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Variational wave functions for the spin-Peierls transition in the Su-Schrieffer-Heeger
model with quantum phonons
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We introduce variational wave functions to evaluate the ground-state properties of spin-phonon coupled
systems described by the Su-Schrieffer-Heeger model. Quantum spins and phonons are treated on equal footing
within a Monte Carlo sampling, and different regimes are investigated. We show that the proposed variational
Ansatz yields good agreement with previous density-matrix renormalization group results in one dimension and
is able to accurately describe the spin-Peierls transition. This variational approach is constrained neither by
the magnetoelastic-coupling strength nor by the dimensionality of the systems considered, thus allowing future
investigations in more general cases, which are relevant to spin-liquid and topological phases in two spatial
dimensions.
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I. INTRODUCTION

Effective models on the lattice constitute an invaluable tool
to describe the low-energy properties of condensed-matter
systems. Here, the original problem of interacting electrons
and ions is simplified by keeping a few “relevant” (Wannier)
orbitals on each atom, with a reduced number of effective
couplings, the most notable one being the Hubbard U [1]. In
most cases, the Born-Oppenheimer approximation is adopted,
implying a static lattice structure. However, lattice vibrations
(e.g., phonons) may play a fundamental role in determin-
ing the actual low-energy properties of the system. In this
respect, superconductivity represents the most striking ex-
ample [2], where the attractive interaction among electrons
is mediated by phonons. In this regard, one can replace the
retarded phonon-mediated interaction by an instantaneous at-
traction among electrons in a purely fermionic model, e.g., the
negative-U Hubbard model [3]. Besides superconductivity,
phonons may also induce other kind of electron instabilities,
such as charge-density waves that are triggered by Peierls
distortions of the underlying lattice [4]. In general, attack-
ing the full problem of coupled electrons and phonons is
not easy, even when this is limited to some effective model,
e.g., Fröhlich [5] and Holstein [6] ones. With the advent of
efficient numerical algorithms, however, there has been an
increasing number of investigations of models that explicitly
include phonon degrees of freedom in one and two spatial
dimensions, also in connection with high-temperature super-
conductors [7–16].

Besides the Fröhlich and Holstein models, in which
phonons are coupled to the electron density, the Su-Schrieffer-
Heeger (SSH) [17] model represents an important alternative
to study the effect of phonons on the electronic properties. The
SSH model was introduced to describe the soliton formation
in one-dimensional systems, like polyacetylene [17]; here,

lattice displacements are directly coupled to the electronic
hopping. There are three possible ways to treat the lattice
deformations within the SSH model, with increasing com-
plexity. The simplest approach considers a static modulation
of the hopping amplitudes, thus avoiding degrees of freedom
for the lattice. This way to proceed was widely explored in the
recent past as a simple model for topological insulators [18].
Within an adiabatic approximation, where the kinetic energy
of phonons is neglected, lattice distortions can be treated as
classical variables and optimized to find the best energy state
(in the presence of an elastic energy for each site). Finally, the
hardest approach is considering the full quantum dynamics of
phonons. In the latter case, investigations have been limited to
one-dimensional systems [19–21], even though applications
to two-dimensional systems have been proposed [22,23].

Phonons are also relevant in Mott insulators. Here, the
superexchange coupling J , like the electron hopping, depends
on the distance between ions, and therefore, the spin-spin
interaction is directly affected by phonons. In this case,
a relevant low-energy model is the SSH model for spins,
with the hopping operator replaced by the bilinear Heisen-
berg interaction. The inorganic compounds CuGeO3 [24,25],
NaV2O5 [26,27], and TiOCl [28,29] are typical examples
in which phonons drive a spin-Peierls transition [30,31]. In
the adiabatic approximation, the one-dimensional spin-1/2
Heisenberg model coupled to classical displacement variables
is unstable with respect to a static dimerization, no matter
how small the spin-phonon coupling is [32]. This is because
the energy gain for a distortion is linear in the displace-
ment, while the loss due to the elastic energy is quadratic.
Then, the distortion immediately leads to a spin gap in the
excitation spectrum. The adiabatic limit has been studied in
detail for a variety of cases [33–37]. Here, while the spin
degrees of freedom retain their quantum character, lattice
displacements are treated classically with a relatively small
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increase of the computational cost with respect to the pure
spin model.

