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Equivalence between vortices, twists, and chiral gauge fields in the Kitaev honeycomb lattice model
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We demonstrate that Z2 gauge transformations and lattice deformations in Kitaev’s honeycomb lattice model
can have the same description in the continuum limit in terms of a chiral gauge field. The chiral gauge field
is coupled to the Majorana fermions that satisfy the Dirac dispersion relation in the non-Abelian sector of the
model. For particular values, the effective chiral gauge field becomes equivalent to the Z2 gauge field, enabling
us to associate effective fluxes to lattice deformations. Motivated by this equivalence, we consider Majorana-
bounding π vortices and Majorana-bounding lattice twists and demonstrate that they are adiabatically connected
to each other. This equivalence opens the possibility for novel encoding of Majorana-bounding defects that might
be easier to realize in experiments.
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I. INTRODUCTION

Identifying the effective quantum field theory description
of condensed-matter systems offers a simple and powerful
way to understand their properties and predict their behav-
ior. For example, two-dimensional lattice models, such as
graphene [1–3], with a low-energy description in terms of
Dirac fermions can be understood in terms of the powerful
formalism of relativistic physics. Such an effective description
of a model determines the main properties of its ground state
and it can reveal the nature of its low-lying excitations. Similar
to graphene, Kitaev’s honeycomb lattice model [4] (KHLM)
has a low-energy limit described by the Majorana version of
the Dirac equation [5].

The main interest in the KHLM is that vortices imprinted
in the system trap localized Majorana zero modes that behave
as non-Abelian anyons [4,6–16]. This property, together with
the possibility of realizing this model in the laboratory with
crystallised materials [17–20], makes KHLM of interest to
anyonic quantum computation [6,21,22] as well as to the
investigation of fundamental physics of materials that support
non-Abelian anyons.

Although materials which display the properties of a pure
Kitaev model are far off, there have been many studies in-
troducing strains and defects in candidate materials such as
ruthenium chloride [23–26]. Recently, it has been shown that
not only vortices but twists in the form of lattice deformations
can trap Majorana zero modes [27–29] exhibiting the same
non-Abelian statistics. This generalizes the ways we have in
realizing Majorana anyons and the possible ways we can use
to manipulate them. Nevertheless, lattice twists and vortices
do not appear to have any connection between them apart from
their common characteristic of trapping Majorana zero modes.

Field theory provides an analytically tractable means to
study lattice models and reveals the underlying relativistic
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and geometric description. Recently, these techniques have
been applied to the KHLM [5], topological superconductors
[30,31] and Weyl superfluids [31], revealing the Riemann-
Cartan (RC) [32] nature of the continuum limit. In this
paper, we propose to build upon these studies by considering
chirality and chiral gauge fields, which is a rather exotic
concept of high energy physics that permeates to condensed
matter systems. Massless fermions in 3 + 1 dimensions can
be described by spinors which are reducible into a pair of
Weyl fermions of opposite chirality. This chirality, either
left-handed or right-handed, signals how these objects trans-
form under Lorentz transformations. The weak interaction
of the Standard Model is chiral in nature as its interactions
treat left- and right-handed particles differently [33]. Chiral-
ity also arises naturally in lattice gauge theories [34] and
condensed matter systems such as Weyl semimetals whose
low-energy excitations are described by Weyl fermions. There
is an intimate relationship between chiral gauge fields and
torsion in the continuum limit which allows one to produce
strain-induced gauge fields by inserting deformations to the
lattice [35–42]. Upon coupling to gauge fields, these systems
can exhibit the chiral anomaly [35,38,40,43,44], where chiral
symmetry is broken resulting in a non-conserved current and a
generalised quantum Hall effect [45]. Chirality has also been
discussed in the context of graphene [46], phase transitions
[47], and Landau levels [35,39,48].

As Majorana fermions are charge-neutral they cannot cou-
ple to a U (1) electromagnetic gauge field, however they can
interact with a U (1)A chiral gauge field. These chiral gauge
fields naturally generalise the Z2 gauge field that can be
present only at the lattice level of the KHLM to the continuum
limit. Indeed, we apply techniques from lattice gauge theory
to demonstrate the equivalence between Z2 gauge fields on the
lattice and U (1)A chiral gauge fields in the continuum, gener-
alizing the results of the U (1) lattice gauge theory description
of graphene [1,49,50]. Moreover, we show these chiral gauge
fields also provide a faithful encoding of lattice deformations
such as dislocations and twists in the continuum level, while
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preserving the relativistic description of the model. Hence,
we are able to demonstrate that in the continuum limit of the
model the lattice twists are equivalent to Z2 gauge transfor-
mations.

This opens up the exciting possibility that localized Z2

gauge fields and localized twists that can trap Majorana zero
modes are physically equivalent. To verify this, we show that
Majorana zero modes trapped in Z2 vortices are adiabatically
connected to Majorana zero modes trapped by twists. As a
result, any lattice realization of the chiral gauge field like
twists, vortices, or a hybrid of the two can trap Majorana zero
modes. This opens up the possibility to experimentally realize
Majorana zero modes with a wide variety of defects.

This paper is organized as follows. In Sec. II, we review
the KHLM and its corresponding relativistic continuum limit
in the form of a Dirac Hamiltonian. In Sec. III, we discuss
a possible generalization of the Dirac action by upgrading
its U (1)A chiral symmetry to a local symmetry with the in-
troduction of chiral gauge fields. We then provide a general
discussion of the relationship between gauge fields and Fermi
points of lattice models, specifically how the insertion of a
gauge field has the effect of shifting the Fermi points. In
Sec. IV, we apply this interpretation to the KHLM with a
Z2 gauge field and two types of twists in the honeycomb
lattice, and identify the corresponding continuum limit chiral
gauge fields for each case. In particular, we identify that the
continuum limit of a global Z2 gauge field and a particular
type of twist in the lattice yields the same continuum limit.
Finally, in Sec. V we demonstrate that when the Z2 gauge field
and twists are inserted locally, they produce identical zero
modes. We end the paper with a conclusion and Appendices
containing further discussions of material in the paper for the
interested reader.

II. THE KITAEV HONEYCOMB LATTICE MODEL

In this section, we shall provide a brief introduction to the
KHLM and its continuum limit.

A. Fermionization

KHLM is an exactly solvable model describing spin- 1
2

particles residing on the vertices of a honeycomb lattice [4].
These spins are coupled via two- and three-body interac-
tions with respective coupling constants {Jx, Jy, Jz} and K . By
employing an appropriate fermionization procedure, the spin
Hamiltonian can be re-expressed as a tight-binding Hamilto-
nian describing Majorana fermions ci hopping on the vertices
i of a honeycomb lattice coupled to a Z2 gauge field ui j which
lives on the links (i, j), see Eq. (A1). In the Majorana picture,
the two- and three-body interactions become nearest- and
next-to-nearest-neighbor hopping terms, with corresponding
hopping amplitudes {Jx, Jy, Jz} and K , respectively. The Z2

gauge field has the interesting property that its vortices trap
Majorana zero modes that behave as non-Abelian anyons.

We define the no-vortex sector of the model as the case
where the Z2 gauge field takes the trivial configuration of
ui j = +1 for all links. In this case, the system is translation-
ally invariant with respect to a unit cell consisting of two
neighboring vertices, say a and b, that form the triangular

sublattices A and B, respectively, of the honeycomb lattice.
The Hamiltonian of the system H = ∑

〈i, j〉 hi jca
i cb

j can be
diagonalized via a Fourier transform to yield

H = 1

4

∫
d2qψ†

q h(q)ψq, (1)

where

h(q) =
(
�(q) − f (q)
− f ∗(q) −�(q)

)
(2)

is the single-particle Hamiltonian and ψq = (ca
q icb

q)T, with
ca

q and cb
q being the momentum space Majorana fermions

residing on the corresponding sublattice. The entries of
h(q) are given by f (q) = 2(Jxeiq·n1 + Jyeiq·n2 + Jz ), and
�(q) = 2K[− sin(q · n1) + sin(q · n2) + sin(p · (n1 − n2))],
where n1 = (

√
3/2, 3/2) and n2 = (−√

3/2, 3/2) are the
honeycomb lattice basis vectors, and the corresponding
dispersion relation is given by

E (q) = ±
√

| f (q)|2 + �2(q). (3)

The single-particle Hamiltonian Eq. (2) has the symmetries
σ xh(q)σ x = h(−q) and σ yh∗(q)σ y = −h(q), which are parity
and particle-hole symmetries, respectively. The first symmetry
imposes the constraint E (q) = E (−q) on the dispersion and
the second symmetry tells us that the upper and lower bands
come in ± pairs, which is seen explicitly in Eq. (3).

