here we demonstrate that the dc
conductance in a gated double-junction setup for a topologi-
cal heterostructure, shown in Fig. 1(a), exhibits a quasilinear
variation in one range, and Fabry-Perot-type oscillations in
another range of gate voltages. The “kink” voltage at the edge
of the linear regime and the period of the oscillations give
the quasiparticle velocities parallel and normal to the junction,
and hence the dispersion anisotropy of the hidden topological
interface state. Symmetry considerations supported by model
calculations [13,14] dictate that this anisotropy is accompa-
nied by the tilting of the spins out of the plane of the interface.

The experiment we propose does not quantify the degree to
which spin is tilted away from the plane of the interface, and
only detects if this tilting is present. However, its advantage is
that it uses straightforward conductance measurements, and
is robust with respect to the scattering at the junction (see
below). Therefore, we believe that the proposed method can
be easily used to check whether the spins are helical and
whether the junction should exhibit behavior suggested by
simplified models. In addition, our analysis of the role of
junction scattering offers a clear perspective on the role of this,
inevitably present, phenomenon, on the topological properties
of prototype devices.

Previous studies considered Fabry-Perot—induced trans-
mission resonances in gated graphene junctions [17,18], but,
in contrast to that case, the physics discussed here relies on
the spinor structure of the TIS. Conductance oscillations were
predicted in the TI surface states subject to the exchange
field in the gated region [19,20], but those studies assume no
distinction between the interface and the surface states, and
ignore the scattering at lateral junctions, which we show to be
a critical consideration. Our proposal provides a quantitative
measure of symmetry-breaking effects intrinsic to the inter-
face. We also show that the results are robust with respect to
the details of the junction scattering [21].

The rest of the paper is organized as follows. In Sec. II
we explain our model, and the methods we use to ob-
tain the conductance. Section III gives the simplest possible
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FIG. 1. Double-junction setup for measuring the conductance
oscillations. Top panel: Schematics of the suggested measurement.
Bottom panel: View of the top surface of the structure with the Dirac
cones of the topological states, subject to the gate voltage V,. E is the
energy of a particle relative to the Dirac point.

example of a nontrivial junction, that with two distinct helical
Dirac cones, and elucidates the essential physics at play. The
symmetry-broken case is considered in Sec. IV, where we
focus on the information on the anisotropy of the Dirac cone
that can be extracted from the conductance measurements,
and its connection to the spin texture of the interface states.
Section V summarizes our findings, provides the context for
their interpretation, and discusses possible further advances.

II. LATERAL JUNCTIONS

Bulk-boundary correspondence guarantees the existence
of a localized state at the interface between a TI and a
nontopological material [1,2]. In the absence of time-reversal-
breaking perturbations, this state is generically gapless and,
at low energy, linearly dispersing with the momentum in the
plane of the interface k. Since the band inversion, which is
responsible for the topological properties of the TI, arises
from the spin-orbit interaction (SOI), the resulting states also
characteristically exhibit spin-momentum locking [1-3].

For prototypical TI Bi,Ses, the states at the surface ter-
minations along the high-symmetry directions ([111] in the

rhombohedral /[001] in the hexagonal representation) are de-
scribed by the effective Dirac Hamiltonian [22]

Hp = vi(0 x k), ey

where o is the vector of the Pauli matrices, Z is the normal
to the surface, v is the effective velocity, k is the momentum
in the x-y plane, and we set /i = 1. The eigenstates of Eq. (1)
have isotropic dispersion, £+ = =£wv,k, and are helical (spin in
the interface plane normal to the momentum direction), with
the spinor structure

ﬁth:k)=:(ng2)ég>, @

where 6 the angle between k and the x axis.

Once the rotation symmetry is broken either by a choice of
the lattice termination [13] or by the interface potentials [14],
the topological state is described by a generalized form of Hp,
namely,

Hy =) cijoikj, 3)
iJ

where the sum is over all the spin components i = x, y, z, but
the momentum is in the plane j = x, y, and the coefficients c;;
are real. The eigenstates of H; have anisotropic dispersion,

“

with nonhelical spin texture and spins that point out of the
plane if ¢;; # 0. It is important to note that this Hamiltonian
arises from the microscopic analysis, so that the terms lead-
ing to the anisotropy are /inear in k, and the coefficients c;;
are uniquely determined by the bulk properties and interface
potentials [14]. These potentials depend on the details of the
constituent materials and growth process, and hence a priori
are unknown. Therefore, for a generic interfacial topological
state, the anisotropic dispersion persists at low energies, in
contrast to the anisotropies induced in the surface states by
the higher order, in k, terms proposed [23], for example, for
Bi;Ses and Bi,Te; due to hexagonal warping of the crystal.
It is also important to note that the dependence of c¢;; on the
interface potentials is such that the Hamiltonian (3), reduced
to Dirac Hamiltonian (1), for the surface states, i.e., when any
of these potentials allowed by symmetry become large [14].

Given that there are six independent coefficients in Eq. (3),
complete characterization of a specific interface requires per-
forming several indirect measurements, and modeling the
results. A simpler, and more practical, question, is what
symmetries are broken at a specific interface, and what the
consequences of this symmetry breaking for the dispersion
and spin-momentum locking of the topological state are. This
is the task that, as we show, can be accomplished via con-
ductance measurements on lateral junctions, and below we
provide a detailed analysis of such a setup.