Going beyond this approximation and treating quantum
phonons is not an easy task. The main reason is due to the ex-
plosion of the Hilbert space since an arbitrarily large number
of phonons may exist on each lattice site. This fact poses seri-
ous problems in numerical diagonalizations or density-matrix
renormalization group approaches, where a truncation of the
Hilbert space is required [38–40]. While this kind of approx-
imation may be justified for large phonon frequencies ω (i.e.,
ω � J), in the opposite limit ω � J , several phonons may be
necessary to have an accurate description of the ground state.
Perturbation expansion and effective spin models may also be
pursued [41,42], but again, the generic case with ω ≈ J cannot
be assessed. Quantum Monte Carlo methods [43] do not have
limitations coming from the infinite Hilbert space of phonons,
but they can be employed only in cases where the Hamiltonian
has no sign problem, thus having a limited applicability.

The need to consider the full quantum model comes from
the fact that in most materials (e.g., CuGeO3) the phonon
frequency is of the same order of magnitude of J . Thus, away
from the adiabatic limit ω/J = 0, the properties of the system
may be largely affected by phonon dynamics. For example,
a finite spin-phonon coupling is needed to drive the system
into a gapped (dimerized) state. Indeed, since the phonon
displacement is coupled to the dimerization operator, a small
spin-phonon perturbation gives rise to a next-nearest-neighbor
spin-spin interaction J ′, and it is well known that a finite J ′/J
is needed to open a spin gap in one dimension [41,42,44].
These arguments have been confirmed by accurate density-
matrix renormalization group calculations [39] and Monte
Carlo simulations [43]. In addition, including vibrations and
displacements of the lattice is important for several mag-
netic materials, either in magnetically ordered phases (where
phonons may affect the magnon dispersion) or in the absence
of magnetic long-range order (where phonons stand up in the
competition between valence-bond solids and spin liquids).

In this work, we devise variational wave functions, which
can be treated within a Monte Carlo sampling, to assess the
ground-state properties of the spin SSH model in one dimen-
sion:

H = J
L∑

i=1

[1 + g(ai+1 + a†
i+1 − ai − a†

i )]Si · Si+1

+ ω

L∑
i=1

(
a†

i ai + 1

2

)
. (1)

Here, Si is the spin-1/2 operator, a†
i (ai) is the creation (an-

nihilation) phonon operator on the site i, and L is the total
number of lattice sites (periodic boundary conditions are con-
sidered). The physics of the system is governed by the values
of the bare (antiferromagnetic) superexchange constant J , the
magnetoelastic coupling strength g, and the frequency of the
Einstein phonons ω. We will show that a suitably defined
variational approach is able to reproduce the ground-state
properties of the system for different regimes, with the adi-
abatic parameter ω/J ranging from 0.1 to 10. Our results are
found to be in very good agreement with previous density-
matrix renormalization group calculations [39]. As we discuss

in the conclusions, the present variational method can be
extended to higher-dimensional spin-phonon problems.

This paper is organized as follows: In Sec. II, we describe
the variational Monte Carlo method, in Sec. III, we present the
numerical results, and in Sec. IV, we draw our conclusions.

II. THE VARIATIONAL METHOD

Within our variational framework, we approximate the
ground-state wave function of the Hamiltonian (1) by a cor-
related variational Ansatz that is the product of a spin wave
function |�s〉, a phonon wave function |�p〉, and a spin-
phonon Jastrow factor Jsp, which couples the two different
degrees of freedom of the system:

|�0〉 = Jsp|�s〉 ⊗ |�p〉. (2)

Both spins and phonons are treated at the quantum level,
and the expectation values of the physical observables are
computed by performing a Monte Carlo sampling of the (in-
finitely large) Hilbert space. The configurations of the system
which are visited by the Markov chain are labeled by the
local spin and phonon states of each lattice site. For the local
Hilbert space of the spins we adopt the conventional choice
of labeling the states by the Sz

j quantum number. Regarding
the phonon degrees of freedom, instead, we will consider two
alternative local quantum numbers, namely, the number of
phonons n j = a†

j a j (discrete label) and the site displacement

Xj = a j + a†
j (continuous variable).

