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There is growing interest in warm dense matter (WDM), an exotic state on the border between condensed
matter and plasmas. Due to the simultaneous importance of quantum and correlation effects, WDM is com-
plicated to treat theoretically. A key role has been played by ab initio path integral Monte Carlo (PIMC)
simulations, and recently extensive results for thermodynamic quantities have been obtained. The first extension
of PIMC simulations to the dynamic structure factor of the uniform electron gas was reported by Dornheim et al.
[Phys. Rev. Lett. 121, 255001 (2018)]. This was based on an accurate reconstruction of the dynamic local field
correction. Here we extend this concept to other dynamical quantities of the warm dense electron gas including
the dynamic susceptibility, the dielectric function, and the conductivity.

DOI: 10.1103/PhysRevB.102.125150

I. INTRODUCTION

The uniform electron gas (UEG) is one of the most im-
portant model systems in quantum physics and theoretical
chemistry [1–3]. Despite its apparent simplicity, it offers a
wealth of interesting effects like collective excitations (plas-
mons) [4] and Wigner crystallization at low density [5,6]. At
zero temperature, most static properties of the UEG have been
known for decades from ground-state quantum Monte Carlo
(QMC) simulations [7–11], and the accurate parametrization
of these results [12–16] has been pivotal for the spectacular
success of density functional theory (DFT) regarding the de-
scription of real materials [17,18].

The recent interest in warm dense matter (WDM), an ex-
treme state that occurs, e.g., in astrophysical objects [19–21]
and on the pathway toward inertial confinement fusion [22],
has made it necessary to extend these considerations to finite
temperatures. More specifically, WDM is defined by two char-
acteristic parameters, which are both of the order of unity: (a)
the density parameter (Wigner-Seitz radius) rs = r/aB (with
r and aB being the average particle distance and first Bohr
radius) and (b) the degeneracy temperature θ = kBT/EF (with
EF being the usual Fermi energy [23]). Moreover, WDM is
nowadays routinely realized in the laboratory (see Ref. [24]
for a review on experimental techniques), and many important
results have been achieved over the last years [25–29].

On the other hand, the theoretical description of WDM
is most challenging [30,31] due to the complicated inter-
play of (1) thermal excitations, (2) quantum degeneracy
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effects, and (3) Coulomb scattering. For example, the non-
negligible coupling strength rules out perturbation expansions
[32,33]. Semiclassical approaches like molecular dynamics
using quantum potentials [34,35] fail due to strong quantum
degeneracy effects and exchange effects. While ab initio QMC
methods are, in principle, capable to take into account all of
these effects exactly simultaneously, they are afflicted with
the notorious fermion sign problem (FSP, see Ref. [36] for an
accessible topical introduction). In particular, the FSP leads
to an exponential increase in computation time both upon
increasing the system size and decreasing the temperature
[36–38], and has been shown to be NP hard [39] for a par-
ticular class of Hamiltonians [38].

For this reason, it took more than three decades after the
celebrated ground-state results for the UEG by Ceperley and
Alder [7] to obtain accurate data in the WDM regime [40–45].
This was achieved by developing and combining new QMC
methods that are available in complementary parameter re-
gions [44,46–53]. These efforts have culminated in the first
accurate parametrizations of the exchange-correlation (XC)
free energy fXC of the UEG [43,54,55], which provide a com-
plete description of the UEG over the entire WDM regime.
Moreover, these results allow for thermal DFT simulations
[56,57] in the local density approximation, and recent studies
[58,59] have revealed that thermal xc effects are indeed crucial
to correctly describe aspects of WDM such as microscopic
density fluctuations and the behavior of hydrogen bonds at
finite temperature.

While being an important milestone, it is clear that a more
rigorous theory of WDM requires to go beyond the local
density approximation. In this context, the key information is
given by the response of the UEG to a time-dependent exter-
nal perturbation, which is fully characterized by the dynamic
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density response function [60]

χ (q, ω) = χ0(q, ω)

1 − ṽ(q)[1 − G(q, ω)]χ0(q, ω)
. (1)

Here, ṽ(q) = 4π/q2 is the Fourier transform of the Coulomb
potential, χ0(q, ω) denotes the density response function of
an ideal (i.e., noninteracting) Fermi gas, and G(q, ω) is com-
monly known as the dynamic local field correction (LFC).
More specifically, setting G(q, ω) = 0 in Eq. (1) leads to a
mean-field description of the density response (known as ran-
dom phase approximation, RPA) and, consequently, G(q, ω)
contains the full frequency- and wave-number-resolved de-
scription of XC effects.

Obviously, such information is vital for many applications.
This includes the construction of advanced, nonlocal XC
functions for DFT simulations [61–64], and the exchange-
correlation kernel for the time-dependent DFT (TDDFT)
formalism [65]. Moreover, we mention the incorporation
of XC effects into quantum hydrodynamics [31,66–68], the
construction of effective ion-ion potentials [69–71], and the
interpretation of WDM experiments [72,73]. Finally, the dy-
namic density response of the UEG can be directly used
to compute many material properties such as the electronic
stopping power [74,75], electrical and thermal conductivities
[76,77], and energy transfer rates [78].

Yet, obtaining accurate data for χ (q, ω) and related quan-
tities has turned out to be very difficult. In the ground state,
Moroni et al. [8,79] obtained QMC data for the density re-
sponse function and LFC in the static limit (i.e., for ω = 0) by
simulating a harmonically perturbed system and subsequently
measuring the actual response. Remarkably, this computation-
ally expensive strategy is not necessary at finite temperatures,
as the full wave-number dependence of the static limit of the
density response χ (q) = χ (q, 0) can be obtained from a sin-
gle simulation of the unperturbed system [80,81] [see Eq. (12)
below]. In this way, Dornheim et al. [81] were recently able
to provide extensive path integral Monte Carlo (PIMC) data
both for χ (q) and G(q) for the warm dense UEG, which, in
combination with the ground-state data [8,82], has allowed to
construct a highly accurate machine-learning-based represen-
tation of G(q; rs, θ ) covering the entire relevant WDM regime.
Moreover, PIMC results for the static density response have
been presented for the strongly coupled electron liquid regime
(rs � 20) [83], and the high-energy density limit (rs � 0.5)
[84]. Finally, we mention that even the nonlinear regime has
been studied by the same group [85].

The last unexplored dimension is then the frequency
dependence of χ (q, ω), which constitutes a formidable chal-
lenge that had remained unsolved even at zero temperature.
Since time-dependent QMC simulations suffer from an addi-
tional dynamical sign problem [86,87], previous results for the
dynamic properties of the UEG were based on perturbation
theories like the nonequilibrium Green function formalism at
finite temperature [32,88] or many-body theory in the ground
state [89,90].