B. Continuum limit

We are interested in investigating the properties of the
ground state or low-lying excited states of the model that
can reveal the phase of the system as well as its possible
anyonic excitations. Similar to graphene, this model has two
independent, isolated Fermi points q = P± in the Brillouin
zone for which the dispersion E (q) takes its minimum value.
Around these points, the dispersion is linear in momentum, so
describes relativistic excitations. For the case of K = 0, the
Fermi points satisfy E (P±) = 0. For the isotropic case with
Jx = Jy = Jz ≡ J , the Fermi points are given by

P± = ±
(

4π

3
√

3
, 0

)
. (4)

A nonzero K simply opens a gap in the dispersion at the Fermi
points. The parity symmetry of the Hamiltonian implies that
the Fermi points always come in ± pairs, i.e., P+ = −P−.

The effective description of the model about the ground
state, where all negative energy states (valence band) are oc-
cupied, is obtained by restricting momenta to lie in a small
neighborhood of the two Fermi points as q = P± + p. For
each Fermi point, we define the two-component Weyl spinors
ψ±(p) ≡ (ca

±(p) icb
±(p)), where ca/b

± (p) ≡ ca/b
P±+p, and the cor-

responding low-energy Hamiltonians h±(p) ≡ h(P± + p), to
first order in p.

One can consider both Fermi points simultaneously by
regarding excitations about the two Fermi points as two
chiral degrees of freedom. We achieve this by combining
the pair of two-component Weyl spinors ψ± into a single
four-component Dirac-like spinor with the definition �(p) =
(ψ+, σ xψ−)T = (ca

+, icb
+, icb

−, ca
−)T. We then take the direct
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sum of h+(p) and h−(p) in their respective bases defined by
�(p) to yield the total 4 × 4 Hamiltonian,

hKHLM(p) = 3Jγ 0(γ 1 px − γ 2 py) − i3
√

3Kγ 1γ 2, (5)

which takes the form of a massless Dirac Hamiltonian defined
on a (2 + 1)-dimensional Minkowksi space-time with torsion
[5]. The continuum limit has provided us with a representation
of the gamma matrices given by

γ 0 =
(0 I
I 0

)
= σ x ⊗ I, γ =

(0 −σ

σ 0

)
= −iσ y ⊗ σ,

(6)

where σ = (σ x, σ y, σ z ) are the Pauli matrices and I is
the two-dimensional identity, which obey the (3 + 1)-
dimensional Clifford algebra {γ A, γ B} = 2ηAB, where ηAB =
diag(1,−1,−1,−1) is the Minkowski metric. We also define
the fifth gamma matrix,

γ 5 = iγ 0γ 1γ 2γ 3 =
(I 0

0 −I

)
= σ z ⊗ I, (7)

which obeys {γ 5, γ A} = 0 for all gamma matrices. This par-
ticular representation of the gamma matrices is known as
the chiral representation. Note that, despite working on a
(2 + 1)-dimensional space, we are able to define a (3 + 1)-
dimensional representation as we are working with 4 × 4
matrices; however, at this stage γ 3 is redundant. In this pa-
per, we use the notation that early upper-case Latin indices
A, B, . . . range over 0,1,2,3, while early lower-case Latin in-
dices a, b, . . . range over 0,1,2. These are orthonormal frame
indices and we refer to any gamma matrices with such indices
as flat space gamma matrices to contrast with the curved space
gamma matrices to be defined later. Moreover, the single-
particle Hamiltonian h(p) has charge-conjugation symmetry.
More details about the derivation of the continuous limit of
the KHLM can be found in Appendix A.

An important observation to make is that the four-
dimensional spinor �(p) = (ψ+, σ xψ−)T is a Majorana
spinor, i.e., charge neutral [33]. This is due to the fact that
the two-component Weyl spinors ψ± about each Fermi point
P± are not independent. In general, charge conjugation in
momentum space is defined as � (c)(p) = C�†(−p), where
C is the unitary charge conjugation matrix obeying C†γ AC =
−(γ A)∗ for all gamma matrices and † denotes taking the
Hermitian conjugate of each component without taking the
transpose of the spinor. In our chiral representation Eqs. (6),
the charge conjugation matrix is given by C = −σ y ⊗ σ y =
−iγ 2. We observe that the spinor �(p) is a Majorana spinor,
i.e. � (c)(p) = �(p), which is shown using the fact that in
momentum space Majorana modes obey c†

±(p) = c∓(−p).

III. CHIRAL GAUGE FIELDS IN THE CONTINUUM

The continuum limit of the isotropic KHLM is described
by the Majorana version of the Dirac Hamiltonian given by
Eq. (5). While Majorana fermions do not couple to U (1)
gauge fields, they can be coupled to a U (1)A chiral gauge
field. In this section, we investigate how one could realize
chiral gauge fields in the continuum limit of a lattice model.

A. The Dirac action formalism

The most general continuum limit of the KHLM is not
only relativistic but is defined on a space-time with both
curvature and torsion [5]. Such general space-times are called
Riemann-Cartan space-times, which are characterized by a
nontrivial metric gμν and affine connection 
ρ

μν [32]. For the
purposes of defining spinors on a Riemann-Cartan space, we
translate to the equivalent language of dreibein e μ

a and spin
connection ωa

μb whose Latin indices are with respect to a local
orthonormal frame. For brevity, we present only the relevant
material in this paper and point the reader to a self-contained
review of Riemann-Cartan theory applied to the KHLM in
Ref. [5]. We use the notation that Greek letters μ, ν, . . . rep-
resent (2 + 1)-dimensional general coordinate indices, whilst
later lower-case Latin indices i, j, . . . represent the spatial
coordinate indices only.

The action for a spin- 1
2 particle ψ of mass m on a static

(2 + 1)-dimensional Riemann-Cartan space-time M = R ×
 is given by [5]

SRC =
∫

M
d2+1x�̄

(
iγ μ∂μ − i

8
φγ 0γ 1γ 2 + i

2
∂iγ

i − m
)
�.

(8)

where {γ μ = eμ
aγ

a} are the curved space gamma matrices,
φ is the torsion pseudoscalar related to the torsion of the
space-time by Tabc = φ

3!εabc, � = √|e|ψ is the spinor density
obeying flat-space anticommutation relations, |e| = det[ea

μ]
is the determinant of the dreibein and �̄ = �†γ 0 is the Dirac
adjoint. The Hamiltonian density corresponding to the action
Eq. (8) is given by H = �†h�, where h is the single-particle
Hamiltonian given by

h(p) = e i
a γ 0γ a pi + i

8
φγ 1γ 2 − i

2
∂ie

i
a γ 0γ a + mγ 0, (9)

which is given explicitly in terms of the dreibein and the flat-
space gamma matrices. A comparison of Eq. (9) with Eq. (5)
reveals that the continuum limit of the isotropic and homoge-
neous case is described by a massless Dirac Hamiltonian on
a Minkowski space-time with torsion. Further discussion of
the dreibein of more general continuum limits is provided in
Appendix A.

B. Gauging the chiral symmetry

The continuum limit of the KHML has provided us with
four-component Majorana spinors. A U (1) transformation is
not compatible with a Majorana spinor � because it does
not preserve the Majorana reality condition � (c) = �, i.e., if
� is a Majorana spinor, then � ′ = eiα� is not a Majorana
spinor. For this reason, we cannot couple Majorana spinors to
a U (1) gauge field and therefore these particles are electrically
neutral. However, the massless action Eq. (8) has a global and
internal U (1)A chiral symmetry [33] which is compatible with
Majorana spinors, where the subscript A stands for axial. A
U (1)A transformation is defined by

�(x) → eiαγ 5
�(x), �̄(x) → �̄(x)eiαγ 5

, (10)

where α ∈ R. This chiral transformation preserves the reality
condition, i.e., if � is a Majorana spinor, then � ′ = eiαγ 5

�
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is also a Majorana spinor. In the chiral representation of the
gamma matrices Eq. (7), we see that a chiral transformation
simply corresponds to two opposite U (1) transformations of
each Weyl spinor component of �. Note that the names chiral
and axial are used interchangeably in the literature. The term
chiral in our context refers to anything associated with γ 5.

We upgrade this chiral symmetry to a local symmetry by
introducing the gauge field Aμ with a corresponding gauge-
covariant derivative,

DA
μ� = ∂μ� + iAμγ 5�, (11)

which transforms as DA
μ� → eiαγ 5

DA
μ� under the simul-

taneous transformation � → eiαγ 5
� and Aμ → Aμ − ∂μα,

for a space-dependent parameter α(x). Replacing the partial
derivatives in the massless version of the action Eq. (8) with
covariant derivatives yields the single-particle Hamiltonian:

h(p) = e i
a γ 0γ a(pi + Aiγ

5) + A0γ
5

+ i

8
φγ 1γ 2 − i

2
∂ie

i
a γ 0γ a. (12)

It is worth noticing that the temporal component of the chiral
gauge field A0γ

5 commutes with all the other terms in the
Hamiltonian Eq. (12). Hence, its presence does not influence
any of the physical observables and can be neglected. The
temporal component also has no dreibein coefficient as the
only nonzero temporal dreibein on a static space-time is given
by e t

0 = 1.
Appendix B presents all possible terms one can add to the

Majorana version of the Dirac Hamiltonian to generalize it,
including the chiral term presented here.