The spin wave function |�s〉 entering the variational Ansatz
of Eq. (2) is a Gutzwiller-projected fermionic state of the form

|�s〉 = JssPG|�0〉. (3)

Here, |�0〉 is the ground-state wave function of an auxil-
iary BCS Hamiltonian of Abrikosov fermions, which contains
hopping and singlet pairing terms. The application of the
Gutzwiller projector PG to the fermionic state |�0〉 yields a
suitable wave function for spins. The parameters of the BCS
Hamiltonian, i.e., the hopping and pairing amplitudes, play
the role of variational parameters. More details concerning
the fermionic wave functions can be found in Refs. [45,46].
In addition, a spin-spin Jastrow factor is included,

Jss = exp

[∑
i, j

vs(i, j)Sz
i Sz

j

]
, (4)

whose pseudopotential parameters vs(i, j) = vs(|Ri − Rj |)
depend only on the relative distance of the sites in the undis-
torted spin chain.

The uncorrelated phononic part of the variational wave
function (2) is a coherent state for the phonon mode with
momentum k:

|�p〉 = exp(za†
k )|0〉p =

∏
j

exp(zeikRj a†
j )|0〉p. (5)

Here, |0〉p is the vacuum state of phonons, and Rj is the
(integer) equilibrium coordinate of site j. The real variable z is
a fugacity variational parameter which determines the average
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number of phonons per site

〈n j〉p = 〈�p|a†
j a j |�p〉

〈�p|�p〉 = z2, (6)

and the amplitude of the site displacements

〈Xj〉p = 〈�p|(a j + a†
j )|�p〉

〈�p|�p〉 = 2z cos(kRj ). (7)

The momentum k of the phonon mode modulates the direction
of sites displacements. The Peierls instability of the spin SSH
chain towards dimerization is achieved by taking k = π .

Depending on how we choose to represent the local Hilbert
space of phonons, we can have different spin-phonon Jastrow
factors. On the one side, by using the computational basis
labeled by local phonon numbers on each site (i.e., n j), as
done in Ref. [14], we can take

Jsp = Jn = exp

(∑
i, j

vn(i, j)Sz
i Sz

jn j

)
, (8)

where vn(i, j) = vn(|Ri − Rj |) is another set of translation-
ally invariant pseudopotential parameters. Within this choice,
the uncorrelated phonon wave function |�p〉 is rewritten
as a linear superposition of the many-body configurations
|n1, . . . , nL〉, which are then sampled by Monte Carlo:

|�p〉 =
∑

n1,...,nL

zNpeik
∑

j R j n j

√
n1! · · · nL!

|n1, . . . , nL〉. (9)

Here, Np = ∑
j n j is the total number of phonons in the

chain. As shown in the next section, it turns out that this
variational state is not the optimal choice for the model under
investigation, and considerably better results are obtained by
employing a Jastrow factor in which the spins are coupled to
the relative displacements of the lattice sites.

Indeed, we can adopt a different computational ba-
sis, which is diagonal in Xj , similar to what is done in
Refs. [12,13], and introduce the following spin-phonon Jas-
trow factor:

Jsp = JX = exp

[
1

2

∑
i, j

vX (i, j)Sz
i Sz

j (Xi − Xj )

]
. (10)

In this case the pseudopotential parameters vX (i, j) =
vX (Ri − Rj ) are still assumed to be translationally invari-
ant, but they are odd with respect to the exchange of
lattice sites. Accordingly, we can reformulate the uncorrelated
phononic part |�p〉 in terms of the many-body configurations
|X1, . . . , XL〉 as follows:

|�p〉 =
∫

dX1 · · · dXL

[∏
j

eφ j (Xj )

]
|X1, . . . , XL〉, (11)

where

φ j (Xj ) = iz sin(kRj )Xj − 1
4 [Xj − 2z cos(kRj )]

2. (12)

We would like to stress the fact that, within this approach, a
cutoff on the number of phonons is not required, in contrast
to the case in Refs. [12,13], where a different uncorrelated
phonon state is employed. The use of the spin-displacement

Jastrow factor JX provides a remarkable accuracy gain with
respect to the Jastrow factor of Eq. (8); see below. As a conse-
quence of this change of paradigm, we adopt a suitable Monte
Carlo scheme in which we sample the Hilbert space of the
phonons by specifying the displacements of the lattice sites
{Xj}. For this reason, we conveniently rewrite the problem of
Eq. (1) by replacing the bosonic creation and annihilation op-
erators with the (adimensional) displacement and momentum
operators, Xj = (a†

j + a j ) and Pj = i(a†
j − a j ), which satisfy

[Xj, Pj] = 2i. The Hamiltonian takes the alternative form

H = J
L∑

i=1

[1 + g(Xi+1 − Xi )]Si · Si+1 + ω

4

L∑
i=1

[
P2

i + X 2
i

]
.

