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Magnetic features near filled impurity band in diluted magnetic semiconductors
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The antiferromagnetic-ferromagnetic competition in a diluted magnetic semiconductor is discussed. In a
virtual-crystal approximation, the active magnetic ions in the system are assumed to distribute homogeneously,
and the quantum magnetic correlations are described in the Kondo lattice model involving local disorder. In the
framework of the dynamical mean-field theory, we deliver the signatures of the static magnetic susceptibility
function and the B1g channel Raman response adapting to the model. At low temperatures, one finds the
antiferromagnetic instability against the ferromagnetic state when the impurity band is nearly filled. For a
completely filled impurity band system, the antiferromagnetic state is stabilized in the case of sufficiently
large magnetic exchanges. The effect of the thermal fluctuations on the phase competition is also discussed.
Analyzing the B1g channel Raman spectrum attributes a competition between the short-range magnetic order and
the short-wavelength excitation in the filled impurity band paramagnetic state.
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I. INTRODUCTION

Due to the essential properties for applications in future
spintronics, the signature of magnetic instabilities in diluted
magnetic semiconductors (DMSs) has become a special issue
attracting much interest recently [1,2]. Once magnetic ele-
ments (e.g., Mn) are doped in a semiconducting host (e.g.,
GaAs), their 3d levels simultaneously induce localized mag-
netic moments and form an impurity band [3]. It has been
widely accepted that the band structure of the system involves
a valance-hole band of the host semiconductor and localized
impurity bands of the magnetic doped ion, which induce
the exchange interaction mediating the magnetic properties
in the system based on the Zener kinetic-exchange or p-d
exchange model [1,2,4–6]. Increasing the magnetic coupling
enlarges the energy gap that separates the impurity band and
the valance band [7,8]. In the case of the strong-coupling
limit, the p-d exchange model might reduce to the double-
exchange model [2], otherwise it becomes equivalent to the
Ruderman-Kittel-Kasuya-Yosida (RKKY) picture for small
magnetic coupling [5]. In this feature, once the impurity band
is filled or nearly filled, a large magnetic exchange might
forbid the ferromagnetic (FM) configuration due to Pauli’s
principle. Instead, the antiferromagnetic (AFM) state is fa-
vored due to the development of a virtual hopping process
[9]. In this case, the ground state of the system is AFM and
the band energy of the FM state is lower than that of the AFM
stability [9–11]. So far, the magnetic instability in DMSs has
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been mainly considered when the impurity band is not fully
filled, and the system stabilizes in the FM state [4,7,12]. In
the meanwhile, AFM materials have shown many advantages
in spintronic applications. Examining the AFM state in DMSs
is, therefore, extremely necessary [13]. Although the AFM
state has been considered both in theory and in experiments,
typically in Ga1−xMnxAs and Zn1−xMnxTe [5], in GaN doped
with 5% Mn and Co [14], or most recently in (Ga,Mn)As [15],
signatures of the AFM state induced by the p-d exchange in
DMSs once the impurity band is filled or nearly filled are not
well understood. Considering the competition of the AFM and
FM states and especially features of their transition from the
paramagnetic (PM) state in a unique theoretical framework is
thus enormously worthwhile.

To understand the characteristics of the PM-FM transi-
tion in DMSs, a formation of short-range magnetic order
(SRMO) of bound magnetic polarons has been proposed
[12,16,17]. However, that feature has not been used to explain
a mechanism of the PM-AFM transition in the materials. To
describe the signature of the PM-AFM transition in undoped
AFM materials, one has proposed a short-wavelength (two-
magnon) excitation mechanism [18] that has been specified
theoretically in the t-J model using the finite-temperature
diagonalization method [19]. In our work, short-wavelength
excitation (SWLE) is considered to address a magnetic bound
state to describe the PM-AFM transition in DMSs. The phase
diagram of the magnetic transitions in the systems is con-
structed from the typical property of the static magnetic
susceptibility; divergence of the susceptibility indicates an
instability point of the order state. Moreover, in a signature
of the Raman scattering spectrum, one might point out the
magnetic bound state possibility existing in the PM state.
Indeed, the Raman response has proven to be an effective
tool for studying complex phase structures and especially in
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addressing the spin-disorder, magnetic polaron, and FM states
in low-carrier density magnetic systems [16,20]. Focusing
on DMSs, the Raman scattering spectrum has probed the
magnetic bound state in Cd1−xMnxTe, by using the bound
magnetic polaron theory [21,22].