Fortunately, PIMC simulations give direct access to the
intermediate scattering function F [defined in Eq. (6)], but
evaluated at imaginary times τ ∈ [0, β], which is related to

the dynamic structure factor S(q, ω) by a Laplace transform

F (q, τ ) =
∫ ∞

−∞
dω S(q, ω)e−τω. (2)

The numerical solution of Eq. (2) for S(q, ω) is a well-
known, but notoriously difficult, problem [91]. While different
approaches based on, e.g., Bayes theorem [92] or genetic
optimization [93,94] exist, it was found necessary to include
additional information into this reconstruction procedure to
sufficiently constrain the results for S(q, ω). In order to do so,
we have introduced a stochastic sampling procedure [80,95]
for the dynamic LFC, which allows to automatically fulfill
a number of additional exact properties. Thus, we were able
to present the first unbiased results for the dynamic structure
factor of the warm dense UEG without any approximation
regarding XC effects.

In this work, we further extend these considerations and
adapt our reconstruction procedure to obtain other dynamic
properties of the UEG such as the dielectric function ε(q, ω),
the conductivity σ (q, ω), and the density response function
χ (q, ω) itself. Further, we analyze the respective accuracy of
different quantities and find that the comparably large uncer-
tainty in the dynamic LFC G(q, ω) has only small impact on
physical properties like χ (q, ω), ε(q, ω), and S(q, ω), which
are well constrained by the PIMC results. Thus, this work
constitutes a proof-of-concept investigation and opens up dif-
ferent avenues for WDM theory, electron liquid theory, and
beyond.

The paper is organized as follows: In Sec. II we summarize
the main formulas of linear response theory and introduce
our PIMC approach to the dynamic local field correction. In
Sec. III we present our ab initio simulation results for the
local field correction, the dynamic structure factor, the density
response function, the dielectric function, and the dynamic
conductivity. We conclude with a summary and outlook in
Sec. IV where we give a concise list of future extensions of
our work.

II. THEORY AND SIMULATION IDEA

A. Path integral Monte Carlo

The basic idea of the path integral Monte Carlo method
[96,97] is to evaluate thermodynamic expectation values by
stochastically sampling the density matrix,

ρ(Ra, Rb, β ) = 〈Ra| e−βĤ |Rb〉 , (3)

in coordinate space, with β = 1/kBT being the inverse tem-
perature and R = (r1, . . . , rN )T containing the coordinates of
all N particles. Unfortunately, a direct evaluation of Eq. (3)
is not possible since the kinetic and potential contributions K̂
and V̂ to the Hamiltonian do not commute,

e−βĤ = e−βK̂ e−βV̂ + O(β2). (4)

To overcome this issue, one typically employs a Trotter de-
composition [98] and finally ends up with an expression for
the (canonical) partition function Z of the form

Z =
∫

dXW (X), (5)
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FIG. 1. Schematic illustration of path integral Monte Carlo.
Shown is a configuration of N = 3 electrons with P = 6 imaginary–
time propagators in the x-τ plane. Due to the single pair exchange,
the corresponding configuration weight W (X) [cf. Eq. (5)] is nega-
tive. Reprinted from Dornheim et al., J. Chem. Phys. 151, 014108
(2019) [99] with the permission of AIP Publishing.

with the metavariable X = (R0, . . . , RP−1)T being a so-called
configuration, which is taken into account according to the
corresponding configuration weight W (X).

This is illustrated in Fig. 1, where we show an exemplary
configuration of N = 3 electrons. First and foremost, we note
that each particle is now represented by an entire path of
P = 6 coordinates located on different imaginary-time slices,
which are separated by a time step of ε = β/P. In particular, P
constitutes a convergence parameter within the PIMC method
and has to be chosen sufficiently high to ensure unbiased
results [cf. Eq. (4)]. For this study, we find that P = 100 is
fully sufficient to ensure convergence within the given sta-
tistical uncertainty. For completeness, we mention that the
convergence with respect to P can, in principle, be accelerated
by using higher-order factorizations of the density matrix, e.g.,
Refs. [100,101]. This, however, is not advisable for this study
since it would also limit the number of τ points, on which the
density-density correlation function F (q, τ ) can be evaluated
[cf. Eq. (6) below]. In addition, the formulation of the PIMC
method in imaginary time allows for a straightforward evalu-
ation of imaginary-time correlation functions, such as

F (q, τ ) = 1

N
〈ρ̂(q, τ )ρ̂(−q, 0)〉 , (6)

where the two density operators are simply evaluated on two
different time slices.

For the PIMC method, one uses the Metropolis algo-
rithm [102] to stochastically generate a Markov chain of
configurations X, which can then be used to compute the
thermodynamic expectation value of an arbitrary observ-
able Â:

〈Â〉MC = 1

NMC

NMC∑
k=1

A(Xi ). (7)

Here 〈Â〉MC denotes the Monte Carlo estimate, which con-
verges toward the exact expectation value in the limit of a
large number of random configurations

〈Â〉 = lim
NMC→∞

〈Â〉MC , (8)

and the statistical uncertainty (error bar) decreases as

�AMC ∼ 1√
NMC

. (9)

Thus, both the factorization error with respect to P and the MC
error [Eq. (9)] can be made arbitrarily small, and the PIMC
approach is quasiexact.

An additional obstacle is given by the fermion sign prob-
lem, which follows from the sign changes in the configuration
weight W (X) due to different permutations of particle paths.
In particular, configurations with an odd number of pair per-
mutations (such an example is shown in Fig. 1) result in
negative weights, which is a direct consequence of the an-
tisymmetry of the fermionic density matrix under particle
exchange. This leads to an exponential increase in compu-
tation time with increasing the system size N or decreasing
the temperature. However, a more extensive discussion of the
sign problem is beyond the scope of this work, and has been
presented elsewhere [36,99]. While more advanced QMC
methods for the simulation of fermions have been presented
recently [41,44,46,52,53], these do not yet allow for the es-
timation of F (q, τ ). Therefore, it is necessary to carry out
computationally more expensive standard PIMC calculations,
and we use up to 105 single-core hours (CPUh) for a single
density-temperature combination.

For completeness, we mention that all PIMC data pre-
sented in this work have been obtained using a canonical
adaption [103] of the worm algorithm introduced by Bonin-
segni et al. [104,105].

