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We present a numerical investigation of the performance of the micropillar cavity single-photon source in
terms of collection efficiency and indistinguishability of the emitted photons in the presence of non-Markovian
phonon-induced decoherence. We analyze the physics governing the efficiency using a single-mode model, and
we optimize efficiency ε and the indistinguishability η on an equal footing by computing εη as function of the
micropillar design parameters. We show that εη is limited to ∼0.96 for the ideal geometry due to an inherent
tradeoff between efficiency and indistinguishability. Finally, we subsequently consider the influence of realistic
fabrication imperfections and Markovian pure dephasing noise on the performance.

DOI: 10.1103/PhysRevB.102.125301

I. INTRODUCTION

Within the fields of optical quantum computation [1] and
communication [2], a key component is the single-photon
source [3,4] (SPS) capable of emitting single indistinguish-
able photons on demand. The figures of merit include the
efficiency ε defined as the number of detected photons in
the collection optics per trigger as well as the indistinguisha-
bility η of consecutively emitted photons, as measured in a
Hong-Ou-Mandel experiment, and their product εη governs
the success probability of the multiphoton interference ex-
periment [5,6]. The spontaneous parametric down-conversion
process [7] has for a long time been the workhorse for single-
photon generation within the quantum optics community.
While simple to implement experimentally, its main drawback
is its probabilistic nature preventing multiphoton interference
experiments with more than a handful of photons.

As alternative, the semiconductor quantum dot (QD) em-
bedded in a host material [8] has emerged as a promising plat-
form for scalable optical quantum information processing. As
a two-level system, the QD allows for deterministic emission
of single photons and also entangled photon pairs [9] through
the spontaneous emission process. However, for QDs in a bulk
material the high index contrast at the semiconductor-air in-
terface reduces the collection efficiency to a few percent. The
collection can be improved by placing the QD in a structured
environment [3,4] directing the light towards the collection
optics. Design schemes allowing for vertical emission with
high efficiency include the photonic nanowire [10–12] design
with ε of ∼0.7 and the “bullseye” [9,13–16] planar circular
Bragg grating design with ε of ∼0.85 [15]. These designs
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feature broadband (>50 nm) spectral operation which allows
for easy spectral alignment of the QD and the cavity lines.
However, a drawback of the broadband approach is the pres-
ence of the phonon sideband in the photon emission spectrum
arising due to interaction with the solid-state environment
even at zero temperature. These photons are distinguishable
and constitute around 10% of the total emission, and while
they can be filtered out, this occurs at the price of reduced
efficiency. Another drawback is the proximity of the QD to
the fluctuating charge environment [17] of semiconductor-air
surfaces, which again compromises the indistinguishability.

The most successful SPS design so far is the microcav-
ity pillar [16,18–20] featuring a QD in a vertical λ cavity
sandwiched between two distributed Bragg reflectors (DBRs).
Almost 20 years ago, Barnes et al. proposed a model [21]
to quantify the efficiency in terms of the Purcell factor,
from which one finds that the efficiency can be improved
either by enhancing the cavity Q factor or by reducing the
mode volume. A practical challenge for the QD-based SPS
is the random spatial and spectral distribution of typical
Stranski-Krastanov-grown QDs, and important technological
developments were the demonstrations of in situ lithography
[22] and QD imaging techniques [14] allowing for deter-
ministic QD position control as well as Stark tuning [20]
to ensure the spectral alignment. The micropillar SPS then
relies on narrow-band Purcell enhancement to ensure efficient
emission into the cavity mode, where the narrow bandwidth
(∼0.2 nm) enables a funneling of photons into the zero-
phonon line (ZPL) and suppression of the phonon sideband
allowing for high indistinguishability without any filtering.
Additionally, the QD is less subject to charge noise due to
a larger separation between the QD and the surfaces. These
assets have led to the simultaneous demonstrations [19,20] of
pure (g2(0) < 0.01) single photon emission from micropillars
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combining near-unity (>0.98) indistinguishability with ex-
traction efficiency of ∼0.65. While, for circular micropillars
half of the emitted light is lost in standard resonant excitation
cross-polarization setups [19,20] where polarization filtering
is used to suppress the laser background, this loss can be
avoided using more advanced techniques like spatially orthog-
onal excitation and collection [23] or two-color resonant [24]
or phonon-assisted [25] excitation.

The question now arises of how the micropillar SPS ex-
traction efficiency can be improved while maintaining high
indistinguishability. Whereas charge noise can be effectively
suppressed using metal contacts [20,26], phonon-induced
decoherence is not avoided even at zero temperature [27]
and must be taken into account in the optimization. The
efficiency can be improved by increasing the mirror reflec-
tivities leading to a larger Q factor and in turn an increased
Purcell factor. However, even if one disregards unavoidable
fabrication imperfections limiting the maximum achievable
Q, a fundamental obstacle is encountered arising from the in-
teraction with the phonon bath: While the cavity improves the
indistinguishability in the weak coupling regime, increasing
the Purcell factor to improve the efficiency will eventually
bring the QD-cavity system into the strong coupling regime,
which is detrimental to the indistinguishability. Specifically,
in the strong coupling system, the system undergoes vacuum
Rabi oscillations [28], which causes the emission spectrum
to split into two hybrid polariton states. However, in the
presence of phonon coupling, the phonon-induced transitions
between the upper polariton state and the lower polariton state
strengthen the decoherence of the system, and hence decrease
the indistinguishability [29]. There is thus an inherent trade-
off [30,31] between the achievable efficiency and indistin-
guishability in the presence of phonon-induced decoherence.
Consequently, an optimization of the micropillar SPS design
requires accurate modeling of the efficiency as well as the
indistinguishability subject to phonon-induced decoherence
on an equal footing, and such a study, to our knowledge, is
still absent in the literature.