One of the most prevailing methods in dealing with
strongly correlated electron systems is the dynamical mean-
field theory (DMFT), which gives an exact solution in the
limit of infinite-dimensional space [23]. The DMFT has been
widely used in studying the magnetic properties in DMSs
and similar systems [7,8,17,24]. Based on the DMFT, the
ground state of the AFM-FM competition in the double-
exchange model has been intensively inspected [25]. In the
infinite-dimensional limit, DMFT also provides a simple way
to analyze the Raman B1g channel spectrum and the static
magnetic susceptibility function potentially addressing some
anomalous properties in strongly correlated electron systems
[26]. In the present work, the DMFT is applied to the Kondo
lattice model to investigate the magnetic properties of DMSs.
In general, the Kondo lattice model is used to describe a
system in which local moments homogeneously reside at each
site of the lattice. However, to model and explain the magnetic
properties in DMSs, we assume that the active Mn ions are
distributed homogeneously in the system in a virtual-crystal
approximation [6]. In this signification, the magnetic mo-
ments reside on all lattice sites, or the magnetic exchange
potential due to the Mn impurities has the periodicity of
the host crystal. The Kondo lattice model, therefore, can be
applicable to describe the magnetic properties of the diluted
magnetic system [6]. In this sense, for instance, a carrier feels
a potential with mean strength approaching xJ per GaAs unit
cell, for Mn concentration x and magnetic coupling J [7].

The paper is organized as follows. In the next section,
we briefly describe the essential Hamiltonian based on the
feature of the Kondo lattice model applied for DMSs and
its DMFT solution. A set of self-consistent equations based
on the DMFT is used to calculate analytically the static spin
susceptibility function. Numerical results for the magnetic
phase diagrams and Raman scattering spectrum are discussed
in Sec. III. Finally, Sec. IV concludes our work.

II. MODEL AND THEORETICAL METHOD

Suppose the doped magnetic ions in the DMSs act as an
acceptor, and the main charge carrier is the hole [5]. We
examine the following Hamiltonian in the framework of the
Kondo lattice model to describe the magnetic signatures in
DMSs:

H = − t
∑
〈i, j〉σ

c†
iσ c jσ + 2J

∑
i

αiSisi −
∑

i

(μ − Uαi )ni, (1)

where c†
iσ and ciσ are the creation and annihilation oper-

ators for an itinerant carrier with spin σ at lattice site i,
respectively. In this representation, the spin and occupation
operators of the itinerant carriers at site i, respectively, read
si = ∑

σσ ′ c†
iσ σσσ ′ciσ ′/2 (σ are the Pauli matrices) and ni =∑

σ c†
iσ ciσ . The first term in Eq. (1) indicates carrier hopping

between the nearest neighbor, while the second one expresses
the Hund magnetic coupling between spins of itinerant car-
riers and the impurity moment at lattice site i (Si). In our

work, Si is treated quantum mechanically. Indeed, within the
DMFT calculation adapted for double-exchange-like models,
the self-energy of the single-particle Green function does not
change if the local spin is considered either in the classi-
cal or in the quantum case [27,28]. Moreover, the essential
features of magnetic and electronic properties in DMSs do
not depend on whether the exchange coupling is of Ising-
or Heisenberg-type [8,29]. So, as a simplification, we assume
that the magnetic coupling in our model is of Ising-type, i.e.,
only the z-component of the spins is of interest. In doing so,
without loss of generality, the local moment is often chosen to
take two values, Sz

i = {−1, 1} [17,30]. Finally, in the Hamil-
tonian (1), μ indicates the chemical potential while U is the
magnetic disorder mapping onto the difference in the local
potential.