B. Stochastic sampling of the dynamic LFC

In this section, we describe the numerical solution of
Eq. (2) based on the stochastic sampling of the dynamic
local field correction G(q, ω) introduced in Refs. [80,95]. In
principle, the task at hand is to find a trial solution Strial(q, ω),
which, when being inserted into Eq. (2), reproduces the PIMC
data for F (q, τ ) within the given Monte Carlo error bars.
This, however, is a notoriously difficult and, in fact, ill-posed
problem [91], as different trial solutions with distinct fea-
tures might reproduce FPIMC(q, τ ) within the given confidence
interval.

To further constrain the space of possible trial solutions,
one might consider the frequency moments of the dynamic
structure factor, which are defined as

〈ωk〉 =
∫ ∞

−∞
dω ωk S(q, ω). (10)

For the UEG, four frequency moments are known from dif-
ferent sum rules, namely, k = −1, 0, 1, 3. The corresponding
equations are summarized in Ref. [80], and need not be
repeated here.

For some applications [106,107], the frequency moments
have been shown to significantly improve the quality of the
reconstruction procedure. For the UEG, on the other hand, the
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combined information from F (q, τ ) and 〈ωk〉 is not sufficient
to fully determine the shape and position of the plasmon
peaks.

To overcome this issue, Dornheim and co-workers [80,95]
proposed to further constrain the space of possible solutions
by automatically fulfilling a number of exact properties of the
dynamic LFC G(q, ω). The central equation for this strategy
is the well-known fluctuation-dissipation theorem [1], which
gives a relation between S(q, ω) and the dynamic density
response function χ (q, ω),

S(q, ω) = − Imχ (q, ω)

πn(1 − e−βω )
. (11)

The latter is then expressed in terms of the density response
function of the noninteracting system and the dynamic LFC
[see Eq. (1) above]. Therefore, using Eqs. (11) and (1), we
have recast the reconstruction problem posed by Eq. (2) into
the search for a suitable trial solution for the dynamic LFC,
Gtrial(q, ω).

The important point is that many additional exact prop-
erties of G(q, ω) are known from theory. Since, again, all
formulas are listed in Ref. [80], here we give only a brief
summary:

(1) The Kramers-Kronig relations give a direct connection
between the real and imaginary parts of G(q, ω) in the form
of a frequency integral.

(2) Re G(q, ω) and Im G(q, ω) are even and odd functions
with respect to ω, respectively.

(3) The imaginary part vanishes for ω = 0 and ω → ∞.
(4) The static (ω = 0) limit of Re G(q, ω) can be directly

obtained from

χ (q, 0) = −n
∫ β

0
dτ F (q, τ ), (12)

and Eq. (1). Further, an accurate neural-net representation of
G(q, ω = 0) was presented in Ref. [81].

(5) The high-frequency (ω → ∞) limit of Re G(q, ω) can
be computed from the static structure factor S(q) and the
exchange-correlation contribution to the kinetic energy. The
latter is obtained from the accurate parametrization of the
exchange-correlation free energy fXC by Groth et al. [43].

To generate trial solutions for G(q, ω) that automatically
fulfill these constraints, we follow an idea by Dabrowski [108]
and introduce an extended Padé formula of the form

Im G(q, ω) = a0ω + a1ω
3 + a2ω

5

(b0 + b1ω2)c , (13)

where a0−2, b0,1, and c are chosen randomly. The correspond-
ing real part of this trial solution Gtrial(q, ω) is subsequently
computed from the Kramers-Kronig relation (see Ref. [80] for
a more detailed discussion).

During the reconstruction procedure, we (1) randomly gen-
erate a large set of parameters T = {ai, bi, c}, (2) use these
to obtain both Im Gtrial(q, ω) and Re Gtrial(q, ω), (3) insert
these into Eq. (1) to compute the corresponding χtrial(q, ω),
(4) insert the latter into the fluctuation-dissipation theorem
to get a dynamic structure factor Strial(q, ω), and (5) compare
integrals over Strial(q, ω) to our PIMC data for F (q, τ ) (for all
τ ∈ [0, β]) and the frequency moments 〈ωk〉. The small subset
of M trial parameters T that reproduce both F (q, τ ) and 〈ωk〉

are kept to obtain the final result for physical quantities of
interest, like S(q, ω) itself, but also χ (q, ω) and ε(q, ω).

For example, the final solution for the dynamic structure
factor is given by

Sfinal(q, ω) = 1

M

M∑
i=1

Strial,i(q, ω). (14)

Moreover, this approach allows for a straightforward esti-
mation of the associated uncertainty as the corresponding
variance

�S(q, ω) =
(

1

M

M∑
i=1

[Strial,i(q, ω) − Sfinal(q, ω)]2

)1/2

. (15)

C. Dielectric function and inverse dielectric function

Having obtained ab initio results for the density response
function χ (q, ω), it is straightforward to obtain the dynamic
retarded dielectric function [109] as well as the inverse dielec-
tric function

ε(q, ω) = 1 − ṽ(q)�(q, ω), (16)

ε−1(q, ω) = 1 + ṽ(q)χ (q, ω), (17)

where � is the retarded polarization function. Its relation to
the density response function is

�(q, ω) = ε(q, ω)χ (q, ω) = χ (q, ω)

1 + ṽ(q)χ (q, ω)
. (18)

In RPA, the dielectric function is given by

εRPA(q, ω) = 1 − ṽ(q)�RPA(q, ω), (19)

with �RPA(q, ω) = χ0(q, ω).
Correlation effects, i.e., deviations from χ0, can be ex-

pressed in terms of the dynamic local field correction G(q, ω),
and the dielectric function can be written as

ε(q, ω) = 1 − ṽ(q)χ0(q, ω)

1 + ṽ(q)G(q, ω)χ0(q, ω)
. (20)

While ε−1 is commonly used in linear response theory, ε

emerges naturally in electrodynamics (e.g., Ref. [110]), and
it is of prime importance for the description of plasma
oscillations.

Let us summarize a few definitions and important proper-
ties of the retarded dielectric function.

(1) Since χ (q, ω) describes a causal response, ε−1(q, ω)
is an analytic function in the upper frequency half-plane. Real
and imaginary parts are connected via the Kramers-Kronig
relation for real frequencies.

(2) If G(q, ω) is computed via an ab initio QMC procedure
[95], also the dielectric function has ab initio quality. We will
call this result εDLFC(q, ω).