In this work, we perform an investigation of the achievable
performance of the micropillar geometry in terms of efficiency
and indistinguishability. Our theoretical method is based on
two steps: First, we use a Fourier modal method [32,33] to
rigorously calculate the efficiency allowing for direct insight
into governing physics described here using a single-mode
model. Subsequently, we use the calculated optical proper-
ties of the cavity as parameter inputs to a non-Markovian
master equation, which is used for evaluation of the photon
indistinguishability [30,31]. This master equation accounts for
non-Markovian phonon scattering as well as dephasing from
charge noise. The influence of the sidewall roughness is also
included as an additional phenomenological scattering rate.
For realistic parameters of dephasing and sidewall roughness,
we provide design specifications for an optimized micropillar
SPS with performance significantly improved compared to
state-of-the-art.

This paper is organized as follows: We introduce the
micropillar geometry and the design recipe in Sec. II. The
details of the optical and microscopic modeling are provided
in Sec. III. We present our analysis of the micropillar perfor-
mance and our results in Sec. IV, which we discuss further

FIG. 1. Illustration of the micropillar SPS design consisting of a
λ cavity sandwiched between two DBRs. The QD, represented by the
red dot, is placed at the center of the cavity. The coupling parameters
β and γ of the single-mode model, cf., Sec. III A, are schematically
shown.

in Sec. V followed by a conclusion. The Appendix contains
additional details of the modeling.

II. MICROPILLAR GEOMETRY

In this work, we investigate the micropillar cavity illus-
trated in Fig. 1 consisting of a QD placed in the center r0

of a λ cavity. Light is confined vertically by the DBRs and
laterally by total internal reflection. We consider an asym-
metric structure with larger number nbot of layer pairs in
the bottom DBR than the number ntop in the top DBR to
suppress leakage of light into the substrate. In the following,
we fix the number of layer pairs nbot = 40 and study the SPS
performance as a function of pillar diameter d and of ntop. We
choose GaAs for the cavity material and GaAs/Al0.85Ga0.15As
for the DBR pairs as this choice avoids the oxidation of pure
AlAs. For our design wavelength of λ0 = 895 nm, we use a
refractive index for GaAs of 3.5015 (T = 4 K) and an index
for Al0.85Ga0.15As of 2.9982 [34]. For each pillar diameter
considered, the thickness of the layers is chosen [35] such
that the resonance matches the design wavelength λ0. Thus
the cavity thickness is given by λ0/neff , whereas the DBR
layer thicknesses are chosen as λ0/(4neff ), where neff is the
diameter-dependent effective index of the fundamental mode
of the section. For pillar diameters above ∼2.5 μm, the layer
thicknesses are very close to those of the 1D geometry and
are given by 64 nm, 75 nm, and 256 nm, respectively, for the
GaAs and Al0.85Ga0.15As layers in the DBR and the GaAs
cavity.

III. NUMERICAL MODEL

Our numerical model consists of an optical simulation
performed using a Fourier modal method to determine the
efficiency combined with an open quantum systems mas-
ter equation approach to evaluate the indistinguishability of
the emitted photons in the presence of realistic decoherence
effects.
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A. Optical modeling

We model the QD as a classical point dipole pδ(r − r0)
with in-plane orientation and harmonic time dependence with
frequency ω in resonance with the cavity mode. To deter-
mine the efficiency, we compute the total emitted power P =
ω
2 Im[p∗ · E(r0)] as well as the power coupled to the lens PLens,
where we take into account an overlap with a Gaussian mode
to model the coupling to a single-mode fiber, as discussed in
Appendix 2. The collection efficiency ε is then determined as

ε = IC
PLens

P
, (1)

where IC is a correction factor (cf., Sec. III C) taking into
account the presence of fabrication imperfections.

While the collection efficiency is rigorously described
by Eq. (1), this expression does not provide detailed un-
derstanding of the governing physics. For this reason, we
also introduce a single-mode model [4,21] to determine the
single-mode efficiency εs. The model describes the efficiency
in terms of the spontaneous emission β factor given by the
power PC coupled to the cavity mode over the total emitted
power P = PC + PR, where PR is the power coupled to all
other modes. In the weak coupling regime, the β factor can
be written in terms of the Purcell factor Fp as

β = PC

PC + PR
= Fp

Fp + PR/P0
, (2)

where P0 is the power emission for a bulk medium. From
Eq. (2) it is clear that β can be improved by increasing the
Purcell factor, which can be achieved by enhancing the cavity
quality factor Q or by reducing the cavity mode volume.
The second parameter of the model is the transmission γ =
PLens,C/PC, where PLens,C is the power coupled to the lens from
the cavity mode alone again taking into account an overlap
with a Gaussian profile. Our single mode model now describes
the efficiency simply as the product εs = βγ as illustrated in
Fig. 1.

The calculations of β, γ , and ε are performed using an
open-geometry Fourier modal method [32,33]. Based on an
eigenmode expansion of the optical field, the method provides
direct access to the cavity mode contribution to the electric
field strength EC(r) allowing for immediate evaluation of
PC and PLens,C, see Appendix 1 for further details. Finally,
the spontaneous emission rate into the cavity 	C is com-
puted from the classical power PC using the relationship [36]
	C/	0 = PC/P0, where 	0 is the spontaneous emission rate in
a bulk medium.