In the Hamiltonian (1), we have included an α variable to
indicate whether a lattice site is doped by an active magnetic
ion or not. In this sense, we set α = 1(0) to the lattice sites that
are occupied (not occupied) by magnetic ions, or there exists
(does not exist) spin coupling and magnetic disorder. If x is
the doping number of the magnetic ions in DMSs, α satisfies
a binary distribution function

P (α) = (1 − x)δ(α) + xδ(1 − α). (2)

In general, to address the disorder properly, the on-site
energy has to be taken randomly. However, to simplify our
calculation, we have used the bimodal distribution for the
disorder. It is applicable because the disorder potential U here
is included to map onto the difference in the local potential,
which splits energetically in favor of the lattice site with and
without magnetic doping. The disorder in our work, therefore,
is so-called local disorder. It looks like a binary alloy disorder
and can be approximately suitable for a lightly doped material
[31,32]. In some other works for DMSs, U can be taken to
be like the Coulombic potential arising from the magnetic
dopant [7,8]. The local disorder is generally site-dependent or
spatially inhomogeneous. However, the disorder here has been
introduced on average and is a kind of diagonal disorder. Such
diagonal disorder has been studied intensively in the literature
using the infinite-dimensional DMFT [23,33].

In the present work, the Hamiltonian in Eq. (1) is solved
using DMFT. As a nonperturbative local theory, the DMFT
solution is exact in the limit of infinite-dimensional space.
In DMFT, the mean field is dynamical or time/frequency-
dependent, and the temporal quantum fluctuations are thus
fully taken into account. In the meanwhile, the spatial fluctu-
ations are ignored [23]. The key point of the DMFT is that the
frequency-dependent Green function of itinerant carriers must
coincide with one of the effective single impurities embedded
in the dynamical mean-field medium [23]. The local Green
function of itinerant carriers with spin σ reads

Gσ (iωl ) =
∫

dε ρ(ε)
1

iωl − ε + μ − �σ (iωl )
, (3)

where ωl = (2l + 1)πT is the Matsubara frequency at
temperature T , �σ (iωl ) is the momentum-independent self-
energy, and ρ(ε) = exp(−ε2)/

√
π is the noninteracting

density of states of the itinerant carriers in the infinite-
dimensional hypercubic lattice. The Green function defined
in Eq. (3) must be coincident with that evaluated from the
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effective single impurity based on the Hamiltonian (1), i.e.,

Gσ (iωl ) =
∑

s

∫
dαP (α)


αs

Zαs
σ (iωl )

. (4)

Here, we have defined Zαs
σ (iωl ) = G−1

σ (iωl ) − (Jsσ + U )α,
with Gσ (iωl ) the Green function of the effective medium.
When calculating the Green function in Eq. (4), the average
over the spin configuration has been taken through the weight
factors 
αs with s = {−1, 1} satisfying the normalization con-
dition

∑
s

∫
dαP (α)
αs = 1. If the local spin is assumed to

be classical, the average over the spin configuration can be
taken by a Monte Carlo method [34,35].

In the form of the distribution function defined in Eq. (2),
one arrives at

Gσ (iωl ) =
∑
αs

�αs

Zαs
σ (iωl )

. (5)

Here, α takes two values, α = {0, 1}, and the
weight factors explicitly read �0s = 2(1 − x) exp∑

lσ ln[G−1
σ (iωl )/iωl ]/Z0

eff and �1s=2x exp
∑

lσ ln{[G−1
σ (iωl )

− (Jsσ + U )]/iωl}/Z1
eff, where Zα

eff = 2 Tr exp
∑

lσ ln[Zαs
σ

(iωl )/iωl ] is the partition function. The local Green function
is found self-consistently via the Dyson equation

G−1
σ (iωl ) = G−1

σ (iωl ) − �σ (iωl ). (6)

Equations (3)–(6) close a set of self-consistent equations
that must be solved numerically to evaluate the self-energies
�σ (iωl ) and then the itinerant carrier Green function.

