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Transport in conductors and rectifiers: Mean-field Redfield equations
and nonequilibrium Green’s functions
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We derive a closed equation of motion for the one particle density matrix of a quantum system coupled to
multiple baths using the Redfield master equation combined with a mean-field approximation. The steady-state
solution may be found analytically with perturbation theory. Application of the method to a one-dimensional
noninteracting quantum wire yields an expression for the current that reproduces the celebrated Landauer’s
formula. Nonlinear rectification is found for the case of a mesoscopic three-dimensional semiconductor p-n
junction. The results are in good agreement with numerical simulations obtained using nonequilibrium Green’s
functions, supporting the validity of the Redfield equations for the description of transport.
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I. INTRODUCTION

Open quantum systems present an interesting challenge
for theory. One popular approach relies on a quantum master
equation (QME) and the Born-Markov approximation [1–6].
QMEs can be used to investigate the transport properties
in condensed matter systems, for example, in spin chains
or fermionic or bosonic tight-binding models. The Lindblad
equations, a specific kind of Markovian QME, have been
frequently used [7–15]. The Lindblad equations maintain pos-
itivity of the density matrix (all eigenvalues are non-negative),
but there are difficulties with the definition of the currents
and with thermalization [4,7,13–22]. The Redfield equation
is an alternative QME that, despite not respecting the posi-
tivity of density matrix for some initial conditions [23–25],
may describe the dynamics more accurately [19] since it does
not require further approximation beyond the Born-Markov
approximation such as the secular (or rotating-wave) approx-
imation. The secular approximation is frequently invoked in
derivations of the Lindblad equations but can be problematic
under some circumstances [26] and can break down in the
limit of large system size, especially for gapless systems. A
separate problem for interacting systems is the exponential
growth of the many-body Hilbert space and the dimension of
the density matrix with system size [27–29]. In this paper we
treat interactions in a mean-field approximation to avoid this
problem.

A parallel approach to QMEs employs nonequilibrium
Green’s functions (NEGF) [30–32] that extend the standard
equilibrium formalism [33–35] and provide, in principle, a
systematic approach to deal with out-of-equilibrium quantum
many-body systems. The NEGF approach has been suc-
cessfully applied to a broad variety of phenomena ranging
from electronic transport through semiconductors [36] and

nanostructures [37] to ultrafast pump-probe spectroscopies of
strongly correlated materials. The combination of NEGF with
dynamical mean-field theory (DMFT) provides [38] a power-
ful tool to describe, for instance, electronic currents through
strongly correlated materials or the time evolution of cold
atoms in optical lattices under sudden quenches. The NEGF
approach is formally exact. In principle it avoids the Born-
Markov approximations. The Kadanoff-Baym equations of
motion [31] describing the time evolution of an open quantum
many-body system are causal and make no assumptions on the
strength of the interactions in the system nor on the strength of
the coupling of the system to the environment. The equivalent
Keldysh formulation of NEGF provides a precise description
of the steady state of an open quantum system in which the
initial electronic correlations are lost. An exact expression
for the stationary current through a system coupled to large
fermionic leads can be obtained [37], making it useful for
benchmarking less computationally intensive methods such as
the Redfield approach discussed below.

Here we examine the validity of the Redfield QMEs for
the study of nonequilibrium properties, especially transport,
of weakly interacting systems. To do this we formulate a
modified Redfield equation (MRE) by dropping the imaginary
Cauchy principal value parts (CPVP) of the dissipator. Within
a mean-field approximation such MREs yield a closed equa-
tion of motion for the one-particle density matrix (OPDM),
which can be solved. To test the MRE approach we apply it to
a one-dimensional quantum wire and to a three-dimensional
semiconductor p-n junction, investigate transport analytically
and numerically, and show that the results agree well with
NEGF methods.

The rest of the paper is organized as follows. A brief
introduction to the full Redfield equations is presented in
Sec. II A with details left to Appendix A. Section II B
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FIG. 1. Schematic of the total system that is made up of the 1D
tight-binding chain and baths (or leads) at each end.

discusses the MRE and the mean-field approximation is made
in Sec. II C. Section II D briefly discusses the numerical
method used to find the self-consistent solution of MRE and
Sec. II E discusses the connection between Redfield equations
and Lindblad equations. Section III introduces the NEGF
method we use. Section IV applies the MRE method to dif-
ferent systems, and includes a comparison to results obtained
by NEGF. Conclusions are discussed in Sec. V.

II. REDFIELD EQUATIONS

A. Full Redfield equation

In this section we derive the full Redfield equations. For
concreteness we consider the specific problem of a one-
dimensional tight-binding chain, connected to separate baths
(leads) at each end as shown in Fig. 1. The total Hamiltonian
including the chain and the baths is

Htotal = HS + H (L)
B + H (R)

B + H (L)
SB + H (R)

SB , (1)

where HS = H0
S + VS ,

H0
S = −tS

N∑
i=1

∑
σ=↑,↓

(c†
i,σ ci+1,σ + H.c.) +

N∑
i=1

μini (2)

is the noninteracting system Hamiltonian,

VS = 1

2

∑
i, j,σ,σ ′

Vi,σ ; j,σ ′ni,σ n j,σ ′ (3)

is the interaction,

H (α)
B =

∑
λ,σ

εα
λ,σ f α†

λ,σ f α
λ,σ , α = L or R (4)

is the Hamiltonian for the left and right baths, and

H (α)
SB =

∑
λ,σ

(
T α

λ f α†
λ,σ ciα,σ + T α∗

λ c†
iα,σ f α

λ,σ

)
, α = L or R (5)

models the coupling between the system and the baths. Op-
erator c†

i,σ (ci,σ ) creates (annihilates) a fermion at chain site i

with spin σ , operator f α†
λ,σ ( f α

λ,σ ) creates (annihilates) a spin
σ fermion in a bath α eigenstate λ with eigenenergy εα

λ,σ ,

ni = ∑
σ ni,σ = ∑

σ c†
i,σ ci,σ is the occupancy operator on site

i, μi is the on-site potential, and Vi,σ ; j,σ ′ is the interaction
matrix element. We have set iα = 1 if α = L and iα = N if
α = R. In the following for simplicity we suppress the spin
index σ unless specified otherwise.

Treating the combination of the two baths and the chain as
a whole, the equation of motion (EOM) for the density matrix

is given by

∂ρtotal

∂t
= −i[Htotal, ρtotal], (6)

where we have set h̄ = 1 and in the following.
To obtain the EOM for the reduced density matrix of the

system ρS = TrBρtotal, the usual approach is to make the Born-
Markov approximation to trace out the degrees of freedom of
the baths [3,5]. The approximation assumes that the coupling
between system and baths is weak, that the baths are too large
to be affected by the system, and that the baths retain no
memory of past history. A detailed derivation and discussion
may be found in Appendix A and the final result is

dρS

dt
= −i[HS, ρS] + L(ρS ), (7)

where L(ρS ) is called the “dissipator”:

L(ρS ) = −
∑
α,�

{[Fα (�) + iFαI (�)] × [ciα , [ciα (�)]†ρS]

+ [Hα (�) − iHαI (�)] × [c†
iα
, ciα (�)ρS] + H.c.}.