C. Gauge fields and Fermi points

In lattice gauge theory, there is a general approach for
minimally coupling a matter field living on the vertices i of
a lattice to a gauge field living on the links (i, j). This is
achieved by multiplying the tunneling couplings of the matter
field in the many-body Hamiltonian by Wilson lines of the
form ui j = exp(ie

∫ j
i dl · A), where ui j is an element of a Lie

group, A is an element of the corresponding Lie algebra, and
e is the charge of the matter field [49–53]. This is sometimes
called a Peierls substitution. When taking the continuum limit
of the lattice model, the Peierls substitution becomes equiva-
lent to the usual minimal coupling prescription of substituting
p → p + eA. Hence, for lattice models like graphene that give
rise to a Dirac equation in the continuum limit, the minimal
coupling is manifested by a shift of the model’s Fermi points
in a parallel fashion by −eA [54].

The KHLM is comprised of Hermitian Majorana modes
ci that are charge neutral, cf. Eq. (A1). Hence, they can only
couple to a gauge field that has real-valued Wilson line ele-
ments, e.g., ui j ∈ Z2 = {1,−1}. However, due to the parity
symmetry of the KHLM, these real-valued Wilson lines will
cause the Fermi points of the model to shift in an antiparallel
fashion, resulting in an emergent U (1)A chiral gauge field in
the continuum limit. To see this, consider the single-particle
Hamiltonian Eq. (2) of the KHLM. When taking the contin-
uum limit, we Taylor expand about the Fermi points of the
model. In lattice models, these Fermi points always come

in pairs [55], which is seen explicitly in the KHLM as we
have two inequivalent Fermi points P± in the Brillouin zone.
We define the effective continuum limit Hamiltonians about
each Fermi point by restricting the momenta q to take values
q = P± + p, for small p, as

h±(p) ≡ h(P± + p) = p · ∇h(P±) + O(p2). (13)

Modifications to the model that preserve the form of the
Hamiltonian Eq. (2), such as varying the strength of the
couplings {Ji}, inserting a Z2 gauge field or adding in extra
couplings, will have the effect of modifying the single-particle
Hamiltonian as h(q) → h′(q). In general, the new Fermi
points P′

± will be different, giving rise to a shift

�P± = P′
± − P±. (14)

By restricting momenta to take small values about the new
Fermi points as q = P′

± + p′, the continuum limit Hamiltoni-
ans about the new points are given by

h′
±(p′) ≡ h′(P′

± + p′) = p′ · ∇h′(P′
±) + O(p′2). (15)

In general, p �= p′, so direct comparison of the continuum
limits Eqs. (13) and (15) cannot be done. Nevertheless, em-
ploying the relation p′ = p − �P± the expansion Eq. (15)
becomes

h′
±(p) = (p − �P±) · ∇h′(P′

±) + O(p′2). (16)

Now that both Hamiltonians Eqs. (13) and (16) are written
down in the same coordinate system, one can compare them.
We see that the shift in the Fermi points �P± appears in the
Hamiltonian in the same way that a gauge field would appear
if we were to apply the minimal coupling prescription.

As the Fermi points of the KHLM are always ± symmetric
due to parity symmetry, the Fermi points shift oppositely
as �P+ = −�P−, which means the gauge field about each
Fermi point is given by A± = −�P± (take the charge e = 1).
We see the gauge field couples chirally to each Fermi point,
i.e., with a sign depending upon the Fermi point, so when
h′

+(p) and h′
−(p) are combined to give a 4 × 4 Hamiltonian,

the generated gauge field is a chiral gauge field of the form
Aγ 5, where

A = −�P+. (17)

In the following, we will consider particular modifications in
the couplings of KHLM and determine the resulting chiral
gauge fields.

IV. CHIRAL GAUGE FIELDS FROM
THE LATTICE MODEL

We now modify the lattice model to obtain a chiral gauge
field Aμ in the continuum limit. In this section, we search
for the corresponding terms in the lattice model which pro-
duce the spatial components Ai of Eq. (12). Appendix D
provides a way to generate the temporal component A0 in
continuum limit of the KHLM, although this term commutes
with the rest of the Hamiltonian and cannot affect any physical
observables.

125152-4



EQUIVALENCE BETWEEN VORTICES, TWISTS, AND … PHYSICAL REVIEW B 102, 125152 (2020)

FIG. 1. The Brillouin zone (BZ) of the honeycomb lattice with
two Fermi points, P+ and P− corresponding to the isotropic cou-
plings Jx = Jy = Jz = 1. Continuously changing the coupling Jz from
+1 to −1 everywhere on the lattice shifts the Fermi points along the
x direction to the positions P′

+ and P′
−, as shown by the horizontal

solid arrow. Due to the parity symmetry of the model, the shift is
antiparallel so �P+ = −�P−, which gives rise to the chiral gauge
field A = (2π/(3

√
3), 0). The final configuration of the Fermi points

can also be viewed as an antiparallel shift of the Fermi points from
outside the Brillouin zone in the y direction as shown by the vertical
dashed arrows. This shift yields the chiral gauge field A = (0, 2π/3).

A. Continuum limit of the Z2 gauge field

Consider coupling the KHLM to a homogeneous Z2 gauge
field ui j . The many-body Hamiltonian for K = 0 is given by

H = i

4

∑
〈i, j〉

2Ji jui jcic j, (18)

where 〈i, j〉 is a sum over nearest neighbor pairs (links), cf.
Eq. (A1). We focus on the isotropic case, Jx = Jy = Jz = 1,
and introduce a gauge field ui j taking values −1 on all z links
and +1 on all x and y links. Equivalently, this gauge field can
be simply encoded on the values of the couplings themselves
by setting ui j = +1 for all links, then taking Jx = Jy = 1 and
allowing Jz to take a value of −1 [15], which is the method we
use in this section.

We can generate the change in sign of Jz with a con-
tinuous transformation by allowing Jz to take values in the
interval Jz ∈ [−1, 1] across all z links. Using the general result
Eq. (A12), the Fermi points of this model are given by

P±(Jz ) = ± 2√
3

(
arccos

(
−Jz

2

)
, 0

)
. (19)

From this formula, we see that when we switch on the Z2

gauge field by changing Jz from +1 to −1, the Fermi points
transform as

P± = ±
(

4π

3
√

3
, 0

)
→ P′

± = ±
(

2π

3
√

3
, 0

)
. (20)

Therefore, upon interpreting the gauge field as the shift of the
Fermi points, we conclude from the general formula Eq. (17)
that this corresponds to the chiral gauge field Aγ5 with A =
(2π/(3

√
3), 0). This x-direction gauge field corresponds to

the antiparallel displacement of the Fermi points �P± hori-
zontally in the x direction as shown in Fig. 1.

The particular transformation of the Fermi points given
by Eq. (20), corresponding to Jz changing from +1 to −1,

can have an alternative representation. One can obtain the
same final configuration of the Fermi points from the initial
configuration with an antiparallel transportation vertically in
the y direction. If we shift P+ up by (0, 2π/3) and shift P−
down by (0,−2π/3), the Fermi points shift into neighboring
Brillouin zones and we arrive at the final configuration, as
can be seen in Fig. 1. Note that under this transformation
the initial points P± from neighboring Brillouin zones are
mapped to the final points P′

∓, therefore our shift is given by
�P± = P′

± − P∓ = ∓(0, 2π/3). Using the general formula
Eq. (17), this interpretation corresponds to a chiral gauge field
pointing in the y direction given by

A =
(

0,
2π

3

)
. (21)

In other words, for the transformation of the Fermi points
given by Eq. (20), one can equivalently interpret it as an
antiparallel shift of the Fermi points in the x direction or as
an antiparallel shift of the Fermi points in the y direction.
The possibility to interpret the final configuration of the Fermi
points in these two equivalent ways is due to the periodicity
of momentum space.

The corresponding 4 × 4 continuum limit Hamiltonian,
with the interpretation that the Fermi points have shifted an-
tiparallel in the y direction, is given by

hz(p) = 3γ 0
[
γ 1 px + γ 2

(
py + 2π

3
γ 5

)]
, (22)

which is the original isotropic case Eq. (5) coupled to a chiral
gauge field with a nonzero y component. The sign of the y
component kinetic term has flipped relative to Eq. (5), which
can be attributed to a nontrivial dreibein. These sign flips will
not alter the continuum limit geometry of the model because
the dreibein are only defined up to a Lorentz transformation,
as gμν = ea

μeb
νηab. This is discussed further in Appendix A

and Ref. [5].
The representation of the Fermi point transformation in

terms of a chiral gauge field in the y direction will help the
interpretation of the transformation in terms of a generated
flux in the continuum representation of the model, which will
be presented in the next section. This latter interpretation
follows the equivalence between Peierls substitution and min-
imal coupling of lattice gauge theories. A detailed discussion
of this point is given in Appendix C.