The choice of a lateral junction, surface state in prototypi-
cal TIs are well established, and therefore the parameter v; in
the surface Dirac Hamiltonian (1) is known. As we see below,
it is gating of the interface region that enables the information
on the symmetry breaking in the hidden TIS to be extracted
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from conductance measurements. In the following we assume
that the bottom surface of the TI is far enough to not hybridize
with the top surface, and therefore focus our attention on the
top surface near the contacts.

The two types of Dirac dispersion, for the surface and the
interface states, respectively, are shown in Fig. 1(b). We model
this junction by a piecewise Hamiltonian

(s woceti " ®

The propagating eigenstates in each region are
Wp(E, x,y) = Up(E, k) exp(ik - r), (6)
U,(E, x,y) = U(E, k') exp(ik’ - r). @)

HerejIVlD (E, k) is the spinor of the helical Dirac state, Eq. (2),
and W;(E, k) is the corresponding spinor for H;, which de-
pends on the choice of the coefficients ¢;;, and will be given
below for the specific cases we consider. The solutions of the
eigenvalue equation HW = EW are constructed by matching
these solutions at the boundaries.

The energy and the momentum along the junction [y axis in
Fig. 1(b)] is conserved, k,(E) = k;,(E). Since the Hamiltonian
is linear in k, and the momentum along the junction [y axis
in Fig. 1(b)] is conserved, the eigenvalue differential equation
along the normal (x direction) is of first order. Hence, the wave
functions need not be continuous [24-26], but, instead, at xy =
0, d have to satisfy

W(xy,y) = M¥(xg, ), ®)

where x(ﬁ)E denotes the side of the junction. Since spin is con-
served in scattering on nonmagnetic potentials, the form of
the matrix M, which connects the spinors on both sides of the
junction, relates the spin content of the transmitted, incoming,
and reflected states. The matrix M has to preserve the time-
reversal invariance of the Hamiltonian, i.e., [io,C, M] =0,
where C denotes complex conjugation. It also has to conserve
the particle current normal to the junction.

The particle current operator in each region is given j, =
8H /§k,. Therefore, for a piecewise defined Hamiltonian, the
current operator is also defined in each region, and the current
conservation at each junction demands that

(Wxg s WGy, 9)) = (P, 1, WG, )
= (VO M MW ) -
©))
It follows that the boundary matrix M must satisfy
MYj M = jf. (10)

For linear in k Hamiltonians j, is momentum independent.
Under these conditions Eq. (10) defines a single-parameter
family of matrices [27-29] M (). The physical origin of this
degree of freedom is that in the microscopic formulation time-
reversal invariance allows spin-independent potential barrier
at the junction. The height of this barrier (a priori unknown
and difficult to control in experiment) is encoded in the param-
eter . The exact relationship between the two can be derived

[30], but is not important for the discussion below. Assuming
that we cannot experimentally control the value of « at each
junction implies that we need to show that our predictions are
insensitive to it.

Below, for several choices of the symmetry of H;, we de-
termine the matrix M, and use it to compute transmission (7°)
and scattering (S) matrices (see Appendix). This yields the
transmission coefficient 7 (E, 0) as a function of the energy
E and the incident angle 6 for different gate voltages V, and
the boundary coefficients «, 8 at each junction. For a single
junction the transmission is dominated by Klein tunneling at
normal incidence, T (E, 8 = 0) = 1, irrespective of the choice
of ¢;j, a, B. The anisotropy of the Dirac states and details of
the junction potentials appear as very weak features for nearly
grazing angles, and therefore are not clearly manifested in the
conductance. These features, however, are brought to the fore
by the Fabry-Perot oscillations in the double-junction setup of
Fig. 1(a). We use the transmission coefficients for the double
junction to evaluate the low-temperature conductance using
Landauer formalism

G(V, 1 (7?2
(Ve) = —/ T(u,0)cosBdo, (1D
Gy 2 ) xp

where Gy = %Wkp, W the width of the junction, p is the
chemical potential, and the Fermi momentum is determined
from the dispersion of the surface states u = vikp.

Gating the interface state by the gate voltage V, changes the
size of the Fermi surface in the interface region [see Fig. 1(b)].
Together with the momentum conservation along the junction,
this enables directional-dependent probing of the Dirac cone.
The key to understanding the physics behind this directional
dependence is to recognize that there are two distinct regimes
of the behavior of the conductance as a function of V,. These
regimes are easily understood from the analysis of the sim-
plest cases, presented in the next section.

It is appropriate to comment on the potential experimen-
tally relevant aspects of the physics that are left out of this
model. First, we consider only the surface and interface states,
and neglect the contribution of the bulk bands. Since in exper-
iment the chemical potential can be tuned by alloying [11,12],
we believe that this regime is experimentally achievable. In
more general terms the applications of the TIs mostly rely on
eliminating, or substantially reducing, the bulk contributions,
and therefore we follow a well-trodden path in making this
assumption. Second, in some TIs a two-dimensional electron
gas (2DEG) forms after some time in the vacuum chamber
[31]. Potentially, this can be avoided by capping the TI with
a very large gap semiconductor, when the distortion of the
surface states is minimal [14]. Moreover, this 2DEG is formed
at energies of the order of the bulk gap, and therefore tuning
the chemical potential close to the Dirac point and using small
gate voltages ensures that it does not poison the conductance
measurements. The same small values of the gate voltage
relative to the bulk gap value ensure that we do not need
to consider hexagonal distortion that is cubic in the distance
to the Dirac point in the momentum space. Even though it
may lead to the out-of-plane tilting of the spins [23,32], such
cubic terms are not relevant at low energies. In all of the
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FIG. 2. Top view of a double junction with helical interface state.
Gating changes the size of the constant energy surface in the interface
region. Conservation of the momentum along the junction (dashed
line) implies that for V, > 0 only electrons occupying the surface
states at near normal incidence on the left side enter the interface
region, where they continue to propagate covering all incidence
angles for the right junction. In contrast, for V, < 0, all the electrons
from the surface states on the left can enter the interface region, but
then come at near normal incidence to the right junction.

following we restrict ourselves to parameters satisfying these
constraints.