(13)

When computing the variational energy, the momentum op-
erator acts as a derivative with respect to the displacement,
namely, Pj = −2i ∂

∂Xj
.

III. RESULTS

We apply our variational scheme to three different regimes
of the spin SSH model, namely, ω/J = 0.1 (adiabatic regime),
ω/J = 1, and ω/J = 10 (antiadiabatic regime). In order to
correctly describe the spin-Peierls dimerization of the model,
we consider a phonon coherent state (5) with k = π . The
optimal Ansatz for the variational wave function for the spins
|�s〉 is obtained by Gutzwiller projecting the ground state of
a BCS Hamiltonian with hopping and pairing terms at first-
and second-neighboring sites [46]. Since the phonon wave
function (5) breaks the translational invariance (for z 
= 0),
we allow the first-neighbor couplings of the BCS Hamilto-
nian to take different values on the bonds (2 j, 2 j + 1) and
(2 j + 1, 2 j + 2), thus breaking the translations also within
the spin part of the wave function. This parametrization is
suitable to describe the spin-Peierls phase, where spins form
singlets on alternating bonds. All the parameters are numer-
ically optimized by applying the stochastic reconfiguration
technique [47].

We first assess the effectiveness of the Jn and JX spin-
phonon Jastrow factors by comparing the variational energies
with the ones obtained by Lanczos diagonalization on a
finite cluster. Due to the infinitely large Hilbert space of
phonons, the application of the Lanczos method requires
a truncation of the Hilbert space. We adopt a truncation
scheme in which we consider only phonon configurations
|n1, . . . , nL〉 with n j < nmax for each lattice site j. Within
this approximation, we compute the Lanczos ground-state
energies of the Hamiltonian (1) for a chain of L = 8 sites.
For this cluster, a threshold of nmax = 5 ensures a satisfactory
convergence of the energy in the range of parameters we
considered. The results of the benchmark are summarized
in Fig. 1, where the relative error of the variational energy,
δE = |(Evariational − ELanczos)/ELanczos|, is plotted as a function
of g/ω for the three cases ω/J = 0.1, 1, and 10. We first
notice that accurate variational energies are achieved for small
values of the adiabatic parameter ω/J , where the dimerization
due to the spin-Peierls instability is weaker (see below). Most
importantly, we observe that the spin-phonon Jastrow factor
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FIG. 1. Relative error of the variational energies with respect to
Lanczos results δE for a chain of L = 8 sites. The relative error is
plotted (as a percentage) as a function of g/ω for three values of the
adiabatic parameter, ω/J = 0.1 (top panel), ω/J = 1 (middle panel),
and ω/J = 10 (bottom panel). We note that the scale of the vertical
axis is different in the three panels. Two sets of data are shown:
blue circles represent the results obtained with the Jn spin-phonon
Jastrow factor [Eq. (8)], while red squares correspond to the results
obtained with the JX spin-displacement Jastrow factor [Eq. (10)].
Error bars are smaller than the size of the dots.

JX , in which the Sz spin operators are coupled to site displace-
ments, provides considerably more accurate results than the
case with Jn. This is especially true for small and intermediate
values of g/ω, which are relevant to assess the phase transition
between the gapless (not dimerized) and gapped (dimerized)
phases. These results suggest that the variational Ansatz with
the Jastrow factor JX is the optimal choice when the spins
(or electrons) are coupled to the phonons through the relative
displacement of lattice sites, as in the SSH model. Instead,
the Jastrow factor of Eq. (8), or an analogous version of it
in which n j is replaced by Xj , could be the most suitable
variational guess for the study of a spin-phonon model in
which the spins are coupled to bond phonons [43,48,49].