Note that one might be tempted to interpret the displace-
ment of the Fermi points due to the change of Jz couplings
from +1 to −1 as a U (1) gauge field. Indeed, the final po-
sition of the Fermi points can be obtained from the initial
by a parallel shift in the y direction, i.e., where both Fermi
points shift in the same direction, which is how a U (1)
phase would shift the dispersion for graphene. However, we
discard this possibility as the resulting 4 × 4 Hamiltonian
density in the continuum limit would have a term of the form
Hint = Aμ�̄γ μ�, which vanishes for the case of Majorana
spinors �. This is because jμ = �̄γ μ� is the electric current
density due to U (1) symmetry and under charge conjuga-
tion � → � (c) this quantity changes sign. Therefore, for a
Majorana spinor, where � = � (c), this quantity vanishes. On
the other hand, the U (1)A interpretation would yield the term
Hint = Aμ�̄γ μγ 5�, where jμA = �̄γ μγ 5� is the axial vector
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FIG. 2. The configuration of the chiral gauge field of the form
A(r)γ 5 = Aθ (x − x0 )δ(y − y0 )γ 5 confined in the y direction along
the path P that starts at the point r0 = (x0, y0 ) and extends to infin-
ity in the x direction. Along the path, the gauge field takes value
A = (0, π ), while it takes the value A = (0, 0) outside the path. This
configuration of Aγ 5 gives rise to a flux � = ∮

C dl · A = π going
through the loop C that encloses r0.

current. This does not vanish for Majorana spinors and is
explicitly given by jμA = 2e μ

a ψ
†
+σ aψ+, where ψ+ is the Weyl

spinor about the Fermi point P+ and σ a = (I, σ x, σ y).

B. Twists in the lattice

In this section, we modify the couplings of the isotropic
model by adding and removing links on the honeycomb lat-
tice. We consider two particular lattice deformations. First, we
consider a lattice deformation that has an equivalent represen-
tation in the continuum limit as the Z2 gauge field. Second,
we employ a lattice twist similar to twists that have been con-
sidered in the literature in the context of KHLM [27,56]. Twist
defects are of interest as they have been shown to support
Majorana modes [57,58].

1. Twists of type I

First, we modify the isotropic model by removing all z
links and adding two diagonal links across each plaquette of
the honeycomb lattice. The corresponding Hamiltonian for
K = 0 is given by

HI = i

4

∑
r∈B

2cb
r

(
ca

r+n1
+ ca

r+n2
+ ca

r+n1−n2

)
+2cb

r+n1−n2
ca

r + H.c. (23)

The red links of the top right honeycomb of Fig. 4 show an
example of these modified couplings inserted locally. This
lattice modification does not change the Brillouin zone as the
lattice retains its periodicity. This modifies f (q) → fI(q) of
the single-particle Hamiltonian Eq. (2), where

fI(q) = 2[eiq·n1 + eiq·n2 + 2 cos(q · (n1 − n2))]. (24)

The Fermi points of this model are given by

PI
± = ±

(
2π

3
√

3
, 0

)
, (25)

which are the same Fermi points as the ones obtained from a
global Jz sign change given by Eq. (20). We again interpret
the shift in the Fermi points relative to the isotropic case as
a displacement in the y direction which therefore yields the
same chiral gauge field Eq. (21) in the continuum limit. The

FIG. 3. The formation of zero modes in HP
v (λ). Top: A sketch

of HP
v (λ) at λ = 0 and λ = 1 for a smaller system size. The path

P, indicated by a dashed grey line, runs perpendicular to the z links
of the lattice and has a length L/2. Black links take the value ui j =
+1, red links take the value ui j = −1. The black dots in the center
of plaquettes indicate the approximate position of vortices. Middle:
The energy gap of HP

v (λ) as a function of λ for a system with linear
dimension L = 30, isotropic J = 1, and K = 0.1. Zero modes are
created with an energy gap above them as the sign of uz flips, i.e., at
λ ≈ 0.5. Bottom: The continuous profile of the wave function |ψ (r)|2
of the gradually generated localized zero modes at λ ≈ 0.4, 0.6, 1.
The size and shape of the vortices are characterized by finding the set
of points where |ψ (r)|2 = 10−3/2, as illustrated by the red boundary
line.

corresponding Hamiltonian is given by

hI(p) = 3γ 0
[
3γ 1 px + γ 2

(
py + 2π

3
γ 5

)]
. (26)

If we compare Eq. (26) to Eq. (22), we see that the continuum
limits look identical, apart from a factor of 3 in front of the x
component kinetic term. The emergent chiral gauge fields are
the same as the Fermi points of both models have shifted by
the same amount relative to the isotropic case. The factor of 3
is the result of the additional next-to-next-to-nearest-neighbor
couplings that changed the geometry of the lattice. Its effect is
to scale the x direction of the continuum limit and can be ab-
sorbed in the dreibein of the continuum limit. For this reason,
we conclude that both lattice models are equivalent as they
yield the same continuum limits up to a smooth deformation
of the dreibein. so correspond to the same phase.

2. Twists of type II

Now consider the case where we modify the isotropic
model by removing all z links and inserting a single new link
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10−2 10−1

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 4. The formation of zero modes in HP
I (λ). Top: A sketch of

HP
I (λ) at λ = 0 and λ = 1 for a smaller system. The path P, indicated

by a dashed grey line, runs perpendicular to the z links of the lat-
tice and has a length L/2. The new next-to-next-to-nearest-neighbor
couplings are highlighted in red. The black dots in the center of
plaquettes indicate the approximate position of vortices. Middle: The
energy gap of HP

I (λ) as a function of λ for a system with linear
dimension L = 30, isotropic J and K = 0.1. Zero modes are created
with an energy gap above them at λ ≈ 0.4. The behavior of the gap
is similar to the gap observed as the sign of the Z2 gauge field flips in
Fig. 3. Bottom: The continuous profile of the wave function |ψ (r)|2
of the gradually generated localized zero modes at λ ≈ 0.4, 0.6, 1.
The size and shape of the vortices are characterized by finding the set
of points where |ψ (r)|2 = 10−3/2, as illustrated by the red boundary
line.

across each plaquette, which is similar to what has been used
in the literature [27,56]. The Hamiltonian then becomes

HII = i

4

∑
r∈B

2cb
r

(
ca

r+n1
+ ca

r+n2
+ ca

r+n2−n1

)
. (27)

The red links of the top right honeycomb of Fig. 5 show an
example of these modified couplings inserted locally. This
modifies f (q) → fII(q) of the single-particle Hamiltonian
Eq. (2), where

fII(q) = 2(eiq·n1 + eiq·n2 + eiq·(n2−n1 ) ). (28)

The Fermi points of this model are given by

PII
± = ±

(
2π

3
√

3
,

2π

9

)
, (29)

which yields a shift in the Fermi points of �P± =
±(−2π/(3

√
3), 2π/9), however, there is no alternative inter-

pretation of this shift as we had before. The corresponding

10−2 10−1

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 5. The formation of zero modes in HP
II (λ). Top: A sketch of

HP
II (λ) at λ = 0 and λ = 1 for a smaller system. The path P, indicated

by a dashed grey line, runs perpendicular to the z links of the lat-
tice and has a length L/2. The new next-to-next-to-nearest-neighbor
couplings are highlighted in red. The black dots in the center of
plaquettes indicate the approximate position of vortices. Middle: The
energy gap of HP

II (λ) as a function of λ for a system with linear
dimension L = 30, isotropic J , and K = 0.1. Zero modes are created
with an energy gap above them at λ ≈ 0.5. The behavior of the gap
is similar to the gap observed as the sign of the Z2 gauge field flips in
Fig. 3. Bottom: The continuous profile of the wave function |ψ (r)|2
of the gradually generated localized zero modes at λ ≈ 0.4, 0.6, 1.
The size and shape of the vortices are characterized by finding the set
of points where |ψ (r)|2 = 10−3/2, as illustrated by the red boundary
line.

4 × 4 continuum limit is given by

hII(p) = γ 0γ x(px + Axγ
5) + γ 0γ y(py + Ayγ

5), (30)

which is in Riemann-Cartan form with, using for-
mula Eq. (17), a chiral gauge field Aγ 5, where
A = (2π/(3

√
3),−2π/9). The curved space gamma matrices

are given by

γ x = e x
a γ a = 1

2 (9γ 1 −
√

3γ 2), (31)

γ y = e y
a γ a = 1

2 (3
√

3γ 1 + 3γ 2), (32)

which signifies a nontrivial dreibein e μ
a . This nontrivial

dreibein corresponds to a nontrivial metric in the continuum
limit. This is to be expected, as the twists have changed the
geometry of the honeycomb lattice.