To detect the magnetic phase transition, magnetic order
parameters such as the magnetizations are often analyzed
[25,36]. In the present work, we examine the magnetic insta-
bilities in the signatures of the static magnetic susceptibility
of the itinerant carriers, which is defined as [37]

χ (q) = T 2
∑

i jl,σσ ′

dGii,σ (iωl )

dh jσ ′

∣∣∣∣∣∣
h jσ ′=0

σσ ′e−iq(Ri−R j ). (7)

Note here that, in general, the magnitude of the local
magnetic moment might be larger than that of the itinerant
spins, and the magnetic susceptibility of the local moment
should be evaluated to explore the magnetic properties of the
system. However, in the model we have assumed that the spin
of the itinerant carrier is always parallel to the local spin to
optimize the total energy. Considering the order of the local
spin and that of the itinerant spin, therefore, is equivalent. In
the meanwhile, calculation of the magnetic susceptibility of
the itinerant carriers is much simpler than that of the local
spins, especially in the DMFT. We therefore refer to the be-
havior of the spin susceptibility of the itinerant carriers, and it
truly addresses the magnetic behaviors of the full system. It is
likely that the magnetic features remain unchanged if the local
magnetic susceptibility is considered instead. Another way to
simplify the numerical calculations is to consider the mag-
netic properties in the signature of the susceptibility in DMFT
that we are familiar with in momentum space. Following the
standard technique [17,30,38], one derives the momentum

dependence of the static magnetic susceptibility function,

χ (q) = −T 2
∑

l

Rl (q)

[
2 − 1

2

∑
αsσ

σγαs(q)

Slσ Zαs
σ (iωl )

]
. (8)

Here R−1
l (q) = [χ0(q, iωl )]−1 + ∑

σ [G−2
σ (iωl ) − S−1

lσ ]/2
with χ0(q, iωl ) = ∑

k,σ Gσ (k + q, iωl )Gσ (k, iωl )/2 is the
bare particle-hole susceptibility. The γαs(q) term in Eq. (8)
can be determined from a matrix identity,∑

α′s′
�αs,α′s′ (q)γα′s′ (q) = �αs(q), (9)

where

�αs,α′s′ (q) = δαα′δss′ −
∑
lσ

�αs�
αs
σ (iωl )

Slσ Zα′s′
σ (iωl )

− 1

2

∑
lσσ ′

Rl (q)�αs�
αs
σ ′ (iωl )

Slσ Slσ ′Zα′s′
σ (iωl )

σσ ′,

�αs(q) = −2
∑
lσ

Rl (q)�αs�
αs
σ (iωl )

Slσ
σ. (10)

Here the definitions �αs
σ (iωl ) = Zαs

σ (iωl )−1 − Gσ (iωl ) and
Slσ = ∑

αs �αs/[Zαs
σ (iωl )]2 have been used. Once the local

Green function is solved by the DMFT, the q-dependent static
magnetic susceptibility function χ (q) is fully determined. Di-
vergence of χ (q) indicates the instability of the PM state. The
momentum dependence of χ (q) affects only the bare suscep-
tibility χ0(q, iωl ). In the infinite-dimensional limit (d → ∞),
the q dependence of χ0(q, iωl ) is summarized in a single
parameter X = ∑

i cos qi/d [23,26],

χ0(q, iωl ) ≡ χ0(X, iωl )

= −1√
1 − X 2

∫
dε ρ(ε)

z − ε
F

(
z − Xε√
1 − X 2

)
, (11)

where F (z) = ∫
dε ρ(ε)/(z − ε) is the Hilbert transform of

the noninteracting density of states, with z = iωl + μ −
�(iωl ). The instability of the PM state is addressed depending
on a certain value of X that the susceptibility χ (X ) diverges.
If χ (X ) diverges at X = −1 [or the zone-boundary point q =
(π, π, . . . , π )], the PM-AFM transition happens, whereas a
divergence of χ (X ) at X = 1 (or the uniform zone-center
point q = 0) indicates the FM stability against the PM state.
Discussions of the PM-FM and the PM-AFM transitions in
the signatures of the static magnetic susceptibility function in
the aspect are widely available in the literature [25,28,39].