(8)

Here

Fα (�) = πNα (�) f α (�),

FαI (�) = 1

π
P

∫ ∞

−∞
dω

Fα (ω)

ω − �
,

Hα (�) = πNα (�)[1 − f α (�)],

HαI (�) = 1

π
P

∫ ∞

−∞
dω

Hα (ω)

ω − �
,

(9)

Nα
σ (�) = ∑

λ |T α
λ |2δ(� − εα

λ,σ ) is the density of states for
bath α, and f α (�) = 1/(e(�−μα )/kBT α + 1) is the Fermi-Dirac
distribution function. T α and μα are the temperature and the
chemical potential of the bath α, respectively. The eigenoper-
ators A(�) are defined by

A(�) =
∑

ε′−ε=�

�(ε) A �(ε′), (10)

where �(ε) = ∑
i |εi〉〈εi| is the projection operator onto the

subspace spanned by all the eigenstates with energy ε. When
the system is noninteracting, [ci(�)]† = ∑

λ〈λ|i〉c†
λδελ,� and

ci(�) = ∑
λ〈i|λ〉cλδελ,�, where |λ〉 are the system eigenstates.

Though Eq. (7) and Eq. (8) are derived without further
approximation beyond Born-Markov, it is well known that
the Redfield equation may violate the positivity of the density
matrix in some circumstances and does not necessarily give
the Gibbs distribution at equilibrium. Nevertheless, dropping
the imaginary CPVP in Eq. (8) yields a modified Redfield
equation that does give the Gibbs distribution at equilibrium,
as expected when the system-bath coupling is small enough
that QMEs are reliable. It is worth mentioning that in general
the system may deviate substantially from the Gibbs distribu-
tion if the system-bath coupling is strong [39–41]. To see this
first note that

[HS, A(�)] = −�A(�). (11)
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Application of the Baker-Campbell-Hausdorff identity yields

eβHS [ci(�)]†e−βHS = eβ�[ci(�)]† (12)

and

eβHS ci(�)e−βHS = e−β�ci(�). (13)

Substituting the equilibrium thermal distribution ρth =
e−βHS /Tr(e−βHS ) into Eq. (8), combined with Eq. (12) and
Eq. (13), and dropping all CPVPs, shows that L(ρth) = 0 if
the bath chemical potential is set to zero, which means the
left hand side of Eq. (7) also vanishes because HS commutes
with ρth. The recovery of the equilibrium thermal distribution
thus motivates discarding the CPVP that appears in Eq. (8) as
discussed in more detail in Sec. II B.

B. Modified Redfield equation for the OPDM

Single-particle operators that are bilinear in the fermion
creation and annihilation operators are often of greatest in-
terest, and for such observables the full density matrix using
Eq. (7) and Eq. (8) is not needed. Therefore, in the following
we focus on the OPDM defined as

ρ
(1)
i j = 〈c†

j ci〉 = Tr(c†
j ciρ). (14)

For a noninteracting system coupled to the bath by a single
fermion operator as in Eq. (5), the EOM for the OPDM can
be closed. Multiplying both sides of Eq. (7) by c†

j ci and taking
the trace yields

dρ (1)

dt
= −i[h, ρ (1)] +

∑
α

{(
ρ (1)

α − ρ (1)
)
ĴαPiα

+ iPiα (K̂αρ (1) − F̂αI ) + H.c.
}
, (15)

where h = ∑
λ |λ〉ελ〈λ| is the system Hamiltonian in first-

quantized form, ρ (1)
α = ∑

λ |λ〉 f α (ελ)〈λ| is the OPDM of the
system with the temperature and chemical potential of bath
α, Piα = |iα〉〈iα| is the projection operator that projects onto
site iα , and Ĵα = π

∑
λ |λ〉Nα (ελ)〈λ| is a matrix related to the

spectral density of bath α. F̂αI = ∑
λ |λ〉FαI (ελ)〈λ| and K̂α =∑

λ |λ〉P ∫ ∞
∞ dω Nα (ω)

ω−ελ
〈λ| are two matrices arising from the

imaginary CPVP in Eq. (8). In the wideband limit πNα (ελ) =
Jα , and K̂α is nearly proportional to the identity matrix. The
additional Lamb shift Hamiltonian, which is often neglected,
is given by HLS = −∑

α Piα K̂α . The Lamb shift term has its
origin in the interaction between system and baths, analogous
to the energy shift of electrons due to their interaction with
the quantized photon “bath” of quantum electrodynamics.
We also neglect it in what follows. Further neglecting the
[Piα , FαI ] term that also has its origin in the CPVP yields a
much simpler equation for the OPDM:

dρ (1)

dt
= −i[h, ρ (1)] +

∑
α

Jα
{
ρ (1)

α − ρ (1), Piα

}
. (16)

It is then obvious that the OPDM of the steady state given
by Eq. (16) when the system is only connected to one bath
α is just ρ (1)

α , which implies that Eq. (16) gives Gibbs state
at equilibrium, consistent with the analysis of Sec. II A. Equa-
tion (16) is the central result that will be used in this paper. The
generalization to the three-dimensional case with translational

invariance in two of the three dimensions is straightforward
and only slight modifications are required. For more details
and further discussion see Appendix B.

We now discuss the decision to drop the CPVPs in Eq. (8)
and Eq. (15). Reference [42] observes that the CPVPs come
from the renormalization of the system Hamiltonian. By ig-
noring the CPVPs, the steady state given by the Redfield
equation due to single bath is the Gibbs distribution. In the
context of the Lindblad equations, the CPVPs nearly cancel
out with the remainder being the Lamb shift (see Sec. II E)
that is often ignored.

We now consider the existence and uniqueness of the
steady state solution of Eq. (16). For the steady state, from
Eq. (16) we obtain

Aρ
(1)
st + ρ

(1)
st A† +

∑
α

Jα
{
ρ (1)

α , Piα

} = 0, (17)

with A = −ih − ∑
α JαPiα . This equation is of the Lyapunov,

or more generally, Sylvester form. For a unique solution to
exist, A and −A†, or h − i

∑
α JαPiα and h + i

∑
α JαPiα , are

forbidden to have common eigenvalues [43]. This is equiva-
lent to requiring ui 	= u∗

j ∀i, j, where ui is the ith eigenvalue
of h − i

∑
α JαPiα . The condition is violated when the system

has disconnected parts because then the Hamiltonian h can be
block diagonalized in the subsystem basis. Numerical solu-
tions of Eq. (17) also become challenging if ui ≈ u∗

j for some
i, j despite the formal existence of a unique solution.