III. HELICAL INTERFACE STATE
A. Conductance of gated junctions and the Dirac velocity

Most of the relevant physics can be inferred from consid-
ering the simplest possible case, where the interface state is
also helical, H; = v,(0 x k), as illustrated in Fig. 2. One
of the simplifications is that the matrix form of the particle
current operator in the direction normal to the junction is the
same in all regions defined by the Hamiltonian (5), namely,
Jj¥ = —vi20y. Substituting in Eq. (10) yields

M, = |2 explias,], (12)
v
U1 .

Mg = | — explifo,] (13)
%]

for the junctions at x = 0 and d, respectively, with «, B arbi-
trary real parameters. The form of the boundary matrix is easy
to understand if we realize that the rotations in the spin space
around the y axis leave the current operator j, invariant. The
ratio of the velocities ensures conservation of the probability
current.

The role of gating is qualitatively clear from Fig. 2, where
we graphically show the consequences of the conservation
of the energy E = vik = vk’ + V, (note that we plot only
V, < u since, in the low-energy theory, the physical picture is
symmetric with respect to V, = u, and we discuss corrections
to this picture separately below), and the momentum along the

J

junction
k sin@ = k' sin ¢, (14)

where 6 and ¢ are the directions of propagation of the quasi-
particles in the surface and interface regions, respectively. At
low temperatures, kT < p, we can set E = u for the quasi-
particles contributing to the conductance without loss of gen-
erality. For sizable positive bias V, > 0, only the particles at
near-normal incidence from the region x < 0 may enter the in-
terface region. The transmission for near-normal incidence is
close to unity, but the density of states in the interface region
is low due to small size of the Fermi surface, and is the
main limiting factor for transport. Consequently, we expect
the conductance to be essentially linear in the gate voltage
[ — V| in the vicinity of G(V, = ) = 0 (quasiparticle en-
ergy in the interface region tuned to the Dirac point), with
additional, weaker, variations due to the matching conditions
at the second junction x = d.

For sufficiently negative bias V, < 0, the momentum con-
servation dictates that all the incident quasiparticles from the
surface states travel nearly along the x axis in the interface
region. Consequently, we expect Fabry-Perot oscillations with
the phase acquired in this region, with maxima at

"= Vg

Kd="——d=mn, withn=0,1, ..., (15)
%)

corresponding to the periodicity with the gate voltage

TV
AV, ~ 72. (16)
Note that, because of Klein tunneling, the quasiparticles at
exactly normal incidence do not contribute to the oscilla-
tions. Therefore, the overall transmission is high [conductance
G(V,)/Go ~ 1], and we expect the amplitude of the oscilla-
tions to be a fraction of the total conductance, in contrast to
the usual Fabry-Perot interferometer. We see below that this
fraction, however, is substantial under realistic assumptions.
The crossover between the two regimes occurs when the
two Fermi surfaces are of the same size, at the gate voltages

Ve = £ vy/v), (17)

which we label “kink” voltages hereafter. For Vk(f) <V, <

Vk(” the density of states effects dominate, and the conduc-
tance is suppressed. Outside of this range the double junction
is highly transparent, and the oscillations due to the phase
acquired in the interface region are clearly observable.

Detailed calculations confirm these expectations, and allow
the analysis of their dependence on the boundary angles «
and B. Appendix A gives the details of the derivation of the
transmission coefficient by matching the wave functions at
both linear junctions, and yields

cos? 6 cos? ¢

- | cos ¢ cos £ (cos @ cosny — isinn, )+ sin £ [isin @ sin ¢ cos n_ — s(cos O sinn, +icosn)]|?’

(18)

where we denoted the phase accumulated while traversing the interface region { = k'd cos ¢, and introduced ny = o + 8 and
s = sgn(u — V,). This expression, together with Eq. (11), is used to evaluate the conductance for specific parameter values.
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FIG. 3. Conductance oscillations for v; = v, = 3.3 eV A, with
our choice of u = 0.02 eV, d = 40 nm. Note that the kink voltage
does not depend on the scattering parameters at the junction, see text.

We set the Dirac velocity of the surface state to its exper-
imental value [33,34] for Bi,Ses, [33,34] vi = 3.3 eV A. We
use © = 0.02 eV in most of our calculations, so that we stay
close to the Dirac point, and can ignore the hexagonal warp-
ing, bulk band transport, and possible formation of the 2DEG
at the interface. This choice gives kr = 6.6 x 103 AL,
Realistic device sizes then imply kpd > 1. In most of our
calculations we set d =40 nm (kpd ~ 2.4), which allows
coherent quasiparticle propagation across the gated region
according to the values of the mean-free path reported for
Bi,Te,Se;_, and Bi,Ses [35-37] (20 — 120 nm), and espe-
cially for u close to the Dirac point [38], but also consider
other values of d for the situation where this is relevant (see
below).