(3) Another important approximation is obtained by re-
placing, in Eq. (20), G(q, ω) → G(q, 0) = G(q). This is still
a dynamic dielectric function which will be denoted by
εSLFC(q, ω). Comparison to the full dynamic treatment re-
vealed that this static approximation provides an accurate
description of the dynamic structure factor for rs � 4, for all
wave numbers [95].
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(4) Since the static limit of the response function is real
and negative

χ (q, 0) � 0, (21)

which is a necessary prerequisite for the stability of any sys-
tem, it immediately follows for the static dielectric function
that

ε(q, 0)−1 < 1, (22)

which implies ε(q, 0) 	∈ (0, 1].
(5) The static long-wavelength limit is real and related to

the compressibility K ,

K−1 = n2 ∂μ

∂n
(23)

via

lim
q→0

ε(q, 0) = 1 + ṽ(q)n2K, (24)

where n is the density and μ the chemical potential [1]. The
practical evaluation of the compressibility is given by Eq. (32)
below.

D. Dynamic conductivity

Having the dielectric function at hand, it is straightforward
to compute further dynamic linear response quantities. An
example is the dynamical conductivity σ (q, ω), that follows
from the response of the current density to an electric field
with the result

ε(q, ω) = 1 + 4π i

ω
σ (q, ω). (25)

This can be transformed into an expression for the conduc-
tivity in terms of the RPA response function and the dynamic
local field correction, using Eq. (20),

σ (q, ω) = i
ω

4π

ṽ(q)χ0(q, ω)

1 + ṽ(q)G(q, ω)χ0(q, ω)

= i
ω

4π
ṽ(q)�(q, ω), (26)

where � is the longitudinal polarization function (18).
The analytical properties of the polarization function in

RPA at finite temperature were thoroughly investigated in
many papers, including Refs. [111–113]. Following these
works, it is straightforward to find various limiting cases for
the conductivity in RPA which are valuable for comparison to
the correlated results presented in Sec. III F.

(1) At q 
 qF (and for arbitrary frequency), we have for
the real part of the conductivity in RPA

Re σ (q, ω)

ωp
= 2

√
3

9π2
r3/2

s

( q
qF

)−3( ω
ωp

)2

1 + exp
[

αrs
θ

(ω/ωp)2

(q/qF )2 − η
] , (27)

where α = 3(4/9π )4/3 � 0.221 and η = βμ.
(2) At ω 
 qvF [i.e., ω/ωp 
 (q/qF ) × 2.13/

√
rs] and

arbitrary wave number, the real part of the conductivity in
RPA reads

Re σ (q, ω)

ωp
= 2

√
3

9π2
r3/2

s

( q
qF

)−3( ω
ωp

)2

1 + exp
[ (q/qF )2

4θ
− η

] . (28)
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FIG. 2. PIMC data for the imaginary-time density-density corre-
lation function F (q, τ ) for N = 34 unpolarized electrons at rs = 4
and θ = 1 (WDM conditions). The red crosses correspond to the
static structure factor S(q) = F (q, 0).

(3) For the imaginary part of the conductivity in RPA, at
high frequencies, ω � h̄q2/(2m) and ω � qvF , we find the
following result:

Im σ (q, ω)

ωp
= 1

4π

(ωp

ω

)

+
[

3

16 rs

(
9π

4

)1/3 〈v2〉
v2

F

(
q

qF

)2

+ 3

64 rs

(
9π

4

)1/3( q

qF

)4](ωp

ω

)3

+ 9π

64 r2
s

(
9π

4

)2/3 〈v4〉
v4

F

(
q

qF

)4(ωp

ω

)5
+ · · · ,

(29)

where 〈. . .〉 indicates an average with the finite-temperature
Fermi function. Analytical parametrizations for the moments
〈v2〉
v2

F
and 〈v4〉

v4
F

are given in the Appendix.

If one neglects terms of the order O((ωp/ω) 3) and higher,
i.e. retains only the O((ωp/ω) 1) order term, the often used
high-frequency limit for the RPA conductivity is recovered
(e.g., in the Drude conductivity) [114],

Im σ (q, ω)

ωp
= 1

4π

(ωp

ω

)
. (30)

III. NUMERICAL RESULTS

A. Density correlation function

Let us begin the investigation of our numerical results
with a brief discussion of the imaginary-time density-density
correlation function F (q, τ ), which constitutes the most im-
portant input for the reconstruction procedure. To this end, we
show F (q, τ ) in the q-τ plane for rs = 4 and θ = 1 in Fig. 2.
Since a physically meaningful interpretation of this quantity
is rather difficult, here we restrict ourselves to a summary
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FIG. 3. Imaginary-time density-density correlation function
F (q, τ ) for rs = 4, θ = 1 at q/qF ≈ 0.63. The PIMC data (blue
points) are compared to the reconstruction results using the static
limit of the LFC (dashed black) and the fully dynamic LFC (solid
red). As a comparison, we also include RPA (solid green).

of some basic properties. First and foremost, we note that
F approaches the static structure factor (see the red crosses
in Fig. 2) in the limit of small τ , F (q, 0) = S(q). Moreover,
F is symmetric in the imaginary time around τ = β/2 [i.e.,
F (q, τ ) = F (q, β − τ )], and it is thus fully sufficient to show
only the range of τ ∈ [0, β/2].

Regarding physical parameters, the density-temperature
combination depicted in Fig. 2 corresponds to a metallic den-
sity in the WDM regime. This is somewhat reflected in Fig. 2
by the amount of structure in the surface plot, in particular, the

maximum around q ≈ 1.5qF. For example, for larger coupling
strength the UEG forms an electron liquid and F (q, τ ) ex-
hibits a more pronounced structure with several maxima and
minima [83]. For decreasing rs, on the other hand, electronic
correlation effects become less important and one approaches
the high-energy-density regime, where F (q, τ ) exhibits even
less structure than for the present example, and the only max-
imum is shifted to smaller values of q/qF (see Ref. [84]).

Let us next briefly touch upon the utility of the imaginary-
time density-density correlation function for the reconstruc-
tion of dynamic quantities like the dynamic structure factor
S(q, ω). This is illustrated in Fig. 3, where we show the τ

dependence of F for a fixed wave number q ≈ 0.63qF. The
blue points correspond to our PIMC data, and the three curves
have been obtained by inserting different solutions for the
dynamic structure factor into Eq. (2) [see the bottom left panel
of Fig. 4 for the corresponding depiction of S(q, ω)]. Let us
start with the green curve, which shows the random phase
approximation (RPA). Evidently, the mean field description
exhibits severe deviations from the exact PIMC data and is
too low by ∼10% over the entire τ range. Moreover, this shift
is not constant, and the RPA curve exhibits a faster decay with
τ compared to the blue points. This is consistent with previous
studies [3,42,50] of the static structure factor S(q), where RPA
has been shown to give systematically too low results for all
wave numbers.