III. NUMERICAL RESULTS

To discuss the magnetic instability of the system, first of all
we examine the signature of the static magnetic susceptibility
function, χ . Figure 1 shows χ (X ) at some temperatures T
with J = 3, U = 0.5, and x = 0.1 for two different values of
carrier density n (n = 0.1 and 0.097). Here the carrier density
is defined as n = n↑ + n↓, nσ = − ∫

dω Im Gσ (ω) f (ω)/π ,
where f (ω) = 1/(1 + eω/T ) is the Fermi-Dirac distribution
function. Note here that, in DMSs, the hole density can be
varied independently on the nominal magnetic doping, for in-
stance Mn replacing the Ga position. Indeed, the hole density
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FIG. 1. Static magnetic susceptibility depending on X at differ-
ent temperatures for J = 3, U = 0.5, and x = 0.1 at n = 0.097 (left)
and n = 0.1 (right).

can be adjusted by nonmagnetic donors or acceptors. The hole
density n can thus be equal to the density of the magnetic
ions x, or the impurity band can be filled. Moreover, exper-
imental results also reveal that the number of magnetic atoms
mediating the magnetic state, the so-called active magnetic
ions, is lower than the number of nominal magnetic ones. The
situation with one itinerant carrier per active magnetic ion or
less (corresponding to the completely or nearly filled impu-
rity band) can still be the factual situation in some samples
[6,7]. Once the impurity band is not fully filled, n = 0.097
for instance, Fig. 1(a) shows that the magnetic susceptibility
function rapidly increases at X = 1 as temperature is low-
ered. If the temperature is sufficiently small, the susceptibility
function diverges, indicating the stability of the FM state. In
contrast, the magnetic susceptibility function is found to di-
verge at X = −1 in the case of the completely filled impurity
band, i.e., at n = 0.1 [cf. Fig. 1(b)]. This divergence otherwise
indicates the stability of the AFM phase at low temperature.

From the signature of the magnetic susceptibility above,
one might establish a diagram of the complex magnetic phase
transition when the impurity band is completely filled or
nearly filled. The critical temperature of the magnetic phase
transition is determined by a divergence of the static suscepti-
bility function. Figure 2 shows us the magnetic phase diagram
in the T -n plane at different values of magnetic coupling J for
U = 0.5 and x = 0.1. When the magnetic coupling is small,
the impurity band is not clearly split from the main band
[7,17], and one finds only the FM phase that is formed due
to the delocalization of the itinerant carriers [Fig. 2(a)]. When
the magnetic coupling is large enough [Figs. 2(b)–2(d)], the
situation is changed because the impurity band induced by
the large magnetic coupling is completely separated from
the main band [7,17]. Here one finds the AFM state around
n = 0.1. In this regime, the magnetic coupling is sufficient
to lower the FM state in comparison to the AFM one. No
low-energy hopping processes, therefore, are allowed in the
FM state, whereas in the AFM state hopping is allowed. As a
result, the ground state of the system is AFM [7]. Deviating
from n = 0.1, the FM state emerges. Both FM and AFM
transition temperatures increase when increasing the magnetic
coupling. For large J , one might find a magnetic phase separa-
tion around the point of overlap between AFM and FM states.

FIG. 2. Magnetic phase diagram in the T -n plane at different
values of magnetic coupling J for U = 0.5 and x = 0.1. The FM
state is indicated by blue, while the AFM state is indicated by red.

Note here that the range of J used is relevant to almost DMSs
[40], especially for the GaN host semiconductor doped with
5% Mn and Co where the AFM stability has been observed
[14].