125152-7



HORNER, FARJAMI, AND PACHOS PHYSICAL REVIEW B 102, 125152 (2020)

C. Transforming between Z2 gauge field and twists

We now consider the continuous transformation between
the two modified Hamiltonians, Hz with a global Z2 gauge
field manifested by Jz = −1 [see Eq. (A3)] and HI with type-I
twists as defined in Eq. (23), and trace the motion of the Fermi
points. We define the Hamiltonian

H (λ) = (1 − λ)Hz + λHI, λ ∈ [0, 1], (33)

such that when we change λ from 0 to 1, we transform the
Hamiltonian from Hz to HI. The single-particle Hamiltonian
corresponding to H (λ) is given by Eq. (2), where f (q) is now
given by

f (q, λ)=2[eiq·n1 + eiq·n2 + 2λ cos(q · (n1 − n2)) + (λ−1)],
(34)

and �(q) = 0 as we keep for convenience K = 0. The corre-
sponding dispersion relation is given by E (p, λ) = ±| f (q, λ)|
and has the Fermi points given by

P±(λ) = ±
(

2π

3
√

3
, 0

)
. (35)

We observe that the Fermi points are independent of the value
of λ, remaining fixed at their corresponding values, cf. Eqs.
(25) and (20). As a result, the global Z2 gauge field can be
continuously deformed to a global lattice modification of the
form given by Eq. (23) without changing the corresponding
chiral gauge fields.

A natural question to ask is whether these two modifica-
tions are equivalent locally. In the continuum limit, such local
modifications are expected to correspond to locally varying
chiral gauge fields giving rise to nontrivial chiral fluxes. From
the lattice description, we know that local Z2 transformations
give rise to Majorana bounding vortices, while local lattice
deformations of the form Eq. (23) can also trap Majorana zero
modes. As they both correspond to the same chiral gauge field,
we expect them to give rise to the same Majorana zero modes.
This will be explicitly verified in the following.

V. CHIRAL GAUGE FIELDS AND MAJORANA
ZERO MODES

In this section, we investigate the relation between local
chiral gauge fields and Majorana zero modes. We have seen
that homogeneous Z2 gauge fields on the links of the hon-
eycomb lattice and homogeneous lattice deformations of the
form Eq. (23) give rise to the same continuum limit up to
a rescaling of the dreibein. This result suggests that both
models are equivalent at the lattice level too. In this section,
we test this numerically by introducing the deformations and
Z2 gauge fields locally along a finite path through the lattice.
We demonstrate both models are adiabatically connected and
produce nontrivial fluxes at the endpoints of the path which
trap zero modes in the same way, allowing us to conclude that
both models are equivalent at the lattice level too.

A. Flux of chiral gauge fields

If a Z2 gauge field is inserted on the lattice of the KHLM
by flipping the gauge field from +1 to −1 locally, one can
produce π vortices which trap Majorana zero modes [4]. For

example, if we inserted a gauge field taking values −1 on all
z links along a path P and +1 on all other links, then one
finds vortices localized at each end of the path. A natural
question to ask is whether such vortices appear in the con-
tinuous representation of the model. In particular, we want
to investigate whether the chiral gauge field associated with
local configurations of the Z2 gauge field can give rise to the
same π fluxes that trap Majorana zero modes in the continuum
[13,59].

In Sec. IV, we deduced that a global Z2 gauge field taking
values −1 on all z links and +1 on all x and y links yields
a chiral gauge field in the continuum limit of the form Aγ 5,
where A = (0, 2π

3 ). If we were to perform the same calcula-
tion on the brick wall lattice representation of the honeycomb
lattice, the resulting chiral gauge field is given by A = (0, π ),
as shown in Appendix C. This is in agreement with the equiv-
alence between Peierls substitution and minimal coupling.
Nevertheless, this is not the case in the honeycomb lattice
model. The discrepancy is due to the fact that x and y links of
the honeycomb lattice have a spatial y component when ori-
ented in the honeycomb lattice configuration, yet they receive
no contribution from the gauge field. Hence, the value 2π/3
is obtained from an average along strips in the y direction of
length 1 with phase π (z links) and of length 1/2 with phase
0 (x and y links). As the argument below is concerned with
horizontal paths P, which are well-localized in the y direction
crossing z links that contribute a π phase, we will take the
corresponding chiral gauge field to be A = (0, π ).

Suppose we insert the Z2 gauge field locally along a
horizontal straight path P starting at the point r0 = (x0, y0)
heading off to infinity in the x direction, as shown in Fig. 2. In
the continuum limit, this would be described by a chiral gauge
field

A(r)γ 5 = Aθ (x − x0)δ(y − y0)γ 5, (36)

where A = (0, π ). The “magnetic field” of this gauge field
configuration is given by

Bγ 5 = ∇ × A(r)γ 5 = πδ(x − x0)δ(y − y0)γ 5ẑ. (37)

The phase along a loop C that surrounds the endpoint r0 of P
is given by

� =
∮

C
dl · A =

∫
S

dS · B = π, (38)

where S is the surface enclosed by the path C. Hence, the
configuration Eq. (36) of the chiral gauge field gives rise to
a chiral π -flux. Similarly, if we insert the twists of type I
from the previous section locally, along the same path P, we
achieve the same gauge field Eq. (36) and π -flux Eq. (38).
This suggests that the Majorana zero modes produced by the
twists are equivalent to the Majorana zero modes trapped by
Z2 vortices. Indeed, when inserting this gauge field into the
Dirac Eq. (12), it is known that vortex profiles will trap zero
modes [13].

In the following, we first consider the generation of Majo-
rana zero modes when local Z2 gauge fields or local twists are
created. Then we adiabatically connect these zero modes, thus
demonstrating that they are equivalent.
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B. Majorana zero modes

While the Z2 values of the links can change through a
discrete process, it is possible to implement it in a continuous
way. We observe the formation of zero modes throughout this
continuous process by studying the behavior of the energy
spectrum and wave functions. For example, consider an initial
Hamiltonian H0, where all the gauge degrees of freedom have
value ui j = +1. Consider also a final Hamiltonian HP

v , where
the vertical z links along a local path P in the x direction take
the opposite sign ui j = −1, as shown in Fig. 3. We label the
links along this path as uz. To shift from one Hamiltonian to
the other, we consider the interpolating Hamiltonian:

HP
v (λ) = (1 − λ)H0 + λHP

v , λ ∈ [0, 1]. (39)

The result is a continuous change in the value of uz from
uz = 1 for λ = 0 to uz = −1 for λ = 1. Thus, we expect to
see Majorana zero modes appearing at the end points of P
as λ approaches 1. All numerical simulations presented in
this section are for models with periodic boundary conditions,
system size L = 30, isotropic J = 1 and K = 0.1.

The generation of localized Majorana zero modes is shown
in Fig. 3 as λ increases in discrete steps demonstrating that
the local Z2 gauge field creates π vortices. The single particle
Hamiltonian Hvortex(λ) is diagonalized for each discrete value
of λ and the energies E0 and E1 of the two lowest eigenstates
are plotted in Fig. 3. At λ = 0, the model is clearly gapped
with no zero-energy modes, while at λ = 1 there is a clear
zero-energy mode with a gap above it. The gap between E0

and E1 forms at a transition point around λ ≈ 0.5. From the
diagonalization of Hvortex(λ), we also obtain the probability
density at each lattice site |ψi|2 for the lowest energy eigen-
state. We call this the spatial wave function of the vortices. To
visualize the shape of the zero modes, we approximate them
with a continuous function as shown in Fig. 3 (bottom) [see
Appendix E]. As we approach the transition point λ ≈ 0.5,
a single fermion mode appears over the length of the path P.
This mode splits into two Majorana zero modes as λ increases,
becoming exponentially localized at the end points of P as we
approach λ = 1.

We now consider the isotropic vortex-free KHLM Hamil-
tonian H0 and we create a nonzero chiral gauge field by
introducing lattice deformations of type I as the ones in
Hamiltonian Eq. (23). We consider these deformations along
a horizontal path P that results in the creation of twists at
the endpoints of the path, as shown in Fig. 4. We denote
the resulting Hamiltonian as HP

I . We use the same method as
above to continuously shift between these two Hamiltonians:

HP
I (λ) = (1 − λ)H0 + λHP

I , λ ∈ [0, 1]. (40)

Figure 4 shows the energies of the two lowest eigenstates of
the single-particle Hamiltonian produced by varying λ as well
as the continuous approximations of the spatial wave func-
tion as vortices are produced. Similar to the vortex creation,
we observe that the formation of twists give rise of stable
Majorana zero modes as λ increases and the gap begins to
open. Hence, type-I twists bound Majorana zero modes much
like the Z2 vortices do.

Finally, we consider the equivalent generation of twists of
type II along a horizontal path P. The resulting energies and

wave functions are depicted in Fig. 5, demonstrating that type-
II twists bound Majorana zero modes in much the same way
as Z2 vortices and type-I twists.