It is important to understand that the oscillations are
present even if the Dirac velocities in the two regions are
identical, v; = v,, as shown in Fig. 3. The gated region cre-
ates mismatch of the Fermi surfaces, and the conductance
shows the two regimes discussed above, namely, the linear
decrease near V, = p, and the oscillatory high-conductance
region away from that value. Importantly, Fig. 3 shows that
the kink voltage, in this case Vk(_) = 0 [cf. Eq. (17)], is insen-
sitive to the junction scattering parameters «, 8. For practical
purposes, we define this voltage as the intersect between linear
fit to G(V,) in two regimes. First, at greater V,, we average
the conductance over one oscillation period, and perform a
linear fit for the resulting values. Second, we extend the linear
G(Vg) near V, = . These lines are shown in Fig. 3, and their
intercept defines Vk(f). Even though the slope near V, = u
varies by about 20% as «, B vary, the intercept only changes
by about 5% across those values. We find the same behavior
for vy # v,; moreover, we find that the difference between the
kink voltages determined from the intercept for different «, 8,
and the value given by Eq. (17) decreases with the increased
mismatch of the Dirac velocities.

It is also clear from Fig. 3 that junction scattering changes
the phase of the oscillations at —V, > w, but leaves the pe-
riod unchanged, and we now show this in more detail by
comparing the results for v, = v; and v, = v;/2 in Fig. 4
for a select (nontrivial) choice of junction scattering. Arrows

1.2 + ‘V]/VQZZV—
VI =V
vi/va =2scaled - - -
1k
0.8 /|
/
o /\ = =
2 0.6
SRS
E‘ 0.1
04 | <
5005
3
02 = -
40 80 120
0 Freq (1/V)
—0.1 —0.08 —0.06 —0.04 —0.02
Ve (eV)

FIG. 4. Conductance as a function of gate voltage for the junc-
tion of helical Dirac states, with © =0.02 eV, =0, 8 = /6.
Main panel: Conductance G(V,) shows both the quasi-linear regime
around V, = p and oscillatory behavior away from it, separated by
the kink voltage, Vk(_), indicated by arrows for the two different
choices of the Dirac velocities. Rescaling V, by the ratio v, /v, makes
the plots identical. Inset: Fourier transform of oscillatory part of the
conductance, see text.

indicate the kink voltages determined from the intercept as
described above, and correspond very well to the values of
0 and 0.01 eV, respectively. Moreover, the plots for the two
cases coincide exactly after rescaling the gate voltage by the
ratio v, /vy, verifying that the Dirac velocity is the sole con-
trol parameter for both the kink voltage and the oscillation
frequency in the double junction. Inset shows the Fourier
transform of the oscillatory part of the conductance, and the
main peaks of the Fourier amplitude correspond very well
to the frequencies f; = 38.6 and 77.2 eV~! for v, = v; and
v1/2, respectively, obtained from Eq. (16). We also verified
that these frequencies are insensitive to the choice of the scat-
tering parameters or, equally important, to the exact choice of
the chemical potential u, as shown in Fig. 5.

0.2

o
—
9

Fourier Amplitude
o

0.05

0 — L
100

120
Freq (1/V)

140 160

FIG. 5. Lead frequency of conductance oscillations for different
values of «, 8, and p. Values of other parameters used: v; = 3.3 eV
Aand v, = 1.65eV A.
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Therefore, the profile of the conductance in a gated dou-
ble junction yields, for fully symmetric surface and interface
states, two distinct methods for evaluating the Dirac velocity
in the interface region: From the kink voltage Vk(f) =u(l —
v2/v1) and from the oscillation period AV, ~ mv,/d. In the
following section, we show that, for anisotropic, symmetry-
broken, interface states, the two methods give the values for
the Dirac velocity in the two orthogonal directions, parallel
and normal to the junction, and therefore can be used to quan-
titatively determine the anisotropy of the Dirac dispersion.
Before we do that it is helpful to understand better the origin
of the oscillations.

B. Transmission probability and conductance oscillations

We focus first on the negative gate voltages: While the sim-
ple low-energy theory is symmetric with respect to the Dirac
point, in many topological insulators of the Bi, X3 family the
Dirac point is close to the top of the valence band, making
this a natural choice. From Eq. (14) the direction along which
a quasiparticle travels in the interface region is
w— Vk(—)

k
sin¢g = I sinf = sinf. (19)

g
Therefore, for sufficiently large bias, compared to the kink
voltage, when p — V, > |u — Vk(7)|, we have sin ¢ < sinf,
and quasiparticles in the gated region move nearly normal to
the interface (see Fig. 2). If we set cos ¢ = 0 in the expression
for the transmission coefficient (18), we obtain
2
T cos 9. _ ’ (20)
cos2 6 cos? ¢ + sin® ¢ sin” @
where { =gy +a+p and o =k'd =ked(pn —V,)/ (0 —
Vk(f)). This yields an approximate analytical expression for
the conductance

G(V, U dx(1 — x? ~
(Ve) z/ M=) pleos?l, Q1)
Gy o 1 —x%cos?¢
with
1 =1 1+4x
Flx]=—+4+ ——In——. 22
=] x? + 20 1—x @2

Figure 6 shows that this expressions provides an excellent
agreement with our results. Equation (21) also explains why
inclusion of the boundary scattering gives simply a phase
shift at large gate voltages, and gives a seemingly universal
amplitude of the oscillations since the maxima and minima of
the function F are F[1] = 1 and F[0] = % respectively.