In contrast, the dashed black curve has been obtained on
the basis of the static approximation, i.e., by setting G(q, ω) =
G(q, 0) in Eq. (1). Evidently, this leads to a substantially im-
proved imaginary-time density-density correlation function,
and the black curve is within the Monte Carlo error bars
over the entire τ range. Finally, the solid red curve has been
obtained by stochastically sampling the full frequency depen-
dence of G(q, ω) as described in Sec. II B. While this does

FIG. 4. Dynamic structure factor S(q, ω) at θ = 1 for three wave numbers. Top: rs = 10, bottom: rs = 4. Green: RPA, dashed: SLFC (static
LFC), red: DLFC (full dynamic LFC).
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lead to an even better agreement to the PIMC data, one cannot
decide between the two solutions on the basis of F (q, τ )
alone. This further illustrates the need for the incorporation of
the exact constraints on the stochastic sampling of G(q, ω), as
the static approximation and full frequency dependence of the
LFC lead to substantially different dynamic structure factors,
but similar F (q, τ ).

B. Dynamic structure factor

The next quantity of interest is the dynamic structure factor
S(q, ω) itself, which is shown in Fig. 4 at the Fermi tem-
perature for two different densities and for three different
wave numbers each. In this context, we recall that S(q, ω)
constitutes a key quantity for the full reconstruction of any
dynamical property, as it is used as a measure of quality of
the dynamic LFC G(q, ω) in the stochastic sampling pro-
cedure (see Sec. II B). Moreover, it is directly accessible in
x-ray Thomson scattering (XRTS) experiments [72] and is of
paramount importance for plasma diagnostics [73], like the
determination of the electronic temperature. For this reason,
S(q, ω) has been extensively investigated in previous studies
[80,95,115]. Very recently, Dornheim and Vorberger [115]
have found that the ab initio PIMC results for S(q, ω) at the
Fermi temperature are not afflicted with any significant finite-
size error even for as few as N = 14 unpolarized electrons.
In addition, Dornheim et al. [95] have presented results going
from the WDM regime to the strongly coupled electron liquid
regime, where S(q, ω) exhibits a negative dispersion relation
(estimated from the maximum in the DSF), which might indi-
cate the onset of an incipient excitonic mode [89,90,116]. For
this reason, here we restrict ourselves to a brief discussion of
the most important features.

The top row of Fig. 4 shows results for rs = 10 and the
left, center, and right panels correspond to q ≈ 0.63qF, q ≈
1.25qF, and q ≈ 2.94qF, respectively. For the smallest wave
number, we find a relatively sharp peak slightly above the
plasma frequency, which can be identified as the plasmon of
the UEG. Yet, while it is well known that this collective excita-
tion is correctly described on the mean-field level (i.e., within
RPA, green curve) for q → 0, we find substantial deviations
between the three depicted data sets for q ≈ 0.63qF. More
specifically, the static approximation (dashed black) leads to
a redshift compared to RPA, and a correlation-induced broad-
ening. In addition, this trend becomes even more pronounced
for the full reconstructed solution (red curve), which results in
an almost equal position of the peak as the static solution, but
is much broader.

The center panel corresponds to an intermediate wave
number, and we find an even more pronounced redshift. Re-
markably, the static approximation performs very well and
can hardly be distinguished from the full dynamic solution
within the given confidence interval (red shaded area). Finally,
the right panel shows the DSF for approximately thrice the
Fermi wave number, where we also observe some interesting
behavior. First and foremost, all three spectra exhibit a sim-
ilar width, which is much broader compared to the previous
cases, as it is expected. Furthermore, including a local field
correction in Eq. (1) leads to a redshift, which is most pro-
nounced for the red curve. Yet, the full frequency dependence

of G(q, ω) leads to a nontrivial shape of S(q, ω), which is not
captured by the black curve and leads to a substantially more
pronounced negative dispersion relation compared to the static
approximation [95].

The bottom row of Fig. 4 corresponds to rs = 4, which
is a metallic density in the WDM regime. The most striking
difference to the electron liquid example above is that the
spectra are comparably much broader for the same value of
q/qF, which is a direct consequence of the increased density.
Moreover, all three curves are in relatively good agreement,
we observe only a small redshift compared to RPA, and the
static approximation fully describes the DSF. The same holds
for the two larger wave numbers shown in the center and right
panels, although here the redshift to the mean-field description
is somewhat larger.

In accordance with Ref. [95], we thus conclude that the
static approximation provides a nearly exact description of
S(q, ω) for weak to moderate coupling (rs � 5) and consti-
tutes a significant improvement over RPA even at the margins
of the strongly coupled electron liquid regime. The verifi-
cation of this finding for other dynamic quantities like the
dynamic density response function χ (q, ω) (Sec. III D) and
dielectric function ε(q, ω) (Sec. III E) is one of the central
goals of this work.

C. Local field correction

Before we move on to the investigation of χ (q, ω) and
ε(q, ω), it is worth to briefly examine the reconstructed dy-
namic local field correction. In particular, the dynamic LFC
constitutes the basis for the computation of all other dynamic
properties from the ab initio PIMC data and, thus, is of central
importance for our reconstruction scheme. Since the stochas-
tic sampling and subsequent elimination/verification of trial
solutions for G(q, ω) has been extensively discussed by Groth
et al. [80], here we restrict ourselves to the discussion of
a typical example shown in Fig. 5 for θ = 1, rs = 6, and
q ≈ 1.88qF. These parameters are located at the margins of
the WDM regime with a comparably large impact of elec-
tronic correlation effects and can be realized experimentally
in hydrogen jets [117] and evaporation experiments, e.g., at
the Sandia Z-machine [59,118–120]. Furthermore, the se-
lected wave number is located in the most interesting regime,
where the position of the maximum of S(q, ω) exhibits a non-
monotonous behavior and the impact of G(q, ω) is expected
to be most pronounced.