In some instances it is possible to treat Jα = J in Eq. (17)
as a small parameter and obtain a perturbative solution. The
solution should be valid for small systems with large spacing
between energy levels such as semiconducting quantum dots
because the expansion parameter is J divided by energy level
spacing; see Appendix D. Insight into the structure of MRE
comes from the lowest-order solution to the OPDM in the
eigenenergy basis:

(
ρ0

diag

)
μμ

=
∑

α (ρα )μμ(Piα )μμ∑
α (Piα )μμ

. (18)

This equation says that the density matrix of the system is
simply a superposition of the density matrices set by the
different baths.

C. Mean-field approximation

For a general system with interaction, it is not possi-
ble to obtain closed EOM for the OPDM, the quantum
analog of the classical Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy problem. Following the approach
taken in Refs. [44,45], our strategy here is to treat the sys-
tem Hamiltonian in a mean-field approximation, as then the
system is a collection of independent particles with some self-
consistently determined parameters. In Eqs. (15) and (16), the
full Hamiltonian h is replaced by the mean-field Hamiltonian
hMF and ρ (1)

α becomes ρ
(1)
α,MF = ∑

λMF
|λMF 〉 f α (εMF

λ )〈λMF |,
where |λMF 〉 and εMF

λ are the eigenstates and eigenenergies
of the mean-field Hamiltonian HMF at each instant time. The
parameters of the mean-field Hamiltonian implicitly depend
on ρ (1)

α (t ). The mean-field approximation can also be made
from the outset prior to the derivation of the Redfield equation.
As the Markov approximation assumes that ρ(t ) does not
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change appreciably over the memory time scale of the baths,
the same final result is obtained.

D. Numerical technique

We briefly discuss the numerical technique used to find the
nonequilibrium steady state of the MRE within the Hartree
mean-field approximation. The calculation is carried out in the
real-space position basis. First, an initial choice for the mean-
field Hamiltonian hMF is made. Next hMF is used to obtain
ρ (1)

α as described in Sec. II C and the corresponding initial
OPDM ρ

(1)
1 is found with the use of Eq. (17). The calculation

is carried out with a Lyapunov equation solver. The OPDM
and the mean-field Hamiltonian are then repeatedly updated
using ρ (1)

n = (1 − ε)ρ (1)
n−1 + ερ̃ (1)

n , where 0 < ε � 1 is a small
parameter that controls the rate of updating, and ρ̃ (1)

n is the
solution to the Lyapunov equation

Anρ̃
(1)
n + ρ̃ (1)

n A†
n +

∑
α

Jα
{
ρ (1)

α , Piα

} = 0, (19)

with operator An determined by the OPDM from the previ-
ous step, ρ

(1)
n−1. The procedure continues until the change in

the OPDM and the mean-field Hamiltonian is smaller than a
predetermined threshold; at that point a good approximation
to the self-consistent solution ρ

(1)
st is at hand. One possible

obstruction can occur when, as already noted in Sec. II B,
ui ≈ u∗

j at an intermediate step. Such a situation may arise
if the on-site potential in space varies too much, and can be
avoided by setting ε to be small and making a careful choice of
the initial Hamiltonian. For example, the initial Hamiltonian
used in Sec. IV B has an electrostatic potential that varies
smoothly across the junction as in a textbook model of a p-n
diode.

E. Connection with Lindblad equations

In this section we briefly discuss the connection between
the Redfield equations and the more widely used Lindblad
equations. The Lindblad dissipator is given by [3]

L(ρS ) =
∑

k

(
LkρSL†

k − 1

2
{L†

k Lk, ρS}
)

, (20)

where Lk is called the Lindblad operator. Depending on
whether or not the Lindblad operators are local in space, the
Lindblad equations are sometimes classified as local Lindblad
equations [8–12] or global Lindblad equations [13,14], and
their validity in different circumstances is still under investi-
gation [46,47].

To derive the global Lindblad equation with Lindblad op-
erator L ∼ c†

λ or cλ typically requires the use of the so-called
secular (or rotating-wave) approximation and omits all the
terms with � 	= �′ in Eq. (A12) because ei(�−�′ )t oscillates
rapidly in the interaction picture and average to zero at the
coarse-grained time scale tS � 1/min{|� − �′| 	= 0}, where
min{|� − �′| 	= 0} is the smallest nonzero value. However,
the treatment inevitably becomes problematic in the thermo-
dynamic limit of large system size, for example, in a metal,
as the energy level spacing is infinitesimally small and time-
scale separation breaks down. Such global Lindblad equations
also raise some difficulty in defining the current and it is

necessary to include a fictitious current between partitions
that are not directly coupled to ensure that the current obeys
continuity. To derive the global Lindblad equation from the
Redfield equations, Eqs. (7) and (8), operators ciα are replaced
by ciα (�) and c†

iα
by [ciα (�)]† in Eq. (8). Consequently, the

projection operators Piα in Eq. (15) are also replaced by P̃iα =∑
λ |λ〉|〈iα|λ〉|2〈λ| and thus all the off-diagonal elements of

Piα in the energy eigenbasis are ignored. The substitution leads
to the decoupling of the diagonal and off-diagonal elements
of the OPDM in energy eigenbasis, and since [P̃iα , F̃αI ] = 0,
the standard global Lindblad equation in terms of OPDM is
obtained:

dρ (1)

dt
= −i[h + hLS, ρ

(1)] +
∑

α

Jα
{
(ρ (1)

α − ρ (1) ), P̃iα

}
,

(21)
where hLS = −∑

α P̃iα Kα is again the Lamb shift Hamilto-
nian, due to the interaction between system and reservoirs.

The local Lindblad equation with Lindblad operator L ∼
c†

iα
or ciα can be arrived at by an alternative approximation.

For the chain, if the hopping between sites is weak compared
to the memory time of the bath τB, namely tSτB � 1, to
a good approximation the local operators evolve solely due
to the local Hamiltonian, namely U †(t ′ − t )c†

iα
(0)U (t ′ − t ) ≈

e−iμiα (t ′−t )c†
iα

. Inserting this equation into Eqs. (A6) and (A7)
after transforming back to the Schrödinger picture, or alterna-
tively replacing [ciα (�)]† by c†

iα
, ciα (�) by ciα in Eq. (8), leads

to the following local Lindblad equation for the OPDM:

dρ (1)

dt
= −i[h + hLS, ρ

(1)] +
∑

α

Jα
{(

ρ (1)
α − ρ (1)

)
, Piα

}
,

(22)
where the Lamb shift Hamiltonian is hLS =
−∑

α P
∫ ∞
∞ dω Nα (ω)

ω−μiα
Piα and ρ (1)

α = f α (μiα )I . Another way to
arrive at this result is to notice that, in the simple model bath,
the bath relaxation time is of order 1/kBT if the reservoir is
in the wideband limit [19], and the temperature scale kBT is
much larger than the bandwidth of the chain 2tS . In this limit
all of the system energy levels may be considered to be the
same and Eq. (22) follows directly from Eq. (15).

III. NONEQUILIBRIUM GREEN’S FUNCTION APPROACH

We review the Keldysh NEGF formalism used later. For
concreteness again consider the one-dimensional chain de-
scribed in Sec. II A. The main expressions needed to describe
transport are described. Similar expressions for the three-
dimensional case can be found in Appendix C.