The evolution of the oscillations with the width of the gated
region is more complicated, however. For large V, assuming
normal travel in the gated region is justified everywhere in
Eq. (18) except in the Fabry-Perot phase ¢ = ¢ cos ¢, where
the small variations in the angle ¢ are multiplied by a poten-
tially large factor ¢y, leading to substantial variations in the
contributions to the conductance. Requiring ¢o(1 — cos ¢) K
7 yields a much more restrictive condition on the applicability
of Eq. (21), namely,

ked p— V)

L. 23
-1 < 23)

0.6 - —

041~ g=—/3, B=—n/4

021

Y p=0
- — numerical, Eq.(18)
021 ... approximate, Eq.(21)
ol \ I \ \
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

vV, (V)

FIG. 6. Comparison of numerical results with approximate con-
ductance from Eq. (21). Panels (a) and (b) differ by the choice of
o, B, but both are for u = 0.02 eV, v; =3.3 eV A, and v; = 1.65
eV A.

In the opposite regime of large d, the Fabry-Perot phase
oscillates rapidly relative to the variation of the incidence
angle sin ¢ ~ sin(¢g + a sin? 6), where ¢y, a > 1. Therefore,
we can obtain the approximate expression for the conductance
by first averaging over a period of the Fabry-Perot oscillations
in Eq. (21), i.e.,

G(Vy) N/I dx(1 — x?)
Go o 1 —x2cos?(¢o + asin®6)

1 ) 1 /7 dz b4
~ [ (1 —-xYdx|— — | == (24
0 7 Jo 1 —x%cos?z 4

This value of the conductance G/Gy ~ 0.79 is in a very good
agreement with the numerical results presented in Fig. 7. As
expected, the oscillation amplitude is significantly reduced in
this regime.

Qualitatively, if k’d > 1, the rapid oscillations of the
Fabry-Perot phase with the incidence angle 6 in Eq. (20) lead
to rapid variations of the transmission probability with 6, with
dominant contributions coming from the “angles of perfect
transmission” 7 = 1, which occur: (a) for normal incidence,
6 = ¢ = 0 (Klein tunneling); (b) when ¢ = k'd cos ¢ = nr,
corresponding to the incidence angles

. ="V 2 nr \ 2
sin“ 0,(u) = orkr — kp_d e [0,1]. (25

The number of such angles for a given voltage is deter-
mined by

2
L‘g)>ﬂ> L‘({i) —1. (26)
w—V, krpd w—V

It is obvious that the allowed values of n here strongly depend
on the magnitude of krd. Figure 8 shows a graphical solu-
tion of Eq. (25) for the cases of small (kpd < 1) and large
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FIG. 7. Small-amplitude conductance oscillations as a function
of gate voltage in the large kpd limit. Here © =0.02 eV, a =
B=0,v,=33eVA, and v, = 1.65 eV A. Inset: At greater gate
voltages the conductance G/Gj is close to the value of 0.79 obtained
analytically in Eq. (24).

(kpd > 1) gated region length. In the former case [Fig. 8(a)],
the perfect transmission maxima only occur in narrow ranges
of the gate voltages, which become more and more widely
separated as V, increases. For a long gate there are sometimes
several such maxima at gate voltages close to the chemical
potential [see Fig. 8(b)]. In principle, as V, increases, at large
n we cross over to the well-separated maxima regime akin to
that of Fig. 8(a) since the displacement of parabolas varies
as n?, but whether this regime is reached for experimentally

[l

nl
/

b)

0 Veu

FIG. 8. Location of the transmission maxima. (a), (b) Show
parabolas in the right-hand side of Eq. (25) for large and small
gate length d. The function must be in the [0,1] interval (shaded)
to have a solution for 6,. The corresponding ranges (w,, shown by
thick horizontal lines) of gate voltage V, for different orders n do
not (do) overlap for small (large) values of d. AV, is the interval
between the appearance of two successive (generally aperiodic and
nonsinusoidal, see text for details) oscillations.

(@  d=40nm, V, = —0.162 eV (b) d = 1.5 pum, Vy = —0.08376 eV
d =40 nm, V) = —0.155 ¢V — — d=1.5 pm, V, = —0.08386 ¢V — —
/2

J—

0.75—

0.5+

0,25~

—/2 —7/2

FIG. 9. Polar plot of transmission probability as a function of the
angle of incidence for different width of the gated region d. V, are
chosen in the oscillatory regime and red and blue curves correspond
to the closest maxima and minima of the conductance. We used
w=0.02eV,v; =33eVA,v,=165eVA,a=0,and 8 =0.

relevant parameter values depends on the specifics of the
material.

The general behavior of the transmission coefficients for
different choices of kpd are shown in Fig. 9. Note that
for smaller gated length 7'(0) is generally featureless, with
maximum at normal incidence. As the gate voltage is swept
from minimum to the maximum of the conductance, the
transmission coefficient at every angle changes accordingly
[see Fig. 9(a)], in agreement with Eq. (20). For larger kpd
[Fig. 9(b)], transmission maxima appear at angles 6,. These
angles are shifted as the gate voltage varies, leading to small
amplitude of conductance oscillations in this regime.

The entire behavior of the conductance as a function
of both voltage and the incidence angle is summarized in
Fig. 10. At small to moderate values of krd [Fig. 10(a)],
the periodic pattern or large-vs-small transmission at finite
incidence angles is very clear, with deep troves in-between. As
this parameter becomes greater, however, see Fig. 10(b) where
we considered greater values of u and V, to bring out the
features more clearly, multiple transmission peaks are present,
the number of such peaks depends on the gate voltage, and the
oscillation amplitude, which is the weighted integral of T'(9),
is reduced.