B. Microscopic modeling

We describe the QD in a solid-state environment as a two-
level system, with a ground state, |0〉, and an excited state,
|e〉, coupled to both photon and phonon environments. The
cavity mode is described by a bosonic annihilation operator, a,
coupled to the QD with a rate, g. The Hamiltonian describing
the dynamics of the emitter and cavity is thus given by

H0 = h̄ω|e〉〈e| + h̄ωca†a + h̄g(a†σ + aσ †), (3)

where ωe and ωc are the QD transition frequency and the
cavity resonance, respectively, and σ = |0〉〈e| is the dipole

operator of the QD. The cavity loss due to coupling with
electromagnetic modes outside of the cavity is described by
the Hamiltonian

Hc,EM = h̄
∑

l

(ωA,lA
†
l Al + hA,l a

†Al + H.c.), (4)

where Al is the bosonic annihilation operator of the lth en-
vironmental mode in the cavity loss channel, with frequency
ωA,l and coupling strength hA,l to the cavity mode. Using the
cavity escape rate κc = ωc/Q describing the Markovian cavity
decay into all Al modes, we compute the QD-cavity coupling
strength as g = 1

2

√
	Cκc. Similarly, the coupling of the QD to

optical radiation modes is described by

He,EM = h̄
∑

l

(ωB,l B
†
l Bl + hB,lσ

†Bl + H.c.), (5)

where Bl is the bosonic annihilation operator of the lth en-
vironmental mode in the radiation reservoir of the QD, with
frequency ωB,l and coupling strength to the emitter hB,l . The
emitter-phonon coupling is described by

HP = h̄
∑

k

[νkb†
kbk + gk|e〉〈e|(bk + b†

k )], (6)

where bk is the annihilation operator for the phonon mode
with momentum k, frequency νk , and coupling strength to the
emitter gk . The total Hamiltonian is thus given by

H = H0 + Hc,EM + He,EM + HP. (7)

1. Indistinguishability

The indistinguishability of the photon is calculated through
the two-color spectrum as [30]

I = P−2
S

∫ ∞

−∞
dω

∫ ∞

−∞
dν|S(ω, ν)|2. (8)

This two-color spectrum is defined as

S(ω, ν) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt ′〈E†(t ′)E (t ))〉ei(ωt−νt ′ ), (9)

where E is the operator corresponding to the detected electric
field. The frequency-integrated spectral power, PS, is defined
as

PS =
∫ ∞

−∞
dωS(ω,ω). (10)

To calculate the two-color spectrum, we use a polaron master
equation, which is described in the following.

2. Master equation

Following previous work [28,30,31,37], we make use of
the Born-Markov master equation in the polaron frame. As-
suming that the emitter and cavity are resonant (ωe = ωc), the
polaron master equation for the reduced density operator of
the cavity-emitter system, ρ, is (in a reference frame rotating
with the resonance frequency, ωe)

∂tρ = −i[grX̂ , ρ] + κcD(a) + 	D(σ )

+ 2γdD(σ †σ ) + Kph(ρ). (11)
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Here, gr = gB is a renormalized emitter-cavity coupling
rate. The renormalization factor is given by B = 〈B±〉0

and B± = exp[±∑
k g2

k/νk (b†
k + bk )], where 〈x〉0 =

Z−1Tr[xe− ∑
k h̄νk/(kBT )b†

kbk ] denotes the expectation value
with respect to the thermal phonon state, where T is
the temperature, kB is the Boltzmann constant, and
Z = Tr[e−∑

k h̄νk/(kBT )b†
kbk ] is the partition function. The

symbol D[x] = xρx† − {x†x, ρ}/2 denotes the Lindblad
dissipator; 	 represents the Markovian emission rate into the
radiation modes, Bl , and γd is the pure dephasing rate. The
phonon dissipator is written as [30]

Kph = −g2([X̂ , X̂ρ]χX +[Ŷ , Ŷ ρ]χY+[Ŷ , Ẑρ]χZ +H.c.),
(12)

with X̂ = σ †a + σa†, Ŷ = i(σ †a − σa†), and Ẑ = σ †σ −
a†a. The coefficients are

χX =
∫ ∞

0
dτ�XX (τ ),

χY =
∫ ∞

0
dτcos(2grτ )�YY (τ ),

χZ = −
∫ ∞

0
dτ sin(2grτ )�YY (τ ),

(13)

with the phonon correlation functions �XX (τ ) =
〈BX (τ )BX 〉 = B2[sinh ϕ(τ ) − 1] and �YY (τ ) = 〈BY (τ )BY 〉 =
B2 cosh ϕ(τ ) with BX = (B+ + B− − 2B)/2 and BY =
i(B+ − B−). Here, ϕ(τ ) is given by [37]

ϕ(τ ) =
∫ ∞

0
dω

J (ω)

ω2

[
coth

(
h̄ω

2kBT

)
cos(ωτ ) − i sin(ωτ )

]
,

(14)

where the phonon spectral density is J (ν) = ∑
k |gk|2δ

(ν − νk ) = αν3 exp(−ν2/ν2
c ) with α being exciton-phonon

coupling strength and νc = √
2vc/L denoting the cutoff fre-

quency [38], where vc and L are the speed of sound and
the size of the QD, respectively. Here, the exciton-phonon
coupling strength α depends on the QD material and on the
cutoff frequency νc, which itself is related to the size of the QD
[39]. The Franck-Condon factor, B2, can be written compactly
in terms of this function as B2 = e−ϕ(0).