In the top panel, we show the frequency dependence of the
real part of G, which exhibits a fairly nontrivial progression:
starting from the exact static limit G(q, 0) directly known
from our PIMC data for χ (q), the dynamic LFC exhibits a
maximum around ω ≈ 1.4ωp followed by shallow minimum
around ω ∼ 10ωp and then monotonically converges to the
also exactly known ω → ∞ limit from below. Moreover,
the associated uncertainty interval (light gray shaded area) is
relatively small, and the maximum appears to be significant,
whereas the minimum is probably not. At this point, we men-
tion that the dynamic LFC is afflicted with the largest relative
uncertainty of all reconstructed quantities considered in this
work, which can be understood as follows: by design, the
LFC contains the full information about exchange-correlation
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FIG. 5. Average solution obtained for the real and imaginary
parts of the dynamic local field correction, G(q, ω), at θ = 1, rs = 6,
and q ≈ 1.88 qF . The shaded area corresponds to the range of valid
reconstructions.

effects beyond RPA. In the limit of small and large wave
numbers, the RPA is already exact and, consequently, the
dynamic LFC has no impact on the reconstructed solutions
for S(q, ω) that are compared to the PIMC data using Eq. (2).
Naturally, the same also holds for increasing temperature
and density where the importance of G(q, ω) also decreases
[84].

In the bottom panel of Fig. 5, we show the corresponding
imaginary part of G for the same conditions. Interestingly,
ImG exhibits a seemingly less complicated behavior featuring
a single maximum around ω ≈ 5ωp, and vanishing both in the
high- and low-frequency limits from above.

We thus conclude that our reconstruction scheme allows
us to obtain accurate results for the dynamic LFC when it has
impact on physical observables like S(q, ω), i.e., precisely
when it is needed in the first place. This allows for the
intriguing possibility to construct a both q- and ω-dependent
representation of G for some parameters, which could then
be used for many applications like a real time-dependent
DFT simulation without the adiabatic approximation
[121,122].

D. Dynamic density response function χ

The present procedure to reconstruct the dynamic structure
factor via a reconstruction of G(q, ω) can be straightforwardly
extended to other dynamic quantities. The first example is the
density response function defined by Eq. (1). Here we extend

our preliminary results [31] and present more extensive data
for two densities of interest.

The top half of Fig. 6 corresponds to rs = 10 (strong
coupling), and Figs. 6(a)–6(c) to three interesting wave num-
bers. Similarly to the dynamic LFC discussed in the previous
section, we find that the real part of χ exhibits a more
complicated behavior compared to the imaginary part. More
specifically, the latter vanishes both in the high- and low-
frequency limits, whereas the former attains a finite value
in the static case. In addition, Reχ (q, ω) has a remarkable
structure in-between, with a polelike structure owing to the
Kramers-Kronig relation between imaginary and real parts.
This is the excitation of density fluctuations visible as a peak
in the imaginary part, as translated to the real part and this
structure. For the smallest depicted wave number, the exci-
tation range is narrow and the position of the zero crossing
of Reχ (q, ω) almost exactly coincides with the position of
the maximum in both Imχ (q, ω) and S(q, ω). In contrast,
a broader excitation at larger values of q leads to a shifted
feature in the real part for q ≈ 1.25qF and q ≈ 2.94qF. Fur-
thermore, we note that the imaginary part closely resembles
the dynamic structure factor S(q, ω) [which is a direct conse-
quence of the fluctuation-dissipation theorem, Eq. (11)], and
the associated physics, thus, need not be further discussed at
this point.

Let us next examine the difference between the three dif-
ferent depicted solutions for the dynamic density response
function. Due to the strong electronic correlations, the RPA
only provides a qualitative description, as it is expected. In-
cluding a local field correction does not only lead to a redshift,
but also to a significantly changed shape, and a substantially
different static limit for Reχ . For example, the mean-field
description of the dynamic density response predicts a shallow
minimum in the real part around ω = 1.5ωp for q ≈ 1.25qF

[Fig. 6(b)], which is not present for both the static and the
dynamic LFC. Finally, we note that the static LFC leads to a
clear improvement over RPA in particular in the description of
the peak position but, as in the case of S(q, ω), cannot capture
the nontrivial behavior of χ (q, ω) at q ≈ 2.94qF.

The bottom half of Fig. 6 corresponds to rs = 4 and θ = 1,
which is located in the WDM regime. As for S(q, ω), both the
real and imaginary parts of χ (q, ω) are not as sharply peaked
as for rs = 10, as it is expected. Overall, the RPA seems
to provide a somewhat better description of Reχ (q, ω) than
of Imχ (q, ω), although there are substantial deviations for
ω → 0. Moreover, the static approximation is highly accurate
and cannot be distinguished from the full solution for all three
wave numbers.

E. Dynamic dielectric function

Proceeding in a similar way as for the dynamic structure
factor and the density response function, we now turn to a
reconstruction of the dynamic dielectric function ε(q, ω). This
function is particularly interesting, as it gives direct access to
the spectrum of collective excitations of the plasma. Using
Eq. (20), the dynamic dielectric function is directly expressed
by the local field correction to which we have access in our
ab initio simulations. Thus, it is straightforward to directly
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FIG. 6. Dynamic density response function at θ = 1, for three wave numbers. (a)–(c) rs = 10; (d)–(f) rs = 4. Top (bottom) of each figure:
real (minus imaginary part). Comparison of RPA (green), and PIMC simulation results using the static (SLFC, dashed) and dynamic (DLFC,
red) local field correction.

compare the RPA dielectric function to correlated results that
use either the static or dynamic LFC.

A first typical result for the dielectric function of the corre-
lated electron gas is shown in Fig. 7, for the case of rs = 6 and
θ = 1. In the left (right) panel we show the real (imaginary)
part of the dielectric function for two wave numbers. At large
frequencies ω � ωp, the correlated results are in close agree-
ment with the RPA. However, strong deviations occur below
ωp. The peak of the imaginary part narrows and shifts to much
lower frequencies. Due to the Kramers-Kronig relations, the
same trend is observed for the real part. The statistical uncer-
tainty of the reconstruction of G(q, ω) leads to an uncertainty
in the region of the peak of Im ε that is indicated by the red
band. Interestingly, the static approximation is very close to
the full dynamic results at the present parameters. In the left
part of the figure, we also show the imaginary part of the
inverse dielectric function −Im ε−1 which is proportional to
the dynamic structure factor [cf. Eq. (11)]. At the lower wave
number (top left figure), its peak is close to the zero of the real
part of ε.

Let us now proceed to stronger coupling, to the margins of
the electron liquid regime (rs = 10 and θ = 1), and discuss
the behavior of the dynamic dielectric function. Of particular
interest is the possibility of instabilities [1]. In Fig. 8 (Fig. 9),
we show the frequency dependence of Re ε(q, ω) [Im ε(q, ω)]
for q ≈ 0.63qF (top), q ≈ 1.88qF (center), and q ≈ 2.94qF

(bottom). For the two larger wave numbers, we find similar
trends for Re ε(q, ω) as for rs = 6, although the differences
between the RPA and the LFC based curves are substantially
larger, in particular around q = 2qF. The top panel, on the
other hand, exhibits a peculiar behavior, which deserves spe-
cial attention: while the RPA predicts a positive static limit,
as it is expected, the red and black curves attain a comparably
large (though finite) negative value for ω = 0.