Note here that, in the present work, although the temporal
quantum fluctuations have been fully taken into account in the
framework of the DMFT, the spatial fluctuations that might
also affect the critical temperature are ignored in the infinite-
dimensional approximation. The spatial fluctuations might be
considered if the calculation is extended to the site-dependent
DMFT, the so-called cluster DMFT [41]. By including the
spatial fluctuations, we expect that the critical temperatures
would fall very slowly with cluster size, and it would be re-
duced to 30% for the number of cluster sizes Nc = 36 [41,42].

To discuss in more detail the magnetic phase structure
when the impurity band is fully filled, in Fig. 3 we analyze the
phase diagram in the T -J plane for different U at n = x = 0.1.

FIG. 3. Magnetic phase diagram in the T -J plane at different
disorder potential U for n = x = 0.1. The FM state is indicated by
blue, while the AFM state is indicated by red. The inset of panel
(b) shows the density of states of the itinerant carriers A(ω) for some
values of J at T = 0, U = 0.5, and n = x = 0.1.
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As a function of the magnetic coupling J , one always finds
two distinct FM and AFM islands. At low J , one finds the
FM state, whereas the AFM state stabilizes once J is large.
The inset of Fig. 3(b) displays the total density of states of the
itinerant carriers A(ω) = −∑

σ ImGσ (ω)/π for ω around the
Fermi level with some values of J at T = 0, U = 0.5, and n =
x = 0.1. It shows us that at small J (J < 2), the impurity band
is either not formed or not clearly formed. However, once J
is large enough, for instance at J = 3, the impurity band is
clearly formed and the Fermi level is in a gap opened between
the impurity band and the main band, the impurity band is thus
completely filled. In this sense, one can believe that, at small
J , the system favors the FM state due to the delocalization
of the itinerant carriers. Its transition temperature increases
when increasing the magnetic coupling. However, once the
magnetic coupling is sufficiently large that the impurity band
is explicitly formed, the delocalization energy in the impurity
band is diminished, leading to a depletion of the FM stability.
On the other hand, in this regime the AFM state hopping is
allowed. Enlarging the magnetic coupling, therefore, develops
the AFM regime. Moreover, the magnetic potential of the
majority-spin carriers is suppressed by taking into account
the disorder. Increasing the magnetic coupling is needed to
compensate for the development of the disorder. The FM and
AFM regimes thus shift to the left when increasing the disor-
der strength. Note here that the magnetic ordering in the fully
filled case is strongly dependent on perfect nesting, which is
suppressed by the disorder [23,33]. At a given large J value,
Fig. 3 shows us that increasing the disorder causes a strong
reduction of the AFM-PM transition temperature.

To discuss the characteristics of the magnetic phase tran-
sitions in filled impurity band DMSs, we analyze electronic
Raman scattering in the PM phase at n = x. The imaginary
part of the nonresonant Raman response B1g channel can be
evaluated from the results of the DMFT via

I (ω) = π

∫
dν

∫
dε ρ(ε)[ f (ν) − f (ν + ω)]

× A(ε, ν)A(ε, ν + ω), (12)

where A(ε, ν) = −Im[ν − ε + μ − �(ν)]−1/π is the spectral
function of the itinerant carriers [43,44].

Figure 4(a) displays I (ω) for some values of the magnetic
coupling J at U = 0.5 and n = x = 0.1. When the magnetic
coupling is small (black line), the ground state of the system
is in nonmagnetic order [cf. Fig. 3(b)], and the electronic
Raman spectrum exhibits a diffusive response, which is typi-
cally observed for single-particle excitations in degenerate or
doped semiconductors (for instance, in n-type Si) [45], and
is well described by a simple relaxational scattering response
[16]. However, when increasing the magnetic coupling, a peak
appears at a finite frequency, and the spin fluctuations thus
become important with the formation of the SRMO so called
magnetic polarons in the PM state. That signature of I (ω)
reveals the formation of the FM long-range order ground state

FIG. 4. Imaginary part of the nonresonant Raman response B1g

channel I (ω) at x = n = 0.1 for some given values of J at U = 0.5,
T = 0.05 (a), some values of U at J = 2, T = 0.05 (b), and some
values of T at J = 3, U = 0.5 (c).