The master equation, Eq. (11), allows us to calculate the
two-color spectrum, S(ω, ν). This is done by first calculating
the dipole spectrum,

S0(ω, ν) =
∫ ∞

0
dt

∫ ∞

0
dτei(ω−ν)t e−iωτ

× GP(τ )〈σ †(t + τ )σ (t )〉, (15)

where GP(τ ) = B2eϕ(τ ) is the free phonon Green’s func-
tion and the two-time dipole correlation function, 〈σ †(t +
τ )σ (t )〉, is evaluated using the quantum regression theorem
with Eq. (11). From this dipole spectrum, the detected field
spectrum is calculated as [30]

S(ω, ν) = GF(ω, ν)S0(ω, ν) + G∗
F(ν, ω)S∗

0 (ν, ω), (16)

where

GF(ω, ν) = (κc/2)2

(iω − κc/2)(−iν − κc/2)
(17)

10-7
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Q=400    

FIG. 2. Emission spectrum showing the zero-phonon line and the
phonon sidebands at T = 4 K. Dashed curve: Q = 400 and Fp = 2;
solid curve: Fp = 20 and Q = 16 000. Parameters: α = 0.03 ps−2 and
h̄νc = 1.4 meV following Ref. [30].

is an optical two-color Green’s function connecting the dipole
with the field emitted from the cavity. In the Purcell regime,
where g 	 κc, the indistinguishability can be approximated
by the expression

I 
 	t

	t + 2γt

[
B2

B2 + F (1 − B2)

]2

, (18)

where 	t = 4g2/κc + 	 is the total Purcell-enhanced
spontaneous emission rate of the QD, γt = γd +
2π (gr/κc)2J (2gr ) coth(h̄gr/kBT ) is a phonon-enhanced
pure dephasing rate, and F is the fraction of photons in the
phonon sideband not eliminated by the cavity [30].

Through narrow-band Purcell enhancement, the micropil-
lar SPS ensures an efficient emission into the cavity mode,
where the narrow bandwidth (∼0.2 nm) enables a funneling
of photons into the ZPL and a suppression of the phonon
sideband allowing for high indistinguishability without any
filtering. To illustrate this influence, we show the spectra
S(ω,ω) for a low Q and a high Q micropillars in Fig. 2 both
exhibiting a narrow peak and a broadband base corresponding
to the ZPL and the phonon sideband, respectively. We observe
that the high Q micropillar leads to a broadened ZPL as a
result of the large Purcell factor and a suppression of the
phonon sideband.

C. Modeling of fabrication imperfections

While the figures of merit of the micropillar SPS can be
computed accurately using the formalisms presented above,
the influence of unavoidable fabrication imperfections leading
to discrepancy [40,41] between the prediction of the mod-
eling and the experimentally measured performance should
be taken into account. The imperfections can be described
phenomenologically by introducing additional loss channels
due to sidewall roughness and material absorption [42]. The
quality Q factor is then written as [18,43]

1

Q
= 1

Qint
+ 1

Qedge
+ 1

Qabs
, (19)

where the intrinsic Qint is computed for the perfect structure
[41], and Q−1

edge and Q−1
abs represent the contributions to loss

125301-4



MICROPILLAR SINGLE-PHOTON SOURCE DESIGN FOR … PHYSICAL REVIEW B 102, 125301 (2020)

103

104

105

 1  2  3  4

(a)

Q

d (μm) d (μm)

d (μm) d (μm)

ntop =17
21
25

 0

 180

 360

 540

 1  2  3  4

(b)

F p

ntop =17
21
25

 0.76

 0.84

 0.92

 1

 1  2  3  4

(c)

β

ntop =17
21
25

 0

 0.5

 1

 1  2  3  4

(d)
γ

ntop =17
21
25

FIG. 3. Computed cavity Q factor (a), Purcell factor Fp (b), and
spontaneous emission β factor (c) as well as the transmission γ (d) to
the lens as a function of pillar diameter d for different numbers of
layer pairs ntop in the top DBR. The ideal structure with γd = κ = 0
is considered.

from sidewall scattering and material absorption, respectively.
Since Fp is linearly proportional to Q, the introduction of im-
perfections leads to a corrected Purcell factor given by F c

p =
Fp(Q/Qint ) and in turn a corrected β factor βc = F c

p /(F c
p +

PR/P0). We then model the correction IC to the efficiency in
the presence of imperfections as IC = βc/β. Moreover, the
corrected indistinguishability is obtained by evaluating the
decay rate κc = ω/Q in Eq. (11) using the Q given by Eq. (19).

We model the sidewall scattering using a phenomeno-
logical model [42] discussed in Appendix 4, where κ is a
phenomenological constant proportional to the sidewall scat-
tering rate Q−1

edge. The effect of material absorption loss can

be modeled either using Q−1
abs in Eq. (19) or by introducing

an imaginary part [41,44] to the refractive index. However,
the effect of material loss is typically negligible [41,44] in
micropillars with Q factors below ∼105 and is thus ignored
in this work.

IV. RESULTS

In this section, we first present calculations of the single-
mode model parameters to elucidate the physics governing the
collection efficiency, after which we present results from full
simulations of the efficiency and indistinguishability taking
into account fabrication imperfections. All calculations are
performed at a numerical aperture (NA) of 0.82 for the
first lens. Following Ref. [30], we use the parameters h̄νc =
1.4 meV and α = 0.03 ps2 corresponding to a typical QD of
size 25 nm [39].