In summary, here we showed that, given knowledge of
the surface state dispersion in a topological insulator v, we
can determine the Dirac velocity of the quasiparticles in the
(inaccessible to surface probes) interface region from the
behavior of the conductance of a double junction using ei-
ther the kink voltage [Eq. (17)] or period of the oscillations
[Eq. (16)]. For the current generation of topological insulators
such as Bi,Ses, to stay well below the bulk gap we estimate
the maximal value of the gate voltage V, < 0.13 eV (taking
half of the gap value as the rough guide), implying that the
chemical potential should stay below about half of that value
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FIG. 10. Transmission probability as a function of the angle of
incidence and the gate voltage V, forv; = 3.3 eV A, v, = 1.65eV A,
anda=B=0@) nu=0.02eV,d =40 nm, (b) u =02¢eV,d =
10 pum.

to ensure sufficient range of oscillations u < 0.06 eV, trans-
lating into kr < 2 x 1072 A. Therefore, the values of roughly
d < 10% A correspond to small gate, while d > 5000 A cor-
respond to large gate regimes. The nature and origin of the
oscillations are slightly distinct between the two regimes,
and we provided both analytical and numerical evaluations of
both.

Crucially, our results are insensitive to the boundary scat-
tering at lateral junctions, and therefore applicable for a wide
range of techniques of sample preparation. We now show that
this seeming redundancy in determining v, can be used to
quantitatively determine the anisotropy of the interface Dirac
states when the symmetry is broken in the interface region.

IV. NONHELICAL INTERFACE STATES

The above analysis was for a system with the simplest
possible effect of the interface: Velocity renormalization of
the helical states. The key question is whether the interface
states with broken rotational symmetry (and therefore non-
helical) can be detected and characterized by the proposed
method. The answer is affirmative, and we give the details
here. Reference [14] gave the symmetry analysis of all possi-
ble interface state Hamiltonians linear in k [see Eq. (3)], and
we focus on the most interesting case considered there. When
the spin-rotation invariance is broken, the residual symmetry
of Hj is reduced to the B, representation of the C;, symmetry
group, the Dirac dispersion becomes anisotropic, with ellip-
tical constant energy contours, and the spins of the interface

states point out of the plane of the interface. To capture these
effects, we consider

H; = vy(ocky — aoyky) + vaboky, 27

equivalent to that analyzed in Ref. [14]. In simple models
the values of a,b depend on the interface potentials, and
generically, without fine tuning, b # 0 whenever a # 1. For
a =1, b =0 we recover the helical interface state case dis-
cussed in the previous section. The energy dispersion of Hj,

Ey(ky, ky) = vo,/(a® + bP)kZ + k}z,, (28)

is anisotropic, with elliptical constant energy contours.
It is convenient to introduce the following notations:

k= /(@ + b2+ k2, (29a)
tann = k (29b)
"= etk
b
tanyy = —. (29¢)
a

Then, the eigenvector of the interface Hamiltonian H; +
Vel, corresponding to the eigenvalue E. 4V, is given by

1
/2 —2 cosn siny

8 <smn +i cosn cos 1//>. (30)

1 —cosn sinyr

Uy (Ey + Ve k) =

The eigenstate is nonhelical, and the spins tilt out of the
plane of the interface, with the maximal out-of-plane po-
larization is b/va? + b*> =siny at k, = 0. In Eq. (27) we
made the natural assumption that symmetry breaking (e.g.,
due to strain) yields the principal axes for the ellipse which are
parallel and perpendicular to the interface. The spins acquire
a nonzero out-of-plane component for b # 0.

As discussed in the previous sections, for each choice of
the interface Hamiltonian, we need to derive the appropriate
boundary conditions, conserving the particle current normal
to the interface. Here, at the left interface in Fig. 1, we have
Jx = —vioy, while j = v,(—aoy + bo,), so that the matrix
M, satisfying Eq. (10) has the form

ML((X)Z \/z:j[a2+b2]l/4

x | cos ﬂe"“”“ — i sin ﬂaxe”’“"" . (3D
2 2

Here, « is the parameter encoding the potential scattering
at the junction. Similarly, for the right junction Mg(B) =
[Mi(—B)1~". We then compute the transmission coefficient
and the conductance as described above.

The main features of the conductance as a function of V,,
shown in Fig. 11, are similar to those for the simple inter-
face considered in previous section. When the Dirac point is
close to the chemical potential G(Vy) is quasilinear due to the
reduction in the density of states. For large mismatch of the
Fermi surfaces between the surface and the interface regions,
we observe the conductance oscillations. However, the two
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FIG. 11. Conductance for the nonhelical interface state for
v /v = % Main panel: Determination of the kink voltage. Dotted-
dashed lines: Average of oscillatory G(V,); dashed line: Extrap-
olation; arrows indicate Vk(_). Dotted line: Slope of G(V,). Inset:
independence of the initial slope and the kink voltage of the con-
ductance on the ellipticity and nonhelicity parameters a, b.

regimes are now controlled by the Fermi velocities in different
directions.

Recall that the kink voltage Vk(i) corresponds to the maxi-
mal magnitude of |V, — u| for which the conservation of the
momentum along the junction still allows transmission for any
incidence angle [see Eq. (14)]. As the quasiparticle velocity
along the junction in the interface region is v, [see Eq. (28)],
the kink voltage depends only on that value, and is still given
by Eq. (17). Figure 11 indeed shows that the kink voltage ob-
tained from the full numerical evaluation is in agreement with
that value, and only weakly depends on the junction scattering
parameters o, 8. In contrast, the initial slope dG/dVglly,= is
more sensitive to these parameters. Figure 11(b) also confirms
that the kink voltage is completely insensitive to the choice of
the anisotropy parameters a and b.