In the stationary state that we are interested in, time-
dependent Green’s functions G(t, t ′) are a function only of
the time difference t − t ′, so the Fourier transform can be
expressed in terms of a single frequency: G = G(ω). The
Green’s functions of the chain coupled to the baths needed to
evaluate observables can be obtained from Dyson’s equation:

Gr,a(ω) = [
ω ± iη − H0

S − �r,a(ω)
]−1

,
(23)

G<(ω) = Gr (ω)�<(ω)Ga(ω),

where Gr,a,<(ω) and �r,a,<(ω) denote the retarded, advanced,
and lesser Green’s functions and self-energies, respectively,
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that describe the coupling of the chain to the baths. The self-
energies read

�r,a
i j (ω) = ∓i(JLδi1δ j1 + JRδiNδ jN ),

(24)
�<

i j (ω) = 2i[JL f L(ω)δi1δ j1 + JR f R(ω)δiNδ jN ],

where we again take the wideband approximation for the leads
so that Jα = πNα (ελ) is energy independent. The particle
current in terms of the Green’s function is well known and
given by [37]

j = 4JLJR
∫ ∞

−∞

dω

2π
[ f L(ω) − f R(ω)]

∣∣Gr
1N (ω)

∣∣2
, (25)

and the occupation along the chain reads

〈ni〉 = −iG<
ii (0) = −i

∫ ∞

−∞

dω

2π
G<

ii (ω). (26)

The occupation along the chain can be obtained from Eqs. (23)
and (24) and Eq. (26):

〈ni〉 = 2
∫ ∞

−∞

dω

2π

[
JL f L(ω)

∣∣Gr
i1(ω)

∣∣2

+ JR f R(ω)
∣∣Gr

iN (ω)
∣∣2]

. (27)

Within the Hartree approximation we could in principle obtain
all of the Green’s functions by solving Eqs. (23) and (27) iter-
atively, but a more accurate and efficient numerical evaluation
of Eq. (27) can be achieved [48] by splitting the integration
into the equilibrium and nonequilibrium contributions:

〈ni〉 = 〈
nL,eq

i

〉 + 〈
nR,neq

i

〉
,

(28)
〈ni〉 = 〈

nR,eq
i

〉 + 〈
nL,neq

i

〉
,

where the equilibrium part reads〈
nα,eq

i

〉 = −
∫ ∞

−∞

dω

π
ImGr

ii(ω) f α (ω), (29)

while the nonequilibrium contributions are

〈
nR,neq

i

〉 = JR
∫ ∞

−∞

dω

2π
[ f R(ω) − f L(ω)]

∣∣Gr
iN (ω)

∣∣2
,

〈
nL,neq

i

〉 = JL
∫ ∞

−∞

dω

2π
[ f L(ω) − f R(ω)]

∣∣Gr
i1(ω)

∣∣2
. (30)

Here, we evaluate the equilibrium contribution using Mat-
subara sums. From the definition of the Matsubara Green’s
function we find〈

nα,eq
i,σ

〉 = Gα
ii (0

−) = 1

β

∑
n

eiωn0+
Gα

ii (iωn)

= 2

β

∑
ωn�0

ReGα
ii (iωn) + 1

2
, (31)

where Gα
i,i,σ (iωn) is the Matsubara Green’s function evalu-

ated with the chemical potential of either lead, μ = μα . The
ωn = 0 contribution in the last Matsubara sum is weighted by
a factor 1/2. The integrals appearing in the nonequilibrium
part of the occupation as well as in the current Eq. (25) are
performed using Gaussian quadrature.

It is enlightening to illustrate the connection between MRE
and NEGF here. QME can also be formally derived using

the Keldysh diagrammatic technique, by carefully picking
certain relevant diagrams [49]. Here we make the connection
from the perspective of the Kadanoff-Baym equation [31].
The equation of motion version of the Keldysh formalism, as
introduced by Kadanoff and Baym, leads to an equation for
G<(t, t ′) which reads [36]

i(∂t + ∂t ′ )G<(t, t ′) − [
H0

S , G<(t, t ′)
]

=
∫

dt1[�r (t, t1)G<(t1, t ′) + �<(t, t1)Ga(t1, t ′)

−Gr (t, t1)�<(t1, t ′) − G<(t, t1)�a(t1, t ′)] (32)

in matrix form. Note that, in order to solve for G<(t, t ′), the
time dependence of Gr,a(t, t ′) is also needed. This dependence
can be generally obtained by solving the Dyson equation of
motion in integro-differential form for Gr,a(t, t ′). We now
apply the above expression (32) to the same noninteracting
one-dimensional tight-binding model used before. Equation
(32) above simplifies in the stationary regime in which not
only the baths (which are in equilibrium) but also all the
Keldysh Green’s functions depend only on the time difference
G(t, t ′) = G(t − t ′). After Fourier transforming the Green’s
functions and setting t = t ′ we obtain

−i
∑

k

(
H0

S

)
ikρ

(1)
k j + i

∑
k

ρ
(1)
ik

(
H0

S

)
k j − JLδi1ρ

(1)
1 j

−JRδiNρ
(1)
N j − ρ

(1)
i1 JLδ j1 − ρ

(1)
iN JRδ jN

= 2i
∫

dω

2π

[
JL fL(ω)δi1Ga

1 j (ω) + JR fR(ω)δiN Ga
N j (ω)

]
−2i

∫
dω

2π
[Gr

i1(ω)JL fL(ω)δ j1 + Gr
iN (ω)JR fR(ω)δ jN ],

(33)

where we have used the definition: 〈c†
i c j〉 = −iG<

ji(t, t ) =
ρ

(1)
ji . Note that, for noninteracting electrons in the absence of

baths, the retarded and advanced Green’s function can be ex-
pressed in terms of the eigenvalues and eigenvectors {ελ, |λ〉}
of the system Hamiltonian H0

S as

Gr,a
i j (ω) = P

∑
λ

〈i|λ〉〈λ| j〉
ω − ελ

∓ iπ
∑

λ

〈i|λ〉〈λ| j〉δ(ω − ελ).

(34)
Substituting this expression into Eq. (33) leads to an equation
equivalent to Eq. (15) that was obtained within the MRE
approach without neglecting the CPVPs [note that we have
implicitly assumed K̂α = 0 in Eq. (24)]. Therefore, our MRE
approach effectively ignores the direct contribution from the
system-bath coupling to Gr,a(ω) in Eq. (33). A similar ar-
gument shows that the implementation of the mean-field
approximation within MRE is equivalent to replacing all the
explicit self-energies in Eq. (32) with the mean-field self-
energies plus the system-bath self-energies given by Eq. (24),
and only keeping the self-consistent mean-field self-energies
in Eq. (23). Note that, due to the wideband approximation, the
instantaneous self-energy �r (t, t ′) ∝ δ(t − t ′), which when
substituted into Eq. (32) leads to local-in-time dynamics. Non-
Markovian dynamics may, however, arise as a result of the
edge singularities present in generic fermionic baths [50].
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IV. APPLICATION TO SPECIFIC SYSTEMS

To test the MRE we apply the formalism to two specific
model systems: a one-dimensional quantum wire and a three-
dimensional rectifying p-n junction. The approach is tested by
comparison to the NEGF method.