A. Analysis using the single-mode model

We first present the cavity Q factor as function of the
pillar diameter d and of the number of layer pairs ntop in
the top DBR in Fig. 3(a) for the ideal structure. An increase
in ntop leads to a higher reflectivity resulting in an increased

cavity Q factor. For large diameters, the Q factor approaches
the value of a planar cavity whereas for short diameters it
drops due to poor modal overlap of the HE11 mode in the
cavity section and the corresponding Bloch mode in the DBR
sections. Oscillations are observed for the largest values of
ntop arising from coupling [35,41,45] with higher-order Bloch
modes of the DBRs. This behavior is also observed for the
Purcell factor Fp illustrated in Fig. 3(b), where the reduction of
the pillar diameter d and in turn the mode volume additionally
leads to an overall increase in Fp until the drop of the Q
at around d ∼ 1.2 μm sets in. As expected, the increase in
the Purcell factor Fp is directly reflected in the calculated
spontaneous emission β factor presented in Fig. 3(c). How-
ever, the observed oscillations in β are not originating from
variations in Q but rather from diameter-dependent variations
in the emission PR to background modes, and they are reduced
in magnitude with increasing Fp in agreement with Eq. (2).
While the best coupling β to the cavity is obtained for the
diameter of ∼1.1 μm corresponding to the maximum Purcell
factor in Fig. 3(b), the transmission γ presented in Fig. 3(d)
for this d is modest due to its highly divergent output beam
profile [46]. As the diameter increases, the divergence is
reduced and γ is improved. Also, where β is maximum
for ntop = 25, an increasing top mirror reflectivity leads to
an increasing leakage of light into the substrate and thus a
reduction of γ for ntop = 25 as shown in Appendix 5.

We thus observe that there exists a tradeoff between the
coupling β to the cavity and the transmission γ to the lens.
Since the efficiency is the product of the two, one may ask if
the overall performance can be optimized by choosing a large
diameter and by increasing the reflectivity of both DBRs while
keeping nbot comfortably larger than ntop to avoid leakage of
light into the substrate. In the following, we will see that this
is not the case.

B. Analysis using the full model

Having established our understanding of the variations of
β and γ , we now present the collection efficiency computed
using the full model Eq. (1). As shown in Appendix 3,
excellent agreement between the single-mode model and the
full model is observed, and the variations in the efficiency
can thus be fully understood from the behavior of β and γ .
The collection efficiency ε = βγ is presented in Fig. 4(a)
for the ideal structure without fabrication imperfections. The
reduction in ε for low diameters due to the drop in γ is
clearly observed, and we observe that an efficiency of ∼0.95
is obtained in a broad regime for diameters above ∼2 μm and
ntop ∼ 21.

The computed indistinguishability η in the presence of
phonon-induced decoherence for the otherwise ideal structure
is shown in Fig. 4(b). The computed indistinguishability ini-
tially increases from 17 to 21 layer pairs as the influence of
dephasing is overcome by the increase in Fp in agreement with
Eq. (18). However, for ntop � 21 the high Q factor results in
significant drops in η for decreasing pillar diameter d due to
the onset of the strong coupling regime (4g � κc) detrimental
to the indistinguishability [30]. This drop becomes more
pronounced as ntop increases and the decay rate κc decreases.
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FIG. 4. Computed efficiency ε (a) and indistinguishability η

(b) versus pillar diameter d for different layer pairs ntop in the top
DBR for the ideal geometry with γd = κ = 0.

To answer our previous question, we realize that the
increase of bottom mirror nbot layer pairs to increase the
transmission γ for ntop � 25 may improve the efficiency but
will simultaneously bring us even further into the regime of
strong coupling detrimental to η. On the other hand, a good
performance with η > 0.995 is obtained in a regime at the
boundary of strong coupling, in the case of ntop = 21 for d
larger than ∼2 μm. Overall, η is increased towards unity by
decreasing κc and by increasing the diameter, which should be
chosen sufficiently large to ensure weak coupling. However,
as shown in Figs. 3(b) and 3(c) the increase in d ultimately
leads to a reduction in efficiency. An optimization of the
micropillar performance in terms of ε and η is thus necessary
to identify the optimal performance.

C. Optimization

To optimize the efficiency and indistinguishability on an
equal footing, we consider as figure of merit the product
εη presented for the ideal case without charge noise and
sidewall roughness in Fig. 5(a). Here, by directly reading
the maximum of εη in the numerical simulation, the best
performance of εη ∼ 0.95 is obtained for ntop = 21 at various
peak d positions in the interval [2,4] μm, where the observed
variations are direct reflections of those for the β factor in
3(b). In this regime, we have ε ∼ 0.95 and η ∼ 0.997, in
good agreement with the performance optimum identified in
Ref. [30].