In the oscillatory regime, as discussed in the previous sec-
tion, a good approximation for the conductance oscillations is
obtained by assuming that in the interface region the quasi-
particles propagate nearly normal to the junction. Therefore,
the relevant velocity is vF5* = va+/ a? + b2, and we expect the
leading oscillation frequency to be given by the corresponding
modification of Eq. (16), namely,

d d
=4 - . (32)
s TRy mupat + b2

Indeed, the lead frequency of the Fourier transform of the
conductance oscillations, plotted in Fig. 12, shows an ex-
cellent agreement with this expression. It is also essentially
independent of the junction scattering.

Consequently, in the more general case considered here,
measurements of the kink voltage and the lead frequency of
the conductance oscillations give the values for the quasipar-
ticle velocities in the interface region along and normal to the
interface, respectively, this giving a quantitative measure of
the anisotropy (or lack thereof) of the topological states in the
otherwise inaccessible interface region.

a:LO‘ .
140 ¢ a=20 o 1
a=033 o
f=4 1
~ 120 s Viia i
=
2 100 - i
E T T
= © a=02,b=1234
2 80 = a=0.5,b=1.146 |
”éb 5015t a=10,b=0.75 i
T 60 < o1 f \ |
51 [ 5 1
H 5 005 | \ i
59
40 0 LA
40 50 60 70 80
. Freq (1/V)
20 L L L L L
0 0.5 1 1.5 2 2.5 3
1/Vb*+a?

FIG. 12. Leading frequency obtained by Fourier transform of the
conductance oscillations depends only on v<*, for various values of
a, b. The relation of this frequency to a, b, and thus to vz*, is shown
in Eq. (32). Inset: Same lead frequency for different values of a, b.

V. DISCUSSION AND CONCLUSIONS

In summary, we addressed here a problem of general in-
terest for prototypical topological devices. The functionality
of such devices relies on interface, rather than the surface,
topological states, but the interface potentials may break the
full rotational symmetry of the low-energy topological states
already at the level of linear, in the momentum, terms in the
effective Hamiltonian. Given that the interface states are not
easily accessible by spectroscopic probes such as STM or
ARPES, the question of how to detect this broken symmetry
is relevant and timely. Symmetry breaking of the interface
states has implications for a wide variety of devices of in-
terest that depend on using topological states from TI-based
ferromagnetic devices to TI-based Josephson junctions which
have been shown to host the famous zero-energy Majorana
fermions.

We showed that the conductance of a gated mesoscale dou-
ble junction at a surface of topological insulator can be used
to quantitatively determine the anisotropy (or lack thereof) of
the quasiparticle dispersion normal to and along the junction
in the (otherwise hidden) interface region. We demonstrated
that the features we use to extract these parameters, the
kink and the period of Fabry-Perot—type oscillations of con-
ductance as a function of gate voltage, are robust against
scattering at the junctions, and independent of the exact
location of the chemical potential, provided the bulk band
contribution to the conductance and other experimentally con-
trolled extrinsic effects remain small.

While the broken rotational symmetry of the interface
states indicates that these states are nonhelical and, generally,
in the absence of fine tuning, require out-of-plane spin tilt
of the topological states, the measurement we propose does
not directly detect this out-of-plane spin component. A dif-
ferent set of measurements, possibly under applied magnetic
field, is required to do this, and will be addressed separately.
However, observation of the anisotropy in the quasiparticle
dispersion for the topological states would in itself be an
important step toward understanding, further analyzing from
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the first-principles perspective, and ultimately controlling, the
topological interface properties for prototype devices.
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APPENDIX A: HELICAL INTERFACE STATE

In this Appendix, we detail the 7- and S-matrix based
methods used to calculate transmission probability.

To begin we recall that the Hamiltonian of the gated double
junction is given by

v1(o x k), if x < O region I,
H=1]wnxk)+V, if0<x<dregionll, (Al)
vi(o x k), if x > d region III.

We can write the eigenvectors for positive energy E, in differ-
ent regions as

A . i B i
W, — el(kx)c+k,-y)< : > et(kx)chkyy)( y >’ (A2)
! \/Z 69 \/E e ’

C .oy i D ., i
_ i(k x+kiy) ) i(—kx+kyy) )
= \/ze <S€l¢> * \/Ee <—se"¢>’
(A3)

E . i F i
I\ i(kex+kyy) ' i(—kyx—+kyy) )
1 _ﬁe oif + _ﬂe et

In the latter equations we used k|, = k, due to translational
invariance along the y direction and defined s = sgn(u — Vg).
Before preceding to solve the boundary conditions at x = 0
and d junction it is convenient to define the matrix

). (A4)

l-etk cos Ox iefzk cos Ox

ik cos 6x e—i@ e—ik cos 9x> . (AS)

1
P(k,Q,X,S):_(seige s

V2

We notice that for different parameters x, 6 and s in the matrix
P make its columns the eigenvector components in the differ-
ent scattering regions. Returning to the boundary condition at
the first junction (x = 0), we notice that

Mp(a)¥(0,,y) =¥(0_,y),
M[l((x)P(k, 6,0, 1)<2> =P, 9,0, S)<g> (A6)