C. Adiabatic equivalence between lattice twists and vortices

We established in the previous section that stringlike con-
figurations of twists in the lattice give rise to Majorana zero
modes at the end points of the string. This is very similar to
the zero modes trapped by stringlike configurations of the Z2

gauge field that creates π -flux vortices at its end points. Here
we demonstrate that these two apparently different ways of
realizing Majorana zero modes, i.e., by changing the sign of
certain links or by modifying the connectivity of the lattice,
are actually physically equivalent. We demonstrate this by
adiabatically transforming between these two configurations
and considering both the behavior of the energy spectrum as
well as the wave function of the zero modes.

We take the Hamiltonians HP
v and HP

I , defined in the pre-
vious section and depicted in Fig. 3 (top, right) and 4 (top,
right), respectively. We define the Hamiltonian

HP
v-I(λ) = (1 − λ)HP

v + λHP
I , λ ∈ [0, 1]. (41)

This allows us to adiabatically transition between the two
Hamiltonians by varying λ. The path P remains fixed through-
out this transition. Figure 6 shows the energy gap of the
system and the continuous approximation of the wave func-
tion of a pair of zero modes as we adiabatically transition
between HP

v and HP
I . We observe that the zero modes remain

energetically separated from the rest of the states for all λ with
an energy gap that remains more or less constant throughout
the process. Moreover, the zero modes of the model remain
fixed in place and well-localized throughout the adiabatic
transition. Hence, the two ways of generating vortices are
physically equivalent. The shape of the zero modes of HP

I
appear stretched in the x direction compared to HP

v . This is
due to the change in the dreibein in Eq. (26). This adiabatic
process also demonstrates that there is a continuous family of
lattice configurations given by HP

v-I(λ) for λ ∈ [0, 1] that give
rise to the same localized Majorana zero modes.

Similarly, Majorana zero modes produced by twists of type
II are also adiabatically connected to zero modes produced
by Z2 vortices. This is shown explicitly in Fig. 7. The asym-
metry in the shape of the zero modes for HP

II is reflected in
the asymmetry of the dreibein in Eqs. (31) and (32), which
demonstrates that the continuum limit geometry is scaled un-
evenly along each axis. However, the analysis of Sec, IV–B–2
concluded that twists of type II do not yield a gauge field
with exactly a π flux. This is because the Fermi points of
this model do not shift in the same way as they did for the
case of implementing a Z2 gauge field. Therefore, Fig. 7 also
demonstrates that the zero modes are stable as the flux of the
underlying gauge field changes adiabatically as we transition
between the two models.

VI. CONCLUSION

The generation and manipulation Majorana fermions is one
of the central problems in the current effort to understand the
physics of non-Abelian anyons and employ them for quantum
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10−2 10−1

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 6. The adiabatic equivalence of zero modes in HP
v-I(λ). Top:

A sketch of HP
v-I(λ) at λ = 0 and λ = 1 for a smaller system size.

The path P, indicated by a dashed grey line, remains constant, runs
perpendicular to the z links of the lattice and has a length L/2. The
modified links along the path P are highlighted in red. The black
dots in the center of plaquettes indicate the approximate position of
vortices. Middle: The energy gap of HP

v-I(λ) as a function of λ that in-
terpolates between the two Z2 vortex configuration and lattice twists
configuration of type I, for a system with linear dimension L = 30,
isotropic J = 1, and K = 0.1. The gap remains almost constant for
all values of λ, indicating stable zero modes throughout the tran-
sition. Bottom: The continuous profile zero modes at λ ≈ 0, 0.5, 1
shows they remain fixed in place and well-localized throughout the
adiabatic transition. The shape of the zero modes at λ = 1 appear
stretched in the x direction compared to λ = 0 due to the change
in the dreibein in Eq. (26). The size and shape of the vortices are
characterized by finding the set of points where |ψ (r)|2 = 10−3/2, as
illustrated by the red boundary line.

technologies. Here we demonstrated that two of the leading
ways of trapping Majorana zero modes, employing vortices
and employing lattice twists, are physically equivalent. We
demonstrated this equivalence by finding the appropriate rep-
resentation of these lattice defects in the continuum limit in
terms of chiral gauge fields. We showed analytically that both
Z2 gauge fields and lattice deformations have an equivalent
representation in the low-energy spectrum of the system in
terms of chiral gauge field coupled to the Majorana version of
the Dirac equation. As the two continuum limits differed only
by a smooth transformation of the dreibein, this suggested that
the lattice-level Hamiltonians must also be equivalent which
we investigated numerically by simulation local configura-
tions of the Z2 gauge field and lattice deformations.

We observed numerically that local configurations of this
chiral gauge field can create π -flux vortices. Motivated by

10−2 10−1

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 7. The adiabatic equivalence of zero modes in HP
v-II(λ). Top:

A sketch of HP
v-II(λ) at λ = 0 and λ = 1 for a smaller system size.

The path P, indicated by a dashed grey line, remains constant, runs
perpendicular to the z links of the lattice and has a length L/2. The
modified links along the path P are highlighted in red. The black
dots in the center of plaquettes indicate the approximate position of
vortices. Middle: The energy gap of HP

v-II(λ) as a function of λ that in-
terpolates between the two Z2 vortex configuration and lattice twists
configuration of type II, for a system with linear dimension L = 30,
isotropic J = 1 and K = 0.1. The gap remains almost constant for
all values of λ, indicating stable zero modes throughout the tran-
sition. Bottom: The continuous profile zero modes at λ ≈ 0, 0.5, 1
shows they remain fixed in place and well-localized throughout the
adiabatic transition. The asymmetry in the shape of the zero modes
at λ = 1 compared to λ = 0 is reflected in the asymmetry of the
dreibein in Eqs. (31) and (32). The size and shape of the vortices are
characterized by finding the set of points where |ψ (r)|2 = 10−3/2, as
illustrated by the red boundary line.

this equivalence, we investigated the possibility of Majo-
rana bounding twists being physically equivalent to Majorana
bounding vortices. We performed an adiabatic transformation
between Hamiltonians that encode twists and vortices and
showed that both the structure of the energy spectrum as well
as the localization properties of the Majorana zero modes
remain invariant during the adiabatic transformation.

Our investigation demonstrates that Majorana bounding
twists are physically equivalent to vortices even though they
do not have a gauge-field representation in the lattice level.
Nevertheless, they give rise to a chiral gauge field with con-
figurations that in the continuum limit are equivalent to the
Z2 gauge configurations. This opens up a variety of possible
investigations. First, it is possible to realize gauge theories
that do not necessarily have a traditional interpretation in the
lattice level in terms of Wilson lines. This can give wider
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flexibility for the realization of gauge theories in the labo-
ratory, e.g., with optical lattices [60]. Second, the adiabatic
transformation between vortices and twists created a continu-
ous spectrum of defects that can support Majorana zero modes
beyond the two limiting cases. The possibility of having a
wider range of Majorana bounding defects can facilitate their
experimental generation and detection.
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APPENDIX A: THE CONTINUUM LIMIT OF THE MOST
GENERAL KHLM

1. The KHLM

In this Appendix, we shall provide a derivation of the
continuum limit of the KHLM. As shown in Ref. [4], the
KHLM Hamiltonian in the vortex-free sector can be brought
into the Majorana form

H = i

4

(∑
〈i, j〉

2Ji jui jcic j + 2K
∑
〈〈i, j〉〉

ui jcic j

)
, (A1)

where {ci} are Majorana modes, ui j ∈ Z2 are the link oper-
ators, while 〈i, j〉 denotes a summation over pairs of nearest
neighbors and similarly 〈〈i, j〉〉 for next-to-nearest neighbors.
The orientation of the links is shown in Fig. 8.

As shown in Fig. 8, the honeycomb lattice can be generated
by a unit cell consisting of the pair of lattice sites connected

FIG. 8. The honeycomb lattice with Majorana fermions tunnel-
ing between nearest-neighboring sites with couplings Jx , Jy, and Jz,
depending on the direction of the link. Tunnelling between next-
to-nearest-neighboring sites with coupling K is also indicated. The
honeycomb lattice comprises two triangular sublattices, A and B,
denoted by full and empty circles, respectively. We take the unit cell
along the z links. The translation vectors between sites of the same
sublattices are n1 = (

√
3

2 , 3
2 ) and n2 = (−

√
3

2 , 3
2 ). The orientations

of the nearest tunnelings (from A to B sites) and next-to-nearest
tunnelings (anticlockwise) are indicated.

via a z link, together with the basis vectors

n1 =
(√

3

2
,

3

2

)
, n2 =

(
−

√
3

2
,

3

2

)
. (A2)

The honeycomb lattice also contains two triangular sublat-
tices, A and B. As each unit cell contains one site on A and one
on B, we label the sites of the honeycomb lattice by the pair
(r, α), where r ∈ B is the location of the site on sublattice B
that the unit cell overlaps and α ∈ (a, b) labels the site within
the unit cell.