We now introduce imperfections initially in the form of
a finite dephasing rate h̄γd = 0.086 μeV [47] due to non-
phononic Markovian decoherence mechanisms, e.g., charge
noise due to an unstable charge environment [17]. Compared

 0.6

 0.8

 1(a)
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εη

ntop =17
21
25

 0.6

 0.8

 1(b)
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εη
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(c)

SR+CN

εη
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 0.9
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η
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SR+CN

 0.96

 0.98

 1

 1  2  3  4

ntop =21

η
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FIG. 5. The computed figure of merit εη as a function of pillar
diameter d for different layer pairs ntop in the top DBR for (a) the
ideal case, (b) in the presence of charge noise (CN) only, and (c) with
both charge noise and sidewall roughness (SR) present. The insets
compare the indistinguishability in the three cases for ntop = 21.
Parameters: h̄γd = 0.086 μeV; κ = 0.2 μm.

to the ideal case, the indistinguishability is reduced by the
additional charge noise decoherence mechanism. As shown in
the inset of Fig. 5(b), the reduction in η increases with d due to
the corresponding reduction in the Purcell factor in agreement
with Eq. (18). The resulting figure of merit εη is shown in
Fig. 5(b), where εη is reduced to ∼0.94 for ntop = 21 and d ∈
[2,3.25] μm, where ε ∼ 0.95 and η ∼ 0.99.

As a second element of imperfection, we now also take
sidewall roughness into account by introducing a relatively
large phenomenological constant κ = 0.2 μm [18], and the
results are plotted in Fig. 5(c). We observe that a maximum
εη of ∼0.93 is obtained for ntop = 21 and d ∈ [3.05,3.9]
μm, where ε ∼ 0.945 and η ∼ 0.98. Whereas the charge
noise only influenced the indistinguishability, the sidewall
imperfections are detrimental to both ε and η through the
reductions in IC and Fp due to the decrease in Q. The reduction
of η is shown in the inset of Fig. 5(c), where the impact of the
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increase in sidewall scattering Q−1
edge with decreasing diameter

is directly observed.
While charge noise can be overcome by increasing Fp, this

ultimately will lower η due to the onset of strong coupling.
Similarly, while the effect of sidewall imperfections is reduced
for increasing pillar diameter, this also leads to a decrease in
Fp and in turn the efficiency. The detrimental effects of charge
noise and sidewall imperfections thus cannot be completely
overcome in the design process alone, and they should be ad-
dressed in the fabrication, e.g., by introducing metal contacts
[20] for charge stabilization and using a reduced Al content in
the DBRs to avoid oxidation.

V. DISCUSSION

While our simulations identify geometrical parameters
leading to predicted performance significantly beyond state-
of-the-art, the exact performance obtained experimentally will
depend on unknown experimental parameters. Even though
the exciton-phonon coupling strength α and the cutoff fre-
quency νc are QD dependent, previous investigations have
revealed that the optimum cavity linewidth for maximum
indistinguishability is independent of the QD size in the
10–40 nm range [39]. Furthermore, the magnitude of the
Markovian noise term as well as the unavoidable fabrication
imperfections influence the performance. Nevertheless, our
study reveals that the diameter range from 2.5 to 4 μm for
the ntop = 21 configuration leads to the optimal micropillar
SPS performance, and in our study, this conclusion is again
not altered by the presence of realistic pure dephasing or
fabrication imperfections, which instead simply lead to an
overall degradation of the performance by a few percent. In
the ideal performance regime, εη in Fig. 5 display variations
of ∼5% as a function of d . Interestingly, these variations
are not caused by the well-established diameter-dependent
variations [41,45] in Q due to coupling with higher-order
Bloch modes, and an adiabatic cavity design [48] will thus
not eliminate the variations. Rather, Figs. 3(c) and 3(d) show
that the εη variations appear due to strong variations with d
of the background emission rate PR/P0, which is often simply
assumed equal to unity. A better physical understanding of the
background emission rate in micropillars is thus desirable but
beyond this work.

However, even with such understanding, the micropil-
lar geometry does not provide a mechanism to completely
suppress the background emission. The consequence is that
the tradeoff between efficiency and indistinguishability is
unavoidable, and a figure of merit εη for the micropillar
above ∼0.96 is out of reach. While the micropillar geometry
presently remains the champion device for efficient generation
of single indistinguishable photons, this limitation motivates
further investigation of alternative design strategies such as
the photonic nanowire SPS [49,50], where the background
emission can be controlled using dielectric screening effects
[51].

Whereas we predict an εη ∼ 0.96, experimentally demon-
strated figures of merit [19,20] are significantly below this
value. This discrepancy is partly due to the cross-polarization
setup in resonant excitation used in these works, reducing the
efficiency by a factor of 2. This reduction is not a fundamental

limitation and can be avoided using, e.g., phonon-assisted
excitation [25] for the rotationally symmetric micropillars
considered in this work or by the introduction of an elliptical
cross section [16]. Even so, these methods will not overcome
the inherent tradeoff between efficiency and indistinguisha-
bility of the micropillar SPS. Nevertheless, an optimization
of also the elliptical micropillar design in terms of efficiency
and indistinguishable polarized photon emission remains of
interest but is beyond this work.

VI. CONCLUSION

In summary, by applying a Fourier modal method and a po-
laron master equation approach, we have numerically calcu-
lated the efficiency and indistinguishability of the microcav-
ity pillar single-photon source. To elucidate the mechanism
governing the efficiency, we have presented a single-mode
model, which fully captures the physics in terms of the initial
spontaneous emission to the cavity mode and the subsequent
transmission to the first lens. By varying the number of DBR
layer pairs and the diameter, we have observed the onset of
the tradeoff between efficiency and indistinguishability pre-
dicted previously, and we have identified design parameters
leading to a maximum figure of merit εη of the product
of the efficiency ε and the indistinguishability η of ∼0.96
for the ideal geometry. In addition, we have investigated the
influence of pure dephasing as well as sidewall scattering on
the performance. Using realistic values for these mechanisms,
we have shown that, while the performance is degraded by
imperfections, the optimum design parameters are unchanged.
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APPENDIX