A. One-dimensional ballistic transport in noninteracting
metallic quantum wire

We first study the simplest case of a noninteracting chain of
spinless fermions that is connected to reservoirs at each end as
shown in Fig. 1. Though simple and standard, the toy model
provides a nontrivial test of the recovery of ballistic transport
physics. The system Hamiltonian is given by Eq. (2) and for
simplicity we set μi = Vi,σ ; j,σ ′ ≡ 0 and Jα ≡ J . Equation (16)
shows that, as the system approaches the steady state, in real
space the OPDM obeys

itS
(
ρ

(1)
2n+1,1 + ρ (1)

n,n − ρ
(1)
n+1,n+1

) = J
(
ρ (1) − ρ

(1)
L

)
2n,1, (35)

with particle current j equal to

j = −itS
(
ρ

(1)
2,1 − ρ

(1)
1,2

) = −2J
(
ρ (1) − ρ

(1)
L

)
1,1, (36)

where 1 � n � (N − 1)/2. For the uniform chain, we expect
that the interior density ρ (1)

n,n asymptotically approaches a fixed

value ρb. Likewise ρ
(1)
2n+1,1 = 〈c†

1c2n+1〉 should be small when
n � 1. Summing over n on both sides of Eq. (35), keeping the
imaginary parts, and dropping ρ

(1)
m,1 when m � 3 yields

j = 2tSIm ρ
(1)
2,1 = 2t2

S

J

(
ρ

(1)
1,1 − ρb

)
. (37)

Similarly we have

j = itS
(
ρ

(1)
N−1,N − ρ

(1)
N,N−1

) = 2J
(
ρ (1) − ρ

(1)
R

)
N,N

(38)

and

j = 2tSIm ρ
(1)
N,N−1 = −2t2

S

J

(
ρ

(1)
N,N − ρb

)
, (39)

where we use the fact that a system at equilibrium has no
current. Combining Eqs. (36), (37), (38), and (39) we obtain

ρb =
(
ρ

(1)
L

)
1,1 + (

ρ
(1)
R

)
N,N

2
(40)

and

j = J

1 + J2/t2
S

((
ρ

(1)
L

)
1,1 − (

ρ
(1)
R

)
N,N

)
. (41)

Alternatively we may write Eq. (41) as

j = J

1 + J2/t2
S

∑
E

�(E )[ f L(E ) − f R(E )]

= J

1 + J2/t2
S

∫ ∞

−∞
dE N (E )�(E )[ f L(E ) − f R(E )]

≈ J/tS
π

(
1 + J2/t2

S

) ∫ ∞

−∞
dE

√
1 − E2/4t2

S [ f L(E ) − f R(E )],

(42)

FIG. 2. (a) Current-voltage I-V curve of the one-dimensional
conducting quantum wire for different J , calculated by NEGF, MRE,
and Eq. (42). (b) Occupancy profile when J = 0.1 and V = 2, cal-
culated by NEGF and MRE methods. Voltage is defined as V =
μR − μL . For all plots the parameters chosen are t = 1, T = 0.1,
N = 100, and μR + μL = 0.

where �(E ) = |〈1|E〉|2 = 2(1 − E2/4t2
S )/(N + 1), N (E ) =

N/(2πtS
√

1 − E2/4t2
S ) is the density of states of the sys-

tem, and we have assumed a thermodynamic limit. As the
Redfield equations are based on the weak-coupling assump-
tion [20], care must be taken in using Eq. (42) when J is
large. Equation (40) can be interpreted with Landauer bal-
listic transport as Eq. (42) is similar to Landauer’s formula
jL = ∫ ∞

−∞ dE [ f L(E ) − f R(E )]/2π for only one conducting
channel [51]; however, different energy levels contribute dif-
ferently to the current and the total current is suppressed by
a factor of ∼J/(1 + J2/t2

S ). This difference originates from
the fact that the system-bath interface in our model can reflect
electrons that travel from the system to the bath. Figure 2(a)

125147-6



TRANSPORT IN CONDUCTORS AND RECTIFIERS: … PHYSICAL REVIEW B 102, 125147 (2020)

FIG. 3. (a) Lattice structure of the three-dimensional semicon-
ductor. (b) Density of states D(ε) in this model.

shows excellent agreement between numerical results ob-
tained by MRE, NEGF, and the analytic formula of Eq. (42).
As shown in Fig. 2(b), the occupancy determined by MRE and
NEGF differs at the boundary of the system but in the bulk of
the system the difference between two methods is negligible.
The reason for the difference will be briefly discussed in
Sec. V. These results suggest that MRE is reliable for the
investigation of transport properties in the thermodynamic
limit.

B. Semiconductor p-n junctions under dc bias

Next we consider an idealized textbook version of a
rectifying junction to check whether or not the MRE can
reproduce a highly nonlinear response. The three-dimensional
face-centered-cubic (fcc) tight-binding model we employ is
illustrated in Fig. 3.

Hopping is turned on only between nearest-neighbor sites
and thus connects sublattice A to B. To open a semiconducting
gap, alternating on-site energies of ±� are assigned to the
two sublattices. Because the system has translational invari-
ance along the two transverse directions, for each different
wave vector k = (kx, ky) the three-dimensional problem is
described by an effective 1D tight-binding ladder model, as
sketched in Fig. 4. The one-dimensional Hamiltonian is

hk = −
∑

i

[tz(c†
i,Aci+1,B + c†

i,Bci+1,A)

+ t̃xyc†
i,Aci,B + H.c.] +

∑
i

�(ni,A − ni,B), (43)

with t̃xy = 2tx cos(kx ) + 2ty cos(ky) and we have indicated in-
dex k implicitly. To model p-n junctions the positive charge
background must be included as well as the long-range
Coulomb interaction as these ingredients are necessary to
model the depletion layer of a standard semiconductor p-
n junction. Here we make the Hartree approximation with

FIG. 4. Effective one-dimensional tight-binding model with lad-
der geometry. The hopping matrix element t̃xy depends on kx and ky.

a mean-field Hamiltonian that ignores correlation and ex-
change:

HMF
int =

∑
R 	=R′

∑
σ

2VRR′

(
〈nR′,σ 〉 − 1

2
nR′

)
nR,σ , (44)

where nR denotes the charge of the positive charge back-
ground at site R and VRR′ = V0

|R−R′| is the Coulomb interaction.
We have restored the index of spin σ for clarity and take
advantage of spin rotational symmetry. For an intrinsic semi-
conductor without doping, the system is at half filling, so we
set nR′ = 1 for all R′. By tuning nR′ to be slightly above or
below unity we can model either a n-doped or a p-doped
semiconductor. Due to the translational symmetry along x and
y directions, it is possible to further simplify the Hamiltonian
to