After having evaluated the degree of accuracy of our
method, we consider larger clusters (up to L = 300), and we
study the phase transition from the gapless to the dimerized
phase using the optimal variational Ansätze with the Jastrow
factor JX . In order to locate the transition point, we can check
the behavior of two different observables as a function of g/ω.
On the one hand, we can measure the net lattice deformation
due to sites displacements by computing the order parameter
[50]

	X =
∣∣∣∣∣ 1

L

L∑
j=1

eiπRj 〈Xj〉0

∣∣∣∣∣, (14)

where 〈· · · 〉0 = 〈�0| · · · |�0〉/〈�0|�0〉. 	X becomes finite in
the Peierls phase, where alternating short and long nearest-
neighbor bonds are formed. The values of 	X for various
lattice sizes are reported in Fig. 2 in the different regimes
under investigation (ω/J = 0.1, 1, and 10). We also compare
in Fig. 2 our estimates of the critical points gc/ω with the pre-
dictions of density-matrix renormalization group calculations
[39]. We point out that the latter estimates are obtained by a
different approach based on the detection of a singlet-triplet
level crossing in the low-energy spectrum, which is more
accurate than looking at the order parameter. The computa-
tion of singlet and triplet excitations within our variational
approach requires a full optimization of these states, including
the spin-phonon Jastrow factor, which is beyond the scope of
the present work.

In addition to 	X , we also compute the Fourier-
transformed dimer-dimer correlations at k = π that help
detect the presence of dimer order:

D2 = 1

L

L−1∑
R=0

eiπR

(
1

L

L∑
j=1

〈
Sz

jS
z
j+1Sz

j+RSz
j+R+1

〉
0

)
. (15)

A finite value of D2 in the thermodynamic limit is a signal
of spin dimerization. The finite-size scaling analysis of this
quantity is reported in Fig. 3. To further characterize the phase
transition from the gapless to the dimerized phase, in Fig. 4 we
report the energy gain of the spin-phonon systems with respect
to the Heisenberg limit (i.e., g = 0 and ω = 0). Finally, in
Fig. 5, we show the average number of phonons per site.
The order of magnitude of these quantities is substantially
different in the three regimes of ω/J we considered.

We start our discussion of the results with the adiabatic
regime, ω/J = 0.1. As shown in Fig. 2, the order parameter
	X becomes finite in the interval 0.3 < g/ω < 0.4, in ex-
cellent agreement with the predictions of Ref. [39]. Within
this regime, similar to what is found in Ref. [39], the results
are strongly affected by finite-size effects, and large clus-
ters (L � 150 sites) are needed to reliably locate the phase
transition. We note that, in general, for small values of ω/J
the spin dimerization is very weak in the vicinity of the
critical point. Indeed, both the dimer-dimer correlations (see
Fig. 3) and the energy gain of the spin system due to the
SSH coupling with phonons are relatively small, as shown in
Fig. 4. A small number of phonons is involved in the process
of dimerization (see Fig. 5). The situation is considerably
different in the antiadiabatic regime, ω/J = 10, where we
observe a rapid increase of the dimer-dimer correlations D2
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FIG. 2. Order parameter for the lattice deformation 	X [Eq. (14)] as a function of g/ω. Different lattice sizes L are considered, as well as
three different regimes, ω/J = 0.1 (left panel), ω/J = 1 (middle panel), and ω/J = 10 (right panel). Error bars are smaller than the size of the
dots. The gray shaded area marks the region in which 	X becomes finite in the thermodynamic limit. The hatched area denotes the position
of the critical point (and its uncertainty) according to density-matrix renormalization group calculations [39].

just after the phase transition, which is the consequence of a
strong dimerization of the spins. Here, the energy gain of the
spin system due to the spin-phonon coupling is much larger
than the one at ω/J = 0.1. We locate the Peierls transition in
the interval 0.2 < g/ω < 0.3, again in quantitative agreement
with density-matrix renormalization group calculations [39].
This result is encouraging since the accuracy of the varia-
tional wave function is much deteriorated in comparison to
the adiabatic limit (see Fig. 1). We remark that, in contrast
to the J1-J2 model (without phonons), where the continuous
transition between gapless and gapped states can be described
by using a fully symmetric wave function [46], here, the
variational state explicitly breaks the translational symmetry
(see above), thus leading to a less accurate description on
any finite size; nevertheless, it is still possible to locate the
phase transition with a good degree of precision. Finally, in
the intermediate case with ω/J = 1, the onset of the spin
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FIG. 3. Finite-size scaling of the Fourier-transformed dimer-
dimer correlations D2 [Eq. (15)]. Results for ω/J = 0.1 (left panel),
ω/J = 1 (middle panel), and ω/J = 10 (right panel) are shown. We
note that the scale of the vertical axis is different in the left panel
to account for the different orders of magnitude of the correlation
functions. The error bars are smaller than the size of the dots.