In the Fourier modal method, the geometry is divided into
layers uniform along a propagation z axis, and the electric
field in each layer is expanded upon the forward and back-
wards propagating eigenmodes e±

j (r⊥)e±iβjz that are solutions
to the wave equation for the layer assuming uniformity along
z. The fields on each side of the interface between layers
q and q + 1 are related by interface reflection ¯̄Rq,q+1 and
transmission ¯̄Tq,q+1 matrices determined from the boundary
conditions at the interface, and the propagation through a
layer of length L is described by a propagation PL matrix
with elements eiβjL in its diagonal. The total reflection matrix
¯̄Rt ( ¯̄Rb) for the top (bottom) DBR mirror is obtained from
interface and propagation matrices in an iterative manner
using the S matrix formalism. The total field at the position
z0 + δz just above the QD (δz → 0) is given by

E(r⊥, z0 + δz) =
∑

j

[aje+
j (r⊥) + bje−

j (r⊥)], (A1)
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where the field amplitude vectors ā and b̄ represent the field
expansion just above the QD. The forward propagating field
vector ā is computed from the point dipole pδ(r − r0) using
the reciprocity theorem and taking into account multiple
round trips inside the cavity [33]. The backwards propagating
field is obtained as b̄ = ¯̄PL/2

¯̄Rt
¯̄PL/2ā.

1. Cavity contribution to the field

To determine the contribution EC from the cavity mode to
the total field given in Eq. (A1), we define the eigenvectors c̄+

k

of the round-trip matrix ¯̄R+ = ¯̄PL/2
¯̄Rb

¯̄PL
¯̄Rt

¯̄PL/2 as solutions to
the eigenproblem

¯̄R+c̄+
k = λ+

k c̄+
k , (A2)

where λ+
k are eigenvalues with |λ+

k | < 1. For normalized
eigenvectors, the cavity round-trip eigenvector c̄+

M correspond-
ing to the fundamental cavity mode is easily identified as the
one with the first element having a maximum value such that
|c+

1M| � |c+
1k|. For the forward propagating field in (A1), we

have ∑
j

aje+
j (r⊥) =

∑
j,k

c+
jkαke+

j (r⊥), (A3)

where ᾱ = ( ¯̄c+)−1ā, whereas for the backward propagating
field, we have∑

j

bje−
j (r⊥) =

∑
j,k

γ −
jk αke−

j (r⊥), (A4)

where ¯̄γ − = ¯̄PL/2
¯̄Rt

¯̄PL/2 ¯̄c+. The total field can then be written
as

E(r⊥, z0) =
∑
j,k

c+
jkαke+

j (r⊥) +
∑
j,k

γ −
jk αke−

j (r⊥), (A5)

and the cavity mode contribution is given by

EC(r⊥, z0) =
∑

j

c+
jMαMe+

j (r⊥) +
∑

j

γ −
jMαMe−

j (r⊥). (A6)

2. Far field calculation

The electric field at the surface z = zS of the micropillar is
computed from the electric field expansion Eq. (A1) using the
total transmission matrix of the top DBR. We then determine
the far field EF(θ, φ) on the surface of a sphere S of radius
R using a standard near field to far field transformation [52].
To take into account the limited NA of the lens, we set
EF(θ > θMax, φ) = 0 with θMax = sin−1(NA). Following the
procedure in Ref. [12], we then consider a Gaussian beam in
the paraxial limit in a focal plane z = zF given by

Eg(x, y, zF) =
√

2cμ0

πw2
0

exp

(
−x2 + y2

w2
0

)
x̂, (A7)

Hg(x, y, zF) = 1√
cμ0

ẑ × Eg, (A8)

where w0 is the beam waist and the integrated power in
the plane z = zF is normalized to 1. We then compute the
associated far field Eg

F and Hg
F on the surface S, and the overlap

 0.1

 0.4

 0.7

 1

 1  2  3  4
d (μm)

ntop =17  ε
εs

ntop =25  ε
εs

FIG. 6. The full efficiency ε and the single-mode efficiency εs

computed using ntop = 17 and 25 top DBR layer pairs. The ideal
structure with κ = 0 is considered.

with the Gaussian beam is then given as

O(w0, zF) = R2
∫ (

E∗
F,θ Hg

F,φ − E∗
F,φHg

F,θ

)
sin θdθdφ, (A9)

where the subindices θ and φ indicate the field components
in spherical coordinates. Finally, the transmission to the lens
taking into account the coupling to the Gaussian profile is
given by

PLens = 1
2 Max|O(w0, zF)|2. (A10)

The power PLens,C coupled to the lens from the cavity is
obtained by calculating EF(θ, φ) using the cavity contribution
to the electric field given by Eq. (A6) instead.

3. Comparison of efficiency and the one from simplified model

We compare the calculated efficiency ε obtained from the
full model Eq. (1) and the efficiency εs from the single-mode
model in Fig. 6. Excellent agreement between the two models
is observed, indicating that the contribution from radiation
modes to the collection of light in a Gaussian mode at the
first lens is negligible.