HMF
int =

∑
i, j,R⊥

∑
σ

Ṽi j

(
〈n j,σ 〉 − 1

2
n j

)
ni,R⊥,σ , (45)

where i, j are the indices labeling the coordinate of site along
z direction, R⊥ labels the coordinate along x and y direction,
〈n j,σ 〉 = 〈n j,A,σ + n j,B,σ 〉/2, and Ṽi j ≈ −4πV0|i − j|, which
is obtained by approximately replacing

∑
R′ VRR′ with an inte-

gral and ignoring the overall energy shift term. Transforming
Eq. (45) to k space we obtain the effective 1D interaction
Hamiltonian for each different k:

hint
k =

∑
i, j,s,σ

Ṽi j

(∑
k′

〈nk′, j,σ 〉
NxNy

− 1

2
n j

)
nk,i,s,σ , (46)

where Nx and Ny are the number of unit cells along x and
y direction, respectively, s is the index labeling sublattices
A and B, and 〈nk, j,σ 〉 = 〈nk, j,A,σ + nk, j,B,σ 〉/2. By setting n j

differently on the left and right halves of the ladder, a semi-
conductor p-n junction can be modeled.

The corresponding MRE of the OPDM for the 3D system
is

dρ
(1)
k

dt
= −i

[
hk + hint

k , ρ
(1)
k

]

+ J
∑

α

{
ρ

(1)
α,k − ρ

(1)
k ,

∑
s

Pk,iα,s

}
, (47)

where

ρ
(1)
k =

∑
α,β

|k, α〉Tr(c†
k,βck,αρ)〈k, β|, (48)

ρ
(1)
α,k =

∑
λ

|k, λ〉 f α (εk,λ)〈k, λ|. (49)

Here |k, λ〉 is the eigenstate of hk + hint
k and Pk,iα,s projects

onto state |k, iα, s〉. Note that here we have assumed the
generalized spectral density defined in Appendix B is
Nα (k; iα, A; iα, A) = Nα (k; iα, B; iα, B) = J and vanishes oth-
erwise. Solving Eq. (47) self-consistently yields the OPDM of
the nonequilibrium steady state.

The I-V curves of the p-n junction obtained from the
essentially exact NEGF and MRE are shown in Fig. 5(a).
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FIG. 5. (a) Current-voltage I-V curve of the three-dimensional semiconductor p-n junction from the MRE and NEGF methods. (b) Excess
negative charge per site along the z direction under different biases as calculated with MRE. (c) The electrostatic potential energy profile
along the z direction under different bias calculated with MRE. The bias voltage is defined as V = μR − μL and μR + μL = 0 is chosen
to maintain charge neutrality. For all the plots the parameters are chosen as Nx = Ny = 8, Nz = 70 (number of unit cells along z direction),
T = 0.3, V0 = 0.02, J = 0.5, nL(R) = 0.974 (1.026) [number of background charge on left (right) side], and tz = tx = ty = � = 1. Note that,
for the MRE results, oscillating charge within the four unit cells closest to the boundaries is excluded from the calculation of the electrostatic
potential. We have checked that this does not affect the results appreciably.

There is only a small difference between the two approaches,
providing support for the MRE. The I-V curves are similar
to those of a textbook semiconductor p-n junction and show
clear rectification. From Fig. 5(b) and Fig. 5(c), we see that the
size of the depletion region changes when the bias changes as
expected. However, since there is no disorder or dissipation
mechanism in the bulk of the system, the transport is ballistic
everywhere except at the p-n interface and the carriers are
in a highly out-of-equilibrium state everywhere. This con-
trasts with textbook descriptions of macroscopic p-n junctions
where the carriers are in a quasiequilibrium state away from
the p-n interface and a recombination current is important in
the vicinity of the junction. We also note from Fig. 5(c) that
the shift in the electrostatic potential at the baths does not
exactly equal the external bias. This difference is due to the
absence of disorder and dissipation in our model.

V. CONCLUSION

In this paper, we derive the Redfield equation of mo-
tion for the one-particle density matrix. By ignoring the

Cauchy principle value parts (CPVPs) and making a mean-
field approximation, we obtain a closed equation (16) that
can be efficiently solved numerically. Application to the one-
dimensional metallic quantum wire system shows that the
approach captures the essential ballistic transport physics and
leads to the Landauer current formula. One difference with
the nonequilbrium Green’s function (NEGF) approach is ap-
parent in the occupancy near the boundary with the baths.
The difference has two sources: (1) correlations between the
system and bath, which are neglected in general quantum
master equations, may be important near the system-bath in-
terface and (2) the CPVPs that we ignore are localized near
the boundaries. Nonetheless, for mesoscopic and macroscopic
systems, transport appears to be only minimally affected
[see Fig. 2(a)]. Application of the modified Redfield equa-
tion (MRE) to three-dimensional semiconductor p-n junctions
yields a good match between the MRE and NEGF I-V curves
with strong rectification as expected (see Fig. 5). There are
slight differences between our results and those of textbook
p-n junctions, as discussed in Sec. IV B. MREs serve as an
alternative method for the investigation of transport in the
inhomogeneous heterostructures [52,53].
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MREs may be better suited to describe transport in
mesoscopic systems than the Lindblad equations, as the mi-
croscopic derivation of the Lindblad equations requires either
a secular approximation, which breaks down, or a high-
temperature limit. The range of validity of MREs can be
explored by direct comparison to NEGF (see Sec. III), show-
ing that the two methods are closely related and in fact almost
equivalent in the weak system-bath coupling limit. For mean-
field approximations MRE is more numerically efficient than
NEGF as it avoids summations over frequency and the need to
solve complicated integro-differential equations. Positive def-
initeness of the density matrices is not guaranteed for MREs,
however, and positivity needs to be checked on a case-by-case
basis.

The MRE approach introduced here seems to be limited, in
practice, to weakly interacting systems that are adequately de-
scribed by a mean-field approach. At the mean-field level, the
set of MREs decouple, forming a closed system of equations
that can be solved. Blind application of MREs to strongly
interacting systems would, in principle, require the solution
of an infinite hierarchy of equations that couple correlation
functions at different orders. This closure problem may be
avoided by truncating and solving the hierarchy of MREs
through coupled cluster expansions up to a desired order in the
interaction [54]. Truncated Redfield equations have already
been used for analyzing charge transport through 1D chains
with interacting spinless fermions and thermal conduction
through XXZ spin chains [45] yielding promising results.
It may be possible to study transport through 3D strongly
correlated systems via the MREs in the limit of infinite di-
mensions by analogy to the NEGF + DMFT approach which
neglects nonlocal spatial correlations. These theoretical routes
are beyond the scope of our present work and deserve further
exploration.

ACKNOWLEDGMENTS

Z.Z. thanks K. Ma for early useful discussions. Z.Z.
and J.B.M. acknowledge support from NSF Grant No.
1936221. J.M. acknowledges financial support from (Grant
No. RTI2018-098452-B-I00) Ministerio de Ciencia, Inno-
vación y Universidades/FEDER, Unión Europea.