dimerization appears for 0.2 < g/ω < 0.3, similar to the case
with ω/J = 10. This estimate, which is extracted from both
the behavior of 	X and the finite-size scaling analysis of the
dimer-dimer correlations, is slightly different from the one ob-
tained in Ref. [39], which pinpointed the transition at g/ω ≈
0.31. This discrepancy could be ascribed to the difficulties
of reaching a sufficient accuracy in the intermediate regime
with ω/J ≈ 1, i.e., when both spins and phonons have similar
energy scales. We also mention that in the close proximity
of the critical point two different variational Ansätze, a spin
fluid and a dimerized state, are extremely close in energy,
and determining the optimal solution requires very precise
optimization of the variational parameters.

From these results, we conclude that, even though the
best way to locate the transition between gapless and gapped
phases is by looking at the singlet-triplet crossing, as done
in Ref. [39], a relatively accurate location of the Peierls

FIG. 4. Energy gain (in units of J) due to the SSH coupling
of the spins with phonons. The difference between the variational
energies of the full SSH system, Evar (g, ω, J ), and the one of the
simple Heisenberg model, Evar (g = 0, ω = 0, J ), where no phonons
are present, is displayed. The results are obtained for a chain with
L = 250 sites as a function of g/ω for ω/J = 0.1 (left panel),
ω/J = 1 (middle panel), and ω/J = 10 (right panel). We note that
the scale of the vertical axis is different in the various panels in order
to account for the different orders of magnitude of the energy gain.
As in Fig. 2, the gray shaded area marks the region in which we
observe the onset of Peierls dimerization. The error bars are smaller
than the size of the dots.
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FIG. 5. Average number of phonons per site [〈nj〉] as a function
of g/ω for ω/J = 0.1 (left panel), ω/J = 1 (middle panel), and
ω/J = 10 (right panel). The results refer to a chain with L = 250
sites. As in Fig. 2, the gray shaded area marks the region in which we
observe the onset of Peierls dimerization. The error bars are smaller
than the size of the dots.

transition, especially in the adiabatic and antiadiabatic
regimes, may also be obtained from the analysis of the dimer-
dimer correlations or the phonon displacement. We note,
however, that these kinds of calculations suffer from consid-
erable size effects close to the phase transition. In particular,
an accurate determination of the phonon displacements is
remarkably hard for large sizes, so that a quantitative scal-
ing analysis close to the Peierls instability is not possible.
Nevertheless, the scope of this work was to demonstrate that
a relatively simple variational wave function can capture the
relevant features of the phase diagram of the SSH model.

IV. CONCLUSIONS

In this work, we analyzed the spin-Peierls transition in the
one-dimensional SSH model, where S = 1/2 spins are cou-
pled to quantum phonons, by using variational wave functions
and Monte Carlo methods. In particular, we considered two
ways to include the spin-phonon correlation through Jastrow
terms. The first one, which couples the spins to the phonon
number, does not give accurate results, especially close to the

spin-Peierls transition. The second one, in which the Jastrow
factor couples the spins to the sites displacements, provides
a much better variational state. Remarkably, in both cases
no truncation in the Hilbert space of phonons is required.
Our results show that this approach is able to describe the
phase transition between the gapless phase (for small values
of the spin-phonon couplings) and the gapped one (for large
values of g/ω), well reproducing previous density-matrix
renormalization results [39]. Indeed, the agreement is excel-
lent for both adiabatic (e.g., ω/J = 0.1) and antiadiabatic
(e.g., ω/J = 10) cases, while some minor discrepancies are
obtained in the intermediate regime (e.g., ω/J = 1). Besides
providing reliable calculations on the one-dimensional SSH
model, our work paves the way for future investigations of
two-dimensional spin-phonon models, for which only a very
few accurate techniques are available at present. Indeed, al-
though with a slightly reduced accuracy with respect to the
one-dimensional case, Jastrow-fermionic wave functions can
describe both magnetically ordered and disordered phases in
higher-dimensional spin models [45], including spin-liquid
phases and valence-bond solids in frustrated magnets. In
particular, the variational technique presented here can be
employed to study the instability of spin-liquid phases towards
the formation of valence-bond order as a consequence of the
magnetoelastic coupling, which may play a relevant role in
actual materials such as the spin-1/2 frustrated kagome com-
pound herbertsmithite [51–53] or the triangular lattice organic
material κ-(ET)2Cu2(CN)3 [54,55].
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