To understand the implications of this nontrivial finding,
we show the wave-number dependence of the static limit of
Reχ (q, ω) in Fig. 10. The RPA curve (green line) converges
to 1 from above, for large q and diverges to positive infinity for
q → 0, as it is known from theory [1]. The static approxima-
tion (dashed black), on the other hand, leads to an altogether
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FIG. 7. Left: real part of the dielectric function ε(q, ω) and imaginary part of the inverse dielectric function. Right: imaginary part of the
dielectric function, for rs = 6, θ = 1. The peak of −Imε−1 [and of S(q, ω)] is in the vicinity of the second root of Re ε (if roots exist, as in the
upper figure). Green lines: RPA, red (dashed) lines: dynamic (static) PIMC results, for details see text.

different behavior. While it eventually attains the same limit
for large-q values, it exhibits a highly nontrivial structure with
two poles around q ≈ qF and q ≈ 0.4qF, and remains finite for
q = 0 (with a small local maximum around q ≈ 0.1qF). Let
us first briefly touch upon the implications of this behavior for
the stability of the system. As we have noted in Sec. II C, the
static dielectric function needs to remain outside the interval
between zero and one, ε(q, 0) 	∈ (0, 1]. This requirement is
indeed fulfilled by the static approximation since the sign
changes are around singular points. Yet, the finite value for
q → 0 clearly violates the exact constraint given in Eq. (24)
above and deserves further attention. In particular, Eq. (24)
can be rephrased in terms of the LFC as

lim
q→0

ε(q, 0) = lim
q→0

1 −
4π
q2 χ0(q, 0)

1 + 4π
q2 G(q, 0)χ0(q, 0)

= lim
q→0

1 − 4πχ0(q, 0)

q2[1 + 4πCχ0(q, 0)]
, (31)

where the second equality follows from the well-known limit
of the static local field correction

lim
q→0

G(q, 0) = q2C (32)

(see, e.g., Refs. [80,81] for details). Naturally, this limit
was incorporated into the training procedure for the neural-
network representation of G(q, 0) in Ref. [81]. However,
directly utilizing Eq. (32) to compute a dielectric function
(which becomes exact for q → 0) leads to the red curve in
Fig. 10, which does indeed diverge toward positive infinity
as predicted by Eq. (24). The explanation for the finite value
at q = 0 (and also the unsmooth behavior for small q) of
the dashed black curve is given by the construction of the

neural-network representation itself. As any deviations both
from Eq. (32) for small q, and the ab initio PIMC input data
elsewhere, were equally “punished” by the loss function, the
resulting neural network exhibits an overall absolute accuracy
of �G ∼ 0.01 and, thus, does not exactly go to zero in the
long wave-length limit. We, thus, conclude that using the
neural-network representation from Ref. [46] leads to the ex-
act q → 0 limit for density response quantities like χ (q) and
S(q), but becomes inaccurate for effective, dielectric proper-
ties like ε(q) and �(q) in this regime. The blue diamonds
in Fig. 10 correspond to raw PIMC data and substantiate the
nontrivial structure with two sign changes and poles, although
the latter cannot be clearly resolved due to the discrete q grid.
Moreover, the small yet significant difference between the
PIMC data and the SLFC are most likely a direct consequence
of the high sensitivity of ε to small changes in G(q) in the
vicinity of the poles.

Let us conclude this section with a brief discussion of the
eponymous quantity of Eq. (24), i.e., the compressibility K . In
Fig. 11, we show the rs dependence of the ratio of the nonin-
teracting to the interacting compressibility, for θ = 1, and the
solid green line has been obtained from the accurate PIMC-
based parametrization of fXC by Groth and co-workers [43].
In addition, we also show results from (static) dielectric theo-
ries investigated by Sjostrom and Dufty [123], namely, STLS
(Singwi-Tosi-Land-Land-Sjölander, dashed black) [124,125]
and VS (Vashista-Singwi, dotted blue) [126,127]. Finally, the
dashed-dotted red curve has been obtained by the same au-
thors on the basis of the restricted PIMC data by Brown et al.
[40].

First and foremost, we note that all four curves exhibit
a qualitatively similar trend and approach the correct limit
for rs → 0, where the UEG becomes ideal. With increasing
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the static limit becomes negative with a large absolute value (for
details see text).

coupling strength, the compressibility is reduced as com-
pared to K0. Moreover, K does eventually become negative
around rs ≈ 10.5. This has some interesting implications and
indicates that the static dielectric function ε(q, 0) converges
toward negative infinity in the long-wavelength limit. Lastly,
we compare the three approximate curves from Ref. [123]
against the accurate GDSMFB (Groth-Dornheim-Sjostrom-
Malone-Foulkes-Bonitz, Ref. [43]) benchmark and find that
RPIMC and STLS exhibit relatively small systematic de-
viations, whereas the VS curve deviates the most. This is
certainly remarkable as the closure relation of the VS formal-
ism strongly depends on a consistency relation of K toward
both G(q, 0) and fXC (see Ref. [123] for a detailed discussion
of this point).

F. Ab initio results for the dynamic conductivity

Let us start our investigation of the dynamic conductiv-
ity with an analysis of the four asymptotics introduced in
Sec. II D. This is shown in Fig. 12 corresponding to rs = 2,
4, and 10 and three wave numbers. The agreement to the
full RPA solution (solid green curve) is very good. First, we
note that it is evident from Eq. (27) that the real part of the
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FIG. 9. Imaginary part of the dielectric function for rs = 10,
θ = 1. Green lines: RPA; red (dashed) lines: dynamic (static) PIMC
results.

RPA conductivity tends to zero, if the limit, q → 0 is taken
(optical conductivity) (cf. dotted green lines in the plots for
q/qF ≈ 0.63). Second, Re σ RPA tends to zero as ω2 if the limit
ω → 0 is taken for arbitrary q (gray lines) [cf. Eqs. (27) and
(28)]. Third, the asymptotic behavior from Eq. (29) (cf. dotted
blue lines) correctly reproduces the behavior of Im σ RPA for
frequencies larger than the first positive maximum, for all
q, and with further frequency increase merges with Eq. (30)
(solid blue line) which correctly captures the high-frequency
limit.