[see the blue regime in Fig. 3(b)]. For large magnetic coupling,
one finds a two-peak structure in the Raman spectrum. A low-
frequency peak identifies the SWLE arising from the impurity
band. In this situation, the well-developed AFM long-range
order at zero temperature induces a sharp peak in I (ω) [cf.
the red regime in Fig. 3(b)]. Increasing the disorder reduces
the magnetic correlations, and the low-frequency peak thus
shifts down with a broadening and reduction of the Raman
scattering intensity [see Fig. 4(b)]. That feature is similar if
one increases temperature, indicating that in the presence of
thermal fluctuations, the magnetic polaron and also the spin
fluctuations are depressed [cf. Fig. 4(c)].

IV. CONCLUSION

In conclusion, we have studied the nature of the magnetic
properties in a nearly or fully filled impurity band diluted
magnetic semiconductor described by the Kondo lattice model
involving local disorder in assuming that the active mag-
netic ions in the system are distributed homogeneously. In
the framework of dynamical mean-field theory, the static
magnetic susceptibility function and the B1g channel Raman
response of the microscopic model have been evaluated to
survey the magnetic signatures in the system. At low tem-
peratures, when the impurity band is fully or nearly filled,
one finds the antiferromagnetic stability against the ferromag-
netic state. Moreover, signatures of the B1g channel Raman
spectrum show us that the spin dynamics properties with
the competition of the short-range magnetic order and short-
wavelength excitation might exist in the paramagnetic state
of the diluted magnetic semiconductors. Further simulation or
experiment considering the problem would be a worthwhile
goal of forthcoming studies.
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A. J. Ferguson, and P. Němec, Rev. Mod. Phys. 86, 855 (2014).

[2] T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).
[3] O. M. Fedorych, E. M. Hankiewicz, Z. Wilamowski, and J.

Sadowski, Phys. Rev. B 66, 045201 (2002).

125202-5

https://doi.org/10.1103/RevModPhys.86.855
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/PhysRevB.66.045201


VAN-NHAM PHAN AND HUU-NHA NGUYEN PHYSICAL REVIEW B 102, 125202 (2020)

[4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,
Science 287, 1019 (2000).

[5] T. Dietl, Nat. Mater. 9, 965 (2010).
[6] T. Jungwirth, J. Sinova, J. Mašek, J. Kurmancupcarera, and

A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
[7] A. Chattopadhyay, S. Das Sarma, and A. J. Millis, Phys. Rev.

Lett. 87, 227202 (2001).
[8] E. H. Hwang and S. Das Sarma, Phys. Rev. B 72, 035210

(2005).
[9] J. Kienert and W. Nolting, Phys. Rev. B 73, 224405 (2006).

[10] J. L. Alonso, L. A. Fernández, F. Guinea, V. Laliena, and V.
Martín-Mayor, Nucl. Phys. B 596, 587 (2001).

[11] H. Akai, Phys. Rev. Lett. 81, 3002 (1998).
[12] A. Kaminski and S. Das Sarma, Phys. Rev. B 68, 235210

(2003); S. Das Sarma, E. H. Hwang, and A. Kaminski, ibid.
67, 155201 (2003); V. M. Galitski, A. Kaminski, and S. Das
Sarma, Phys. Rev. Lett. 92, 177203 (2004); A. Kaminski, V. M.
Galitski, and S. Das Sarma, Phys. Rev. B 70, 115216 (2004).

[13] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y.
Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

[14] J. P. T. Santos, M. Marques, L. K. Teles, and L. G. Ferreira,
Phys. Rev. B 81, 115209 (2010).

[15] M. Gryglas-Borysiewicz, A. Kwiatkowski, P. Juszyński, Z.
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