APPENDIX A: MICROSCOPIC DERIVATION OF THE
REDFIELD EQUATION

Here we provide a heuristic derivation of the Redfield
equation. For a more rigorous derivation see, for example,
Ref. [5]. It is usually convenient to treat HSB = ∑

α H (α)
SB as

an interaction and work in the interaction picture. Then the
von Neumann equation becomes

dρI
total(t )

dt
= −i[HI

SB(t ), ρI
total(t )], (A1)

where

HI
SB(t ) = U †(t, 0)HS

SBU (t, 0), (A2)

ρI
total(t ) = U †(t, 0)ρS

total(t )U (t, 0), (A3)

where U (t1, t0) = e−iT
∫ t1

t0
[HS (t ′ )+HB (t ′ )]dt ′

is the evolution op-
erator, HS

SB is the system-bath coupling Hamiltonian in the
Schrödinger picture, T is the time-ordering operator, ρS

total is
the total density matrix in the Schrödinger picture, and ini-
tially ρtotal(0) = ρS (0) ⊗ ρE (0). With Eq. (A1) one can obtain

ρI
total(t ) = ρI

total(0) + 1

i

∫ t

0
dt1

[
HI

SB(t1), ρI
total(0)

]

+ 1

i2

∫ t

0
dt1

∫ t1

0
dt2

[
HI

SB(t1),
[
HI

SB(t2), ρI
total(t2)

]]
.

(A4)

Assuming that the coupling between bath and system is weak
and the bath evolves only slowly (the Born approximation)
the density matrix can be written as ρI

total(t ) ≈ ρI
S (t ) ⊗ ρI

E (0);
therefore, after tracing out the degree of freedom of bath and
taking derivative with respect to t , Eq. (A4) becomes

dρI
S

dt
= −

∑
α

∫ t

0
dt ′([ciα (t ), Ĉα+(t, t ′)ρI

S (t ′)
]

+ [
c†

iα
(t ), Ĉα−(t, t ′)ρI

S (t ′)
] + H.c.

)
, (A5)

where

Ĉα+(t, t ′) =
∑

λ

∣∣T α
λ

∣∣2〈
f α†
λ (t ) f α

λ (t ′)
〉
Bc†

iα
(t ′), (A6)

Ĉα−(t, t ′) =
∑

λ

∣∣T α
λ

∣∣2〈
f α
λ (t ) f α†

λ (t ′)
〉
Bciα (t ′), (A7)

where we have used the fact that 〈 f α
λ 〉B = 〈 f α†

λ 〉B = 0 and
〈. . .〉B denotes the average value taken with respect to the
bath. Here we will assume that the system time scale τS is
much larger than the baths’ relaxation time scale τB so that at
time scale τB � τ � τS the dynamics of the coarse-grained
density matrix of the system becomes local in time, which
is known as the Markov approximation. The evolution of
the system does not depend on its history and the bath is
memoryless. Therefore, we can replace all the ρI

S (t ′) by ρI
S (t )

in Eq. (A5) and extend the lower limit in the integrand of
Eq. (A5) to −∞. Introducing the concept of eigenoperator
defined in Eq. (10), one can easily show that

eiHSt ′[
ciα (�)

]†
e−iHSt ′ = ei�t ′[

ciα (�)
]†

, (A8)

eiHSt ′
ciα (�)e−iHSt ′ = e−i�t ′

ciα (�). (A9)

Using the fact that〈
f α†
λ (t ) f α

λ (t ′)
〉
B = eiεα

λ (t−t ′ ) f α
(
εα
λ

)
, (A10)〈

f α
λ (t ) f α†

λ (t ′)
〉
B = e−iεα

λ (t−t ′ )[1 − f α
(
εα
λ

)]
(A11)

and the definition of spectral density Nα (�) =∑
λ |T α

λ |2δ(� − εα
λ ), one can obtain

dρI
S

dt
= −

∑
α,�,�′

{
[Fα (�) + iFαI (�)]

× [ciα (�′), [ciα (�)]†ρI
S]ei(�−�′ )t

+ [Hα (�) − iHαI (�)]

× [[ciα (�′)]†, ciα (�)ρI
S]e−i(�−�′ )t + H.c.

}
. (A12)
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Transforming back to the Schrödinger picture one obtains
Eq. (7) and Eq. (8).

APPENDIX B: GENERALIZATION OF THE REDFIELD
EQUATION TO THREE DIMENSIONS

For a three-dimensional system, we generalize the system-
bath Hamiltonian to

H (α)
SB =

∑
λ,Rα

(T α
λ,Rα

f α†
λ cRα

+ H.c.), α = L or R, (B1)

where Rα in general denotes the coordinate, and other de-
grees of freedom (such as orbital) of the state connected
to bath α. Similar calculations yield a formula analogous
to Eq. (A5):

dρI
S

dt
= −

∑
α,Rα,R′

α

∫ t

0
dt ′([cRα

(t ), Ĉα+(t, t ′; Rα, R′
α )ρI

S (t ′)]

+ [c†
Rα

(t ), Ĉα−(t, t ′; Rα, R′
α )ρI

S (t ′)] + H.c.
)
, (B2)

where

Ĉα+(t, t ′; Rα, R′
α ) =

∑
λ

T α
λ,Rα

T α∗
λ,R′

α

〈
f α†
λ (t ) f α

λ (t ′)
〉
Bc†

R′
α
(t ′),

(B3)

Ĉα−(t, t ′; Rα, R′
α ) =

∑
λ

T α∗
λ,Rα

T α
λ,R′

α

〈
f α
λ (t ) f α†

λ (t ′)
〉
B
cR′

α
(t ′).

(B4)

We could define the generalized spectral density

Nα (Rα, R′
α; ω) =

∑
λ

Tλ,Rα
T ∗

λ,R′
α
δ
(
ω − εα

λ

)
(B5)

and another calculation that includes a transformation back to
the Schrödinger picture yields the three-dimensional Redfield
equation in real space:

dρS
S

dt
= −i

[
HS, ρ

S
S

]
−

∑
α,Rα,R′

α,�

{[
Fα (Rα, R′

α,�) + iFαI (Rα, R′
α,�)

]

× [
cRα

, [cR′
α
(�)]†ρS

S

]
+ [Hα (R′

α, Rα,�) − iHαI (R′
α, Rα,�)]

× [
c†

Rα
, cR′

α
(�)ρS

S

] + H.c.
}
, (B6)

where, for example,

Fα (Rα, R′
α,�) = πNα (Rα, R′

α,�) f α (�), (B7)

FαI (Rα, R′
α,�) = 1

π
P

∫ ∞

−∞
dω

Fα (Rα, R′
α, ω)

ω − �
, (B8)

and a similar definition holds for Hα (Rα, R′
α,�) and

HαI (Rα, R′
α,�). To simplify the above equation, we as-

sume that the whole model, including both baths and system,
has translational invariance along the transverse direction
and there is no interaction. We separate Rα into two parts:
R⊥

α , which represents the coordinate of the unit cell in the
transverse direction, and R‖

α along the junction. Due to the
translational invariance in transverse direction, all functions
depend only on the difference R⊥