Having ab initio results for the local field correction and
the longitudinal polarization available allows us to produce
accurate results for the conductivity including exchange and
correlation effects as well. Simulation results for the conduc-
tivity within the static and dynamic LFC approximation are
presented in Fig. 12 by the black dashed lines and red bands,
respectively. First, we observe that the static and dynamic
results for the conductivity are in very good agreement with
each other for all cases. Small deviations are visible mainly
for rs = 10. Second, the agreement of the RPA conductivity
with the correlated approximations is reasonable for rs = 2.
At stronger coupling, rs = 4, good agreement is observed only
at the largest wave number q/qF ≈ 2.94, whereas for lower
q deviations are growing. At rs = 10 agreement is observed
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only at large frequencies, whereas the behavior around the
main peak of Re σ as well as for frequencies below the
peak shows dramatic influences of correlations, except for
the largest q.
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We note that the present analysis is complementary to
the approaches for the conductivity executed in the optical
limit, q → 0. In this limit, the focus is usually on incorpo-
rating electron-ion correlations that can be shown to be the
dominant nonideality contribution in that limit. Examples in-
clude linear response calculations as well as DFT approaches
using Kubo-Greenwood relations [76,77,114,119,120,128].
Electron-electron and electron-ion correlations have been
taken into account simultaneously, but only for the nonde-
generate, weakly coupled case [76]. Our work opens up the
possibility to improve this description and extend it to the
warm dense matter regime with all its correlations and quan-
tum effects causing a non-Drude form of the conductivity.

IV. SUMMARY AND DISCUSSION

In this work, we have investigated in detail the calcula-
tion of dynamic properties based on ab initio PIMC data
for the warm dense electron gas. More specifically, we have
discussed the imaginary-time version of the intermediate scat-
tering function F (q, τ ), which is used as a starting point for
the reconstruction of the dynamic structure factor S(q, ω).
This is achieved by a recent stochastic sampling scheme of
the dynamic local field correction [80,95], which, in princi-
ple, gives the complete wave-number- and frequency-resolved
description of exchange-correlation effects in the system.

In particular, we have demonstrated that such knowledge
of G(q, ω) allows for the subsequent accurate calculation
of other dynamic quantities such as the dynamic density
response function χ (q, ω), the (inverse) dielectric function
ε(q, ω) [1/ε(q, ω)], and the dynamic conductivity σ (q, ω).
Therefore, our results will open up avenues for future re-
search, as they contain key information about different
properties of the system: χ (q, ω) fully describes the response
of the system to an external perturbation, e.g. by a laser beam
[1,85]; the dielectric function is of paramount importance in
electrodynamics and gives access to the full spectrum of col-
lective excitations [109]. This is a fundamental point, which
will be explored in detail in a different publication [129];
the dynamic conductivity in warm dense matter is of partic-
ular importance for magnetohydrodynamics, e.g., planetary
dynamos [130].

An additional key point of this paper is the investigation of
the so-called static approximation [80,95], where the the exact
dynamic LFC is replaced by its exact static limit G(q, 0) that
has recently become available as a neural-net representation
[81]. Here, we found that this approach allows basically for
exact results for all dynamic quantities mentioned above over
the entire q and ω range for rs � 4, i.e., over substantial parts
of the WDM regime. This has important applications for many
aspects of WDM theory such as the on-the-fly interpretation
of XRTS experiments [72,73], as it comes with no additional
computational cost compared to RPA. For larger values of
rs, the static approximation does induce significant deviations
to the exact results, but it nevertheless reproduces the most
important trends of the various dynamical properties that are
absent in an RPA-based description.

Our investigation of the dynamic dielectric function has
uncovered that electronic exchange-correlation effects [either
by using G(q, ω) or G(q, 0)] lead to a nontrivial behavior of
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FIG. 12. Real and imaginary parts of the dynamic conductivity at θ = 1 for three densities (top: rs = 2, middle: rs = 4, bottom: rs = 10)
and three wave numbers (left: q/qF ≈ 0.63, middle: q/qF ≈ 1.25, and right: q/qF ≈ 2.94). Ab initio simulation results using the static (black
dashed line) and dynamic (red bands) LFC are compared to the RPA (full green line) and analytical asymptotics: For Re σ approximations
(28) and (27) are shown by the solid gray and dotted green line (for q/qF ≈ 0.63 only), respectively. For Im σ the approximations (29) and
(30) are shown by the dotted blue and solid blue line, respectively.
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ε(q, ω), where the static limit can actually become negative
for certain wave numbers. This is (i) a correct physical be-
havior and (ii) does not signal the onset of an instability, and
neither does the negative compressibility depicted in Fig. 11.
In contrast, our analysis of the full wave-number dependence
of ε(q, 0) has revealed that the finite accuracy of the neural-
net representation [81] of G(q, 0) does induce an artificial,
unphysical behavior in the q → 0 limit of this quantity. Yet,
this does not constitute a fundamental obstacle and could
potentially be removed by replacing the neural net with the
exact compressibility sum rule in this regime. Moreover, we
mention that directly observable quantities like S(q, ω), S(q),
or χ (q) are not afflicted with this issue, as here the impact of
the LFC vanished for small wave numbers. Lastly, the con-
ductivity is afflicted the same way as the dielectric function,
but this might be alleviated if e-i scattering is included [114].

Future extensions of our research include the implemen-
tation of other imaginary-time correlation functions into
our PIMC simulations. Possible examples are given by the
Matsubara Green function [104,106] or the velocity auto-
correlation function [131], which would give access to the
single-particle spectrum or a dynamical diffusion constant,
respectively. Furthermore, the combination of PIMC simula-
tions with the reconstruction scheme explored in this work
can potentially be applied to real electron-ion plasmas, which
would allow to compute ab initio results of, e.g., XRTS sig-
nals that can be directly compared to state-of-the-art WDM
experiments.
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APPENDIX

Here, we present approximate results for the second and
fourth moments of the finite-temperature Fermi function. For
the second moment, one finds

〈v2〉
v2

F

= 3

2
θ5/2I3/2(η) � 3

2

(
4
25 + θ2

)1/2

1 − 0.14[e−θ − e−3.68 θ ]
, (A1)

where Iν is the Fermi integral of order ν. Similarly, for the
fourth moment follows

〈v4〉
v4

F

= 3

2
θ7/2I5/2(η) � 3

7

(
1 + 6.4875 θ

2
1.16

)1.16
. (A2)

The parametrizations in Eqs. (A1) and (A2) agree with the
exact numerical results with a precision better than 3%, in the
entire range of θ .
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