4. Modeling of sidewall roughness

The sidewall scattering Q−1
edge can be computed using a

model [42] taking into account the ratio of the mode intensity
at the micropillar edge and its diameter d as

Q−1
edge = κ

J2
0 (ktd/2)

d/2
. (A11)

Here, κ is a phenomenological constant, J0 is the Bessel

function of the first kind, kt is defined as kt =
√

n2k2
0 − β2

1

with n being the refractive index of GaAs, k0 = ω/c and β1

denoting the propagating constant of the fundamental HE11

mode in the cavity section. The Q factor in the presence
of sidewall roughness is then determined from Eq. (A11)
and the intrinsic quality factor Qint using Eq. (19) and is
presented in Fig. 7. The sidewall roughness represents an
additional decay channel of the light in the cavity leading to
a reduction of Q, which becomes more significant for high
intrinsic quality factors. As the pillar diameter increases, this
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Q

FIG. 7. The intrinsic cavity quality factor Qint and the Q factor
taking into account sidewall scattering as a function of pillar diameter
d for κ = 0.2 μm.

influence decreases as the relative overlap of the HE11 mode
with the boundary is reduced.

5. Dependence on the top DBR thickness

The efficiency, the spontaneous emission β factor, and the
transmission γ are presented in Fig. 8 as a function of the

 0.82

 0.88

 0.94

 1

 15  17  19  21  23  25  27  29
ntop

ε
β
γ

FIG. 8. The efficiency ε, the spontaneous emission β factor, and
the transmission γ as a function of top DBR layer pairs ntop for a
pillar diameter d = 3.2 μm with κ = 0.

number of top DBR layer pairs. As ntop increases, the cavity Q
factor and in turn the Purcell factor are improved leading to an
increasing β. However, as the top mirror reflectivity becomes
comparable to that of the bottom DBR, an increasing fraction
of light penetrates into the substrate reducing the transmission
γ . We thus have a tradeoff between β and γ , where an
optimum efficiency of ε ∼ 0.95 is obtained for ntop ∼ 21.
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(2002).

[38] A. Nazir and D. P. McCutcheon, J. Phys.: Condens. Matter 28,
103002 (2016).

[39] E. V. Denning, J. Iles-Smith, N. Gregersen, and J. Mørk, Opt.
Mater. Express 10, 222 (2020).

[40] G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S.
Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche,
I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 90, 091120
(2007).

[41] N. Gregersen, S. Reitzenstein, C. Kistner, M. Strauss, C.
Schneider, S. Höfling, L. Worschech, A. Forchel, T. R. Nielsen,
J. Mørk, and J. M. Gérard, IEEE J. Quantum Electron. 46, 1470
(2010).

[42] T. Rivera, J. P. Debray, J. M. Gérard, B. Legrand, L.
Manin-Ferlazzo, and J. L. Oudar, Appl. Phys. Lett. 74, 911
(1999).

[43] C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M.
Kamp, Appl. Phys. B 122, 19 (2016).

[44] M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M.
Hetterich, Opt. Express 17, 1144 (2009).

[45] S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C.
Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A.
Forchel, Appl. Phys. Lett. 94, 061108 (2009).

[46] N. Gregersen, T. R. Nielsen, J. Claudon, J.-M. Gérard, and J.
Mørk, Opt. Lett. 33, 1693 (2008).

[47] A. Greilich, R. Oulton, E. A. Zhukov, I. A. Yugova, D. R.
Yakovlev, M. Bayer, A. Shabaev, A. L. Efros, I. A. Merkulov,
V. Stavarache, D. Reuter, and A. Wieck, Phys. Rev. Lett. 96,
227401 (2006).

[48] M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S.
Höfling, J. Mørk, L. Worschech, M. Kamp, and A. Forchel,
Phys. Rev. Lett. 108, 057402 (2012).

[49] N. Gregersen, D. P. S. McCutcheon, J. Mørk, J.-M. Gérard, and
J. Claudon, Opt. Express 24, 20904 (2016).

[50] A. D. Osterkryger, J.-M. Gérard, J. Claudon, and N. Gregersen,
Opt. Lett. 44, 2617 (2019).

[51] J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I.
Maksymov, J. P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 106,
103601 (2011).

[52] C. A. Balanis, Advanced Engineering Electromagnetics, 1st ed.
(Wiley, New York, 1989).

125301-10

https://doi.org/10.1103/PhysRevLett.103.167402
https://doi.org/10.1038/s41567-019-0585-6
http://arxiv.org/abs/arXiv:2007.04330
https://doi.org/10.1103/PhysRevLett.108.107401
https://doi.org/10.1088/1367-2630/15/3/035027
https://doi.org/10.1103/PhysRevB.92.205406
http://arxiv.org/abs/arXiv:2007.14719
https://doi.org/10.1038/nphoton.2017.101
https://doi.org/10.1103/PhysRevB.98.121306
https://doi.org/10.1364/JOSAA.33.001298
https://doi.org/10.1063/1.373462
https://doi.org/10.1063/1.1759375
https://doi.org/10.1103/PhysRevB.65.235311
https://doi.org/10.1088/0953-8984/28/10/103002
https://doi.org/10.1364/OME.380601
https://doi.org/10.1063/1.2711186
https://doi.org/10.1109/JQE.2010.2052095
https://doi.org/10.1063/1.123407
https://doi.org/10.1007/s00340-015-6283-x
https://doi.org/10.1364/OE.17.001144
https://doi.org/10.1063/1.3081030
https://doi.org/10.1364/OL.33.001693
https://doi.org/10.1103/PhysRevLett.96.227401
https://doi.org/10.1103/PhysRevLett.108.057402
https://doi.org/10.1364/OE.24.020904
https://doi.org/10.1364/OL.44.002617
https://doi.org/10.1103/PhysRevLett.106.103601