α − R⊥′
α and we can define the

Fourier transform for a general function g(x⊥; x‖) = g(R⊥
α −

R⊥′
α ; x‖)

gα (k⊥; x‖) =
∑
x⊥

eik⊥·x⊥gα (x⊥; x‖) (B9)

and its inverse

gα (x⊥; x‖) =
∑
k⊥

e−ik⊥·x⊥gα (k⊥; x‖)

NxNy
, (B10)

where Nx and Ny are the number of unit cells in x and y direc-
tion, respectively. Translational symmetry also means that the
energy eigenstates can be labeled by the transverse momen-
tum k⊥ and the longitudinal index λk⊥ . Therefore, we have

c†
R′

α
(�) =

∑
ε(k⊥,λk⊥ )=�

e−ik⊥·R⊥′
α√

NxNy
〈λk⊥|R‖′

α 〉c†
k⊥,λk⊥

(B11)

and

cRα
=

∑
k⊥

eik⊥·R⊥
α√

NxNy
ck⊥,R‖

α
. (B12)

Substituting these equations into Eq. (B6) and summing over
R⊥

α and R⊥′
α yields

dρS

dt
= −i

[
HS, ρ

S
S

] −
∑

α

∑
k⊥,λk⊥

∑
R‖

α,R‖′
α

{
[Fα (k⊥; R‖

α, R‖′
α ,�) + iFαI (k⊥; R‖

α, R‖′
α ,�)] × [ck⊥,R‖

α
, c†

k⊥,λk⊥
ρS] × 〈λk⊥|R‖′

α 〉

+ [Hα (k⊥; R‖′
α , R‖

α,�) − iHαI (k⊥; R‖′
α , R‖

α,�)] × [
c†

k⊥,R‖
α

, ck⊥,λk⊥ ρS
] × 〈R‖′

α |λk⊥〉 + H.c.
}
, (B13)

where � = ε(k⊥, λk⊥ ) is implied. We may also obtain
the EOM for the OPDM. Ignoring the dependence of
Nα (k⊥; R‖

α, R‖′
α ,�) on � and neglecting all CPVPs, following

Sec. II B we obtain
dρ (1)

dt
= −i[h, ρ (1)] +

∑
α,k⊥

[(
ρ

(1)
k⊥,α

− ρ (1)
)
Pk⊥,α + H.c.

]
,

(B14)

where

ρ
(1)
k⊥,α

=
∑
λk⊥

|k⊥, λk⊥〉 f α
[
ε(k⊥, λk⊥ )

]〈k⊥, λk⊥| (B15)

and

Pk⊥,α =
∑

R‖
α,R‖′

α

πNα (k⊥, R‖
α, R‖′

α )|k⊥, R‖′
α 〉〈k⊥, R‖

α|. (B16)
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APPENDIX C: GENERALIZATION OF NEGF
TO THREE DIMENSIONS

With the same assumption and notations as in Appendix B
the Green’s functions describing the system can now be ex-
pressed as GR‖,R‖′ (k⊥, ω) due to translational invariance in the
x − y direction. The Dyson equations for the Keldysh Green’s
functions of the chain coupled to the baths now read

Gr,a(k⊥, ω) = [ω ± iη − h(k⊥) − �r,a(ω)]−1,

G<(k⊥, ω) = Gr (k⊥, ω)�<(ω)Ga(k⊥, ω), (C1)

where the self-energies of the chain due to the coupling to the
baths are given by

�r,a
R‖,R‖′ (ω) = ∓i

∑
α=L,R

∑
R‖

α

JαδR‖,R‖
α
δR‖′,R‖

α
,

(C2)
�<

R‖,R‖′ (ω) = 2i
∑

α=L,R

∑
R‖

α

Jα f α (ω)δR‖,R‖
α
δR‖′,R‖

α
,

where we have again made the wideband approximation for
the baths.

In the three-dimensional model, the occupations along the
junction read

〈nR‖ 〉 = − i

NxNy

∑
k⊥

∫ ∞

−∞

dω

2π
G<

R‖,R‖ (k⊥, ω). (C3)

The occupations are again split into equilibrium and nonequi-
librium contributions. The equilibrium part reads

〈
nα,eq

R‖
〉 = − 1

NxNy

∑
k⊥

∫ ∞

−∞

dω

π
ImGr

R‖,R‖ (k⊥, ω) f α (ω)

= 1

β

1

NxNy

∑
k⊥,n

eiωn0+
Gμα

R‖,R‖ (k⊥, iωn), (C4)

while the nonequilibrium contribution is

〈
nR,neq

R‖,σ

〉 = 2JR

NxNy

∑
k⊥,R‖

R

∫ ∞

−∞

dω

2π
[ f R(ω) − f L(ω)]

×∣∣Gr
R‖,R‖

R
(k⊥, ω)

∣∣2
,

〈
nL,neq

R‖,σ

〉 = 2JL

NxNy

∑
k⊥,R‖

L

∫ ∞

−∞

dω

2π
[ fL(ω) − fR(ω)]

× ∣∣Gr
R‖,R‖

L
(k⊥, ω)

∣∣2
. (C5)

Finally, the expression for the particle current through a unit
cell becomes

j = 2JLJR 1

NxNy

∑
k⊥

∑
R‖

L,R‖
R

∫ ∞

−∞

dω

2π
[ fL(ω) − fR(ω)]

× ∣∣Gr
R‖

L,R‖
R
(k⊥, ω)

∣∣2
. (C6)

APPENDIX D: PERTURBATIVE SOLUTION TO THE
REDFIELD EQUATION FOR THE OPDM

Consider a system that may have some degeneracies and
obeys Eq. (16). If the system-bath coupling J is small, or in
other words J � εα − εβ for any α 	= β that εα 	= εβ , we can
expand ρ = ρ0 + Jρ1 + J2ρ2 + · · · and solve the equation
order by order. To zeroth order, it is easy to show that the
OPDM ρ0 is block diagonalized in the energy eigenbasis and
each block corresponds to a degenerate space. To first order,

0 = −i[h, ρ1] +
∑

α

{ρα, Piα } − {ρ0, P}, (D1)

where we have used the shorthand P = ∑
α Piα . We may also

write the above equation in block matrix form:

ρ0
uuPuu + Puuρ

0
uu = 2

∑
α

(ρα )uu(Piα )uu (D2)

and

ρ1
uw =

∑
α

[
(ρα )uu(Piα )uw + (Piα )uw(ρα )ww − ρ0

uu(Piα )uw − (Piα )uwρ0
ww

]
i(εu − εw )

, for u 	= w, (D3)

where indices u and w label the blocks corresponding to different degenerate eigenspaces. Working in the eigenbasis that
diagonalizes P in each block, as long as P does not have opposite eigenvalues, one can solve for ρ0 in each degenerate eigenspace
leading to

ρ0
i j = 2

∑
α ρα (Piα )i j

Pj j + Pii
. (D4)

In particular, if there is no degeneracy, Eq. (D4) becomes Eq. (18).
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