Similarly, at the second junction (x = d),

Mr(B)¥m(d+,y) = Yuld-, y),
M,;l(ﬂ)P(k/, ¢,d, S)(S) =Pk,0,d, l)<i) (A7)

Using the above two boundary conditions one can write

(I’f:) =P '(k,0.d, DM " (B)P(K . p.d. )

x Pk, ¢, 0, s)M; (a)P(k, 6,0, 1)(2), (A8)

and from the equation above we can identify the transmission
matrix (7 matrix), where

T= P (k0,d, DM (B)P(K . $.d.s)

x PNk, 9,0, )M, (@)P(k,0,0,1).  (A9)

Here we note that the presence of the junction potentials mod-
ifies the 7 matrix, from its conventional form with M, ) =
My '(B) = I, where I is the identity matrix, via the matrices
M[l (a) and My (B) which encapsulate the scattering sources
via @ and B at their respective junctions. The 7 matrix is
related to the scattering matrix (S matrix) by
<311 312) _ <—7§1/7§2 7—12/T22>
Su Sn) \ UTH Ti2/Tn)
The elements of the & matrix allow us to determine the
transmission and reflection coefficients of the multijunction
scattering problem, such that r = Sj; and r = ;. Finally,
the trzansmission probability is given by T =1 — [r]> =1 —
(S =

(A10)

APPENDIX B: NONHELICAL INTERFACE STATE

In this Appendix we detail the method used to calculate
the transmission probability for the junctions with nonhelical
state. The Hamiltonian for our setup is given by

vi(o x k)

vy (oyk], — aoyk))
+v2bo k. + V,
vi(o x k)

if x < 0 region I,
(B1)

if 0 < x < d regionII,
if x > d region IIL.

In the main text, eigenenergy of region II was
written as  Ex(k}, k) = £oov/ (@ + DKZ + k7 4V, =
Ey (k;, k;) + V, and the energy eigenfunction as

—i sinn + cosn cos Y

~ , i
Yu(Es, k') = . (M)
\/62 — 2€ cosn sin i 4+ 1 \ Zisinn+cosycos v
(B2)
where € = Z&&) _ 11 anq n, ¥ are defined in Eq. (29).

While this notation is analytically convenient, we switched to
a different notation while calculating transmission probability
for numerical efficiency. We outline the steps below. Consider
the expressions below rewritten using Eq. (29):

€ —cosn sin Yy k'e — bk,
— = — (B3)
—isinn+cosncosy  ak, — ik
—i si ak! — ik,
i sinn+cosncosy x Y (B4)

V€2 —2¢ cosn siny + 1 NN = 2€bk;.

We now define K = v/(ak.)* +k?, ¢ by €% = (ak. +
ik))/K, so Ei=+v,K\/[bcos’(p)/al®>+ 1+ V,. Using
these we can rewrite Eqgs. (B3) and (B4) as

€ —cosn sin i¢|:Ei -V,
=e

b
— = — —cosg |, (BS)
—i sinn + cosn cos Y 1K a
—i sinn 4 cosn cosy '

e'?

V€2 —2ecosnsiny +1 B ﬁ\/%\/%zg —SGCOSQDI
2 2

(B6)
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With these definitions we can write the nonhelical Hamilto-
nian Hy as

Ho — vng cosg +V,
= —ie'Kv,

ie‘i‘”sz
. (B
—vggK cosg + Vg> (B7)

The latter Hamiltonian is characterized by the eigenval-
ues £y = 4u:K\/[b cos?(p)/al® + 1 + V. Considering the
positive eigenenergies, its associated eigenspinor for E, =
02K /[ cos?(p)/al? + 1 + V, is given by

- i
\IJ+(¢7 b/a) = N+(¢7 b/‘”(dw[ﬂ _ SCOS w])v (B8)

sz

where
1
VB (B~ o)

In the regions I and III the eigenstates are given in
Egs. (A2) and (A4), respectively, while in the region II the
eigenstates are

(B9)

Uy = Cfl;ieik’(cos yx+sinyy) + D{r,reik/(— cos yx+sinyy) (B10)
where we have defined

U, =V, (g, b/a), U, =W, (7 —g¢,bja).  (BIl)

N, is given in Eq. (B9), y corresponds to the angle be-
tween momentum k' and the x axis. The eigenvector with
coefficient C is traveling toward the right while the one with
coefficient D is traveling toward the left after reflecting from
region III.

In this case, we need to define an independent matrix for
the nonhelical region with columns consisting of the eigen-
states in this region, where

Px) = (q,ieik/x cosy lire—ik’x cosy), (B12)

where @i,, are given in Eq. (B11). With this definition the
boundary condition at the first junction at x = 0 becomes

M((x)P(O)(lC)> = P(k,0,0, 1)<2>,

where matrix P is defined in Eq. (AS5). Similarly, at the second
junction x = d,

(B13)

M(ﬁ)P(d)(lg) — P(k.0.d. 1)(1’3). (B14)

Finally, we can relate the coefficients at the two ends of the
system, such that

(ﬁ) = Pk, 0,d, DM(BYP(d)YP~(0)

xM ™ (a)P(k, 6,0, 1)(2), (B15)

and this implies that the 7 matrix is

T= P '(k,0,d, DMBYP@)P ' (OM '(2)P(k, 6,0, 1).
(B16)

From the 7 matrix one can obtain the S matrix as previ-

ously shown. Then, the transmission probability is given by

T =1—|S»|%. By integrating the transmission probability,

one can obtain the conductance of the device, which is as
shown in the main text.
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