To reflect this symmetry of the lattice, we relabel our
Majorana modes by defining cα

r as the mode of lattice site
(r, α). With this relabeling, the Hamiltonian in the vortex-free
sector, where all link operators are ui j = +1, takes the form
H = HJ + HK , where

HJ = i

4

∑
r∈B

2cb
r

(
Jxca

r+n1
+ Jyca

r+n2
+ Jzca

r

) + H.c. (A3)

and

HK = iK

4

∑
r∈B

ca
r

(−ca
r+n1

+ ca
r+n2

+ ca
r+n1−n2

)
+ cb

r

(
cb

r+n1
− cb

r+n2
− cb

r+n1−n2

) + H.c. (A4)

We now Fourier transform the Hamiltonian with the definition
cα

r = ∫
d2qe−iq·rcα

q , which yields

HJ = 1

4

∫
d2q

(−i f (q)ca†
q cb

q + i f ∗(q)cb†
q ca

q

)
, (A5)

HK = 1

4

∫
d2q�(q)

(
ca†

q ca
q − cb†

q cb
q

)
, (A6)

where f (q) = 2(Jxeiq·n1 + Jyeiq·n2 + Jz ) and �(q) =
2K[− sin(q · n1) + sin(q · n2) + sin(p · (n1 − n2))]. If we
define the two-component spinor �q = (ca

q icb
q)T, we can

write the total Hamiltonian H as

H = 1

4

∫
d2q�†

q h(q)�q, (A7)

where the single-particle Hamiltonian h(q) is given by

h(q) =
(
�(q) − f (q)
− f ∗(q) −�(q)

)
. (A8)

2. Fermi points

From Eq. (A8), we find that the single-particle dispersion
relation is given by

E (q) = ±
√

�2(q) + | f (q)|2. (A9)

For now, we ignore the contribution of the K term to the
dispersion relation and first focus on the case where E (q) =
±| f (q)|. The Fermi points of the dispersion relation are de-
fined as the points {Pi} for which E (Pi ) = 0. The Fermi points
of the model therefore solve the equations

Jx cos(Pi · n1) + Jy cos(Pi · n2) + Jz = 0, (A10)

Jx sin(Pi · n1) + Jy sin(Pi · n2) = 0. (A11)

The most general Fermi point was calculated in Ref. [5],
however, it only applies for positive values of the couplings
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{Ji}. A minor modification to the formula allows us to write
down the Fermi point for the most general case which handles
both positive and negative values. The Fermi point is given by

P± = ±
(

1√
3
(sgn(Jy) arccos(a) + sgn(Jx ) arccos(b))

1
3 (sgn(Jy) arccos(a) − sgn(Jx ) arccos(b))

)
,

(A12)

where

a = J2
y − J2

x − J2
z

2JxJz
, b = J2

x − J2
y − J2

z

2JyJz
. (A13)

When reinstating the K term, the Fermi points are not shifted
from these points if we take K to be suitably small.

3. The continuum limit

We define the continuum limit about each Fermi point
P± by restricting the Hamiltonian Eq. (A8) to take values of
momenta near the Fermi points as q = P± + p, for small p.
We define h±(p) ≡ h(P± + p) as our continuum limit Hamil-
tonians about each Fermi point. We have

f (P± + p) = p · ∇ f (P±) + O(p2)

= (∓A + iB)px + iC py,
(A14)

where the coefficients are given by

A = sgn(Jx )sgn(Jy)

√√√√12J2
x − 3

(
J2

y − J2
x − J2

z

)2

J2
z

, (A15a)

B =
√

3

(
J2

y − J2
x

)
Jz

, (A15b)

C = −3Jz. (A15c)

Substituting Eq. (A14) into Eq. (A8) yields the two contin-
uum limits:

h±(p) = (±Aσ x + Bσ y)px + Cσ y py. (A16)

Now we consider the two Fermi points simultaneously by
defining the four-component spinor �(p) = (ca

+ icb
+ icb

− ca
−),

where ca/b
± (p) = ca/b

P±+p. We combine the Hamiltonians h+(p)
and h−(p) by taking their direct sum with respect to the basis
defined by �. This yields the total 4 × 4 continuum limit
Hamiltonian given by

hKHLM(p) = h+(p) ⊕ σ xh−(p)σ x

= (Aσ z ⊗ σ x + Bσ z ⊗ σ y)px + Cσ z ⊗ σ y py.

(A17)

Note that we have rotated h−(p) with a σ x rotation before
combining it with h+(p) due to our definition of �(p).

This low energy limit given by Eq. (A17) suggests that we
use the Dirac α and β matrices,

α =
(
σ 0
0 −σ

)
= σ z ⊗ σ, β =

(0 I
I 0

)
= σ x ⊗ I,

(A18)

where σ = (σ x, σ y, σ z ) are the Pauli matrices and I is the
two-dimensional identity. The corresponding Dirac gamma

matrices are defined by γ 0 = β and γ = β−1α, where

γ 0 =
(0 I
I 0

)
= σ x ⊗ I, γ =

(0 −σ

σ 0

)
= −iσ y ⊗ σ.

(A19)

These matrices satisfy the Clifford algebra {γ A, γ B} =
2ηAB, where Latin indices A, B ∈ (0, 1, 2, 3) and ηAB =
diag(1,−1,−1,−1) is the Minkowski metric. Despite work-
ing in (2 + 1)-dimensional space, the fact we are working
with a 4 × 4 representation allows us to define γ 3, however,
at this stage γ 3 is redundant. Using the gamma matrices, the
Hamiltonian Eq. (A17) becomes

hKHLM(p) = (Aγ 0γ 1 + Bγ 0γ 2)px + Cγ 0γ 2 py. (A20)

Comparison of this model to the Riemann-Cartan Hamil-
tonian (9), we can interpret (A20) as a Dirac Hamiltonian
defined on a Riemann-Cartan space-time with the dreibein and
metric

e μ
a =

(1 0 0
0 A 0
0 B C

)
, gμν =

⎛
⎝1 0 0

0 − 1
A2 − B2

A2C2
B

AC2

0 B
AC2 − 1

C2

⎞
⎠.

(A21)

APPENDIX B: GENERALIZED ACTIONS

The usual action of a spin- 1
2 particle ψ of mass m on a

(2 + 1)-dimensional space-time M is given by

SRC = i

2

∫
M

d2+1x|e|(ψ̄γ μDμψ − Dμψγ μψ + 2imψ̄ψ ),

(B1)

however, is not the most general action that one could write
down for a spinor field. As we have seen in the previous
section, despite working in (2 + 1)-dimensional space, the
continuum limit of the KHLM has provided us with a 4 × 4
representation of the gamma matrices obeying the (3 + 1)-
dimensional Clifford algebra. It is known from the theory
of spinors in (3 + 1)-dimensional space-times that the most
general Lorentz invariant action one could write down is
formed from 16 spinor bilinears ψ̄
ψ , where 
 is a matrix
constructed from products of gamma matrices [33]. We sum-
marize the 16 possibilities in Table I.

Out of the 16 spinor bilinears, there are two types of bi-
linears we do not expect to see in any continuum limit of
the KHLM: types 3 and 7 of Table I. Coefficients of single
gamma matrices are interpreted as momenta because they
typically appear in the Hamiltonian as γ μ pμ. For this reason,
a bilinear of type 3 is interpreted as a z-component kinetic
term. As we do not have access to the z direction with our
(2 + 1)-dimensional lattice, we do not expect to see this term.
A bilinear of type 7 is interpreted as an antisymmetric rank-2
tensor because it transforms as one under Lorentz transfor-
mations. A bilinear of type 7 could arise in principle in our
continuum limit, however, it would require us to introduce
additional vector or tensor fields to the model to contract with
the bilinear to produce a Lorentz invariant, e.g., γ μγ νXμYν ,
γ μγ νMμν , etc. [62]. For this reason, we do not expect to
see this term with only minor modifications to the lattice
Hamiltonian.
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TABLE I. The 16 possible spinor bilinears produced from the five gamma matrices {γ a, γ 3, γ 5} obeying the (3 + 1)-dimensional Clifford
algebra, where a, b = 0, 1, 2, which are split up into seven types. From left to right, we list the spinor bilinears, how they would appear in the
single-particle Hamiltonian, their quantum field theory interpretation, and, finally, the corresponding lattice terms that produce this bilinear in
the continuum limit. Note that the interpretation of each term applies to a (2 + 1)-dimensional theory.

Type Spinor bilinear Single-particle Hamiltonian form QFT interpretation Lattice interpretation

1 ψ̄ψ γ 0 Mass Kekulé distortion with real parameters
2 ψ̄γ aψ γ 0γ a (2 + 1)D kinetic terms Nearest neighbor tunneling (J )
3 ψ̄γ 3ψ γ 0γ 3 (3 + 1)D z-direction kinetic term None
4 ψ̄γ 5ψ γ 0γ 5 Pseudoscalar Kekulé distortion with imaginary parameters
5 ψ̄γ aγ 5ψ γ 0γ aγ 5 (2 + 1)D chiral gauge field A chiral shift of the Fermi points P±
6 ψ̄γ 3γ 5ψ γ 0γ 3γ 5 Torsion Next-to-nearest-neighbor tunneling (K )
7 ψ̄γ aγ bψ γ 0γ aγ b Antisymmetric rank-2 tensor None

The remaining bilinears listed in Table I are possibilities
in the continuum limit of the KHLM and the correspond-
ing lattice interpretation is listed. Indeed, the kinetic terms
of type 2 correspond to the tunneling coupling J of Majo-
rana between nearest neighbors, while the torsion term of
type 6 corresponds to the next-to-nearest-neighbor tunneling
coupling K [5]. Moreover, the mass term of type 1 and the
pseudoscalar term of type 4 can be generated by appropriately
tuned Kekulé distortions of the nearest-neighbor tunneling
couplings [14,63].

The remaining bilinear of type 5 has not been considered
so far. This term correspond to a chiral gauge field which is
the focus of this paper.

APPENDIX C: CONTINUUM LIMIT OF THE
Z2 GAUGE FIELD

In this Appendix, we expand upon the analysis in Sec. IV A
and provide a more detailed argument for how to take the
continuum limit of the KHLM coupled to a Z2 gauge field.
To make the continuum limit analysis simpler, we map the
honeycomb lattice to a brick wall lattice, as shown in Fig. 9.
This ensures that the links of the lattice align with the axes of
the underlying Cartesian coordinate system.

As discussed previously, we minimally couple a lattice
theory to a gauge field by multiplying the hopping terms of

FIG. 9. The brick wall lattice with Majorana fermions tunneling
between nearest-neighboring sites with couplings Jx , Jy, and Jz de-
pending on the direction of the link. The brick wall lattice has links
of length 1 and comprises two square sublattices, A and B, denoted by
full and empty circles, respectively. We take the unit cell along the z
links. The translation vectors between sites of the same sublattice are
n1 = (1, 1) and n2 = (−1, 1), while the translation vectors between
sites of different sublattice are sx = (0, 1), sy = (−1, 0) and (0, −1).
The orientations of the nearest tunnellings (from A to B sites) are
indicated.

the many-body Hamiltonian by link operators of the form
ui j = exp(i

∫ j
i dl · A), where A is an element of the Lie al-

gebra corresponding to the gauge Lie group. For the KHLM,
the many-body Hamiltonian coupled to a gauge field is given
by Eq. (A1). As Z2 is not a Lie group, it has no corresponding
Lie algebra, however, it is a subgroup of U (1) so we are still
able to express its link operators as uα = exp(iA · sα ) for some
suitable field A, where α ∈ (x, y, z) labels the links of the
lattice and sx = (1, 0), sy = (−1, 0) and sz = (0,−1) are the
three link vectors, see Fig. 9.

The many-body Hamiltonian Eq. (A1) of the isotropic
KHLM, where Jx = Jy = Jz = 1 and K = 0, coupled to a Z2

gauge field is given by

H = i

4

∑
r∈B

∑
α=x,y,z

2eiA(r)·sα cb
r ca

r+sα
+ H.c.. (C1)

For the special case of constant A, the corresponding single-
particle Hamiltonian is given by Eq. (A8), where f (q) is
substituted for

fA(q) = 2
∑

α=x,y,z

ei(p+A)·sα . (C2)

We see that fA(q) = f (q + A), where f (q) is the function in
the absence of a gauge field. It appears that the gauge field has
the effect of translating the entire dispersion relation E (q) =
±| f (q)| of the isotropic case by −A. Consequently, one would
conclude that both Fermi points P± have shifted by −A. Note
that A cannot be arbitrary, but is heavily restricted to ensure
that it exponentiates to an element of Z2. For this reason, these
special values of A shift the Fermi points oppositely in such
a way that it appears that there has been a global shift in one
direction.

Consider the case of a global Z2 gauge field for which ux =
uy = +1 and uz = −1 everywhere. Solving for the Fermi
points before and after switching on the gauge field, we find
the Fermi points transform as

P± = ±
(2π

3
, 0

)
→ P′

± = ±
(π

3
, 0

)
, (C3)

so, looking at Fig. 10, this corresponds to a chiral shift of
π/3 in the x direction. Using the formula A = −�P+, the
corresponding chiral gauge field of the continuum limit is
given by Aγ 5, where A = (π/3, 0).
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BZ

FIG. 10. The Brillouin zone (BZ) of the brick wall lattice with
two Fermi points, P+ and P− corresponding to the isotropic cou-
plings Jx = Jy = Jz = 1. Continuously changing the coupling Jz from
+1 to −1 everywhere on the lattice shifts the Fermi points along the
x direction to the positions P′

+ and P′
−, as shown by the horizontal

solid arrow. Due to the parity symmetry of the model, the shift is
antiparallel so �P+ = −�P−, which gives rise to the chiral gauge
field A = (π/3, 0). The final configuration of the Fermi points can
also be viewed as an antiparallel shift of the Fermi points from
outside the Brillouin zone in the y direction, as shown by the vertical
dashed arrows. This shift yields the chiral gauge field A = (0, π ).

However, there is an alternative interpretation. If we look
at Fig. 10, we can interpret the transformation Eq. (C3) as
shifting P+ up by (0, π ) and shifting P− down by −(0, π )
into neighboring Brillouin zones. Under this transformation,
the ± Fermi points are swapped as P± of neighboring Bril-
louin zones are mapped to P′

∓, therefore we take our shift to
be �P± = P± − P∓ = ∓(0, π ) and the corresponding gauge
field is given by A = (0, π ). Working backward, we see that
upon exponentiation uα = exp(iA · sα ) does indeed give us the
correct link operators of ux = uy = 1 and uz = −1.

The corresponding continuum limit Hamiltonians about
each Fermi point, taking into account the shift in the y di-
rection, is given by

h±(p) = 2[±
√

3σ x px + σ y(py ± π )]. (C4)

Combining these two Hamiltonians into a single 4 × 4 Hamil-
tonian yields

hz(p) = 2[
√

3γ 0γ 1 px + γ 0γ 2(py + πγ 5)], (C5)

so we see that the Z2 gauge field arises as a chiral gauge field
in the continuum limit as expected.

APPENDIX D: GENERATING THE TIME COMPONENT A0

OF A CHIRAL GAUGE FIELD

To obtain A0 in the continuum limit, one must modify the
K term of the original the KHLM. Note that this term couples
sites that live on the same sublattice, either A or B, with the

|ψ|2 = 10−3

(b)

10−4 10−3 10−2 10−1

|ψ(x, y)|2

(a)

10−4 10−3 10−2 10−1

|ψi|2

FIG. 11. Obtaining a continuous profile for the vortex and ex-
tracting its dimensions. (a) The lattice probability density |ψi|2 of
the wave function for a vortex, located on the plaquette in the center.
(b) A continuous approximation of the vortex probability distribution
is constructed using two-dimensional Gaussians centered on each
lattice site, as described in the text. The size and shape of the vortex
are characterized by finding the set of points where |ψ (r)|2 = 10−3,
as illustrated. Here we used L = 36, K = 0.125, and ε = 1.

same tunneling amplitude for both sublattices. We modify this
term so there are different tunneling amplitudes Ka and Kb for
each sub-lattice. In this case, the contribution of the K term to
the single-particle Hamiltonian in momentum space becomes

hK (q) =
(
�a(q) 0
0 −�b(q)

)
, (D1)

where

�a/b(q) = 2Ka/b[− sin(q · n1) + sin(q · n2)

+ sin(q · (n1 − n2))]. (D2)

These couplings do not shift the Fermi points, so the analysis
is straightforward.

We repeat the usual procedure by expanding the Hamil-
tonian about the two Fermi points by defining (hK )± ≡
hK (P± + p) to first order in p. As �a/b(P± + p) =
∓3

√
3Ka/b + O(p2), we can combine the Hamiltonians of the

two Fermi points into a single Hamiltonian as before, which
yields the total Hamiltonian:

hK,total = 3
√

3
(Ka − Kb

2
σ z ⊗ I − Ka + Kb

2
I ⊗ σ z

)
. (D3)

By a direct comparison with Eq. (12) and noting that γ 5 =
σ z ⊗ I, we have

A0 = 3
√

3
(Ka − Kb

2

)
. (D4)

Moreover, the second part proportional to I ⊗ σ z corresponds
to the torsion term of the Hamiltonian Eq. (12).

APPENDIX E: THE SHAPE OF MAJORANA ZERO MODES

For the purposes of visualizing the localization of zero
modes, we approximate their profile on the lattice with a
continuous distribution by replacing each lattice point with
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two-dimensional Gaussians centered on each site,

|ψ (r)|2 =
∑

i

|ψi|2 δ(r − ri ) →
∑

i

|ψi|2
2πε

e− |r−ri |2
2ε ,

where ε is taken to be similar to the lattice spacing
so the Gaussians of neighboring sites overlap. Figure 11

illustrates this substitution. In the continuum, we ex-
pect a single wave function exponentially localized at
the position of the vortex. This continuous profile re-
duces the discrete lattice effects allowing us to clearly
observe the localization or delocalization of zero mode
excitations.
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