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We propose an approach to study the ground state of quantum many-body systems in which tensor network
states, specifically projected entangled pair states (PEPSs), and Green’s function Monte Carlo (GFMC) are
combined. PEPSs, by design, encode the area law which governs the scaling of entanglement entropy in quantum
systems with short-range interactions but are hindered by the high computational complexity scaling with bond
dimension D. GFMC is a highly efficient method, but it usually suffers from the infamous negative sign problem
which can be avoided by the fixed-node approximation in which a guiding wave function is utilized to modify the
sampling process. The trade-off for the absence of the negative sign problem is the introduction of systematic
error by the guiding wave function. In this work, we combine these two methods, PEPS and GFMC, to take
advantage of both of them. PEPSs are very accurate variational wave functions, while at the same time, only
contractions of the single-layer tensor network are necessary in GFMC, which reduces the cost substantially.
Moreover, energy obtained in GFMC is guaranteed to be variational and lower than the variational energy of
the guiding PEPS wave function. Benchmark results of the J1-J2 Heisenberg model on the square lattice are
provided.

DOI: 10.1103/PhysRevB.102.125143

I. INTRODUCTION

One of the most challenging tasks in condensed-matter
physics is to understand the many-body effect in strongly
correlated quantum systems, in which numerous exotic phe-
nomena emerge [1–4]. Because an exact solution for a
strongly correlated system is rare [5], most studies of these
systems rely on numerical tools nowadays. The density matrix
renormalization group (DMRG) [6,7] is one of the most suc-
cessful methods in the study of strongly correlated systems.
DMRG is extremely accurate for one-dimensional (1D) quan-
tum systems [8,9]. Shortly after the introduction of DMRG in
1992 [6], it was realized that the underlying wave functions
are matrix product states (MPSs) [10], which can be viewed
as a generalization of the seminal state introduced by Affleck,
Kennedy, Lieb and Tasaki (AKLT) [11]. The concept of MPSs
can be traced back at least to 1968 [12]. It was found that
MPSs capture the entanglement structure of the ground state
of 1D quantum systems and this results in the high accuracy
of DMRG [13]. The adoption of concepts from the field of
quantum information, entanglement, for example, has inspired
the development of the tensor network states (TNSs) [14].
These advances provide us useful tools to both identify [15]
and classify [16,17] quantum phases.

DMRG can also provide accurate results for systems on
narrow cylinders with a large enough bond dimension [18–22]
but has difficulty for a real two-dimensional (2D) system
[23]. A natural generalization of MPSs to 2D, projected en-
tangled pair states (PEPSs) [24], can overcome the difficulty
[25–29]. It can be proved that the entanglement entropy in
PEPS satisfies the area law [24] which is required to faithfully

represent the ground state of 2D quantum systems [13] (when
a Fermi surface is present [30], there is a logarithm correction
to area law for the ground state, which PEPS fails to capture.).
However, in contrast to D3 scaling of complexity in MPSs, the
computational cost is as high as D12 [26,31,32] in PEPSs. The
heavy scaling of computational resources with bond dimen-
sion in PEPSs hampers the reach to large bond dimension,
which is essential to resolve possible competing states in the
low-energy manifold of certain strongly correlated systems,
e.g., the antiferromagnetic Heisenberg model on Kagome lat-
tice [19,29,33–36].

Quantum Monte Carlo (QMC) [31,37–39] is a widely used
methodology in the study of strongly correlated many-body
systems. In general, the computational complexity in QMC
scales algebraically with system size, which makes it an effi-
cient approach. However, with few exceptions [31], the direct
application of the Monte Carlo method in many-body systems
suffers from the infamous negative sign problem [40,41]. One
strategy to overcome the negative sign problem is to take
advantage of the trade-off between variance and bias, which
is the principle behind fixed-node approximation in Green’s
function Monte Carlo (GFMC) [42,43] (also called diffusion
Monte Carlo [44] in the literature) and the constrained path
approximation in auxiliary field quantum Monte Carlo [45].
The price to pay is the introduction of systematic error or bias
in the result. Empirically, different forms of guiding [35,46–
48] or trial wave functions [49,50] can be chosen to give high
accuracy for certain systems.

In this work, we combine PEPS and GFMC to take ad-
vantage of both of them. We take PEPS as the guiding wave
function in the GFMC calculation. As we will discuss later,
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in our method, only contraction of the single-layer tensor
network is required, which highly reduces the computational
complexity in the PEPS part. At the same time, PEPSs are
very accurate variational wave functions, with which the sys-
tematic error can be reduced in GFMC.

II. MODELS

For concreteness, we take the S = 1/2 J1-J2 Heisenberg
model on a square lattice as an example to describe the
method. The Hamiltonian is as follows:

H = J1

∑
〈i, j〉

SiS j + J2

∑
〈〈i, j〉〉

SiS j, (1)

where Si is the spin operator on site i. 〈i, j〉 and 〈〈i, j〉〉
represent nearest- and next-nearest- neighbor interactions,
respectively. We consider antiferromagnetic interactions for
both J1 and J2 and set J1 as the energy unit. For simplicity,
we study the system on a square lattice with open boundary
conditions (OBCs). The J1-J2 Heisenberg model is widely
investigated in the exploration of the frustration effect in
quantum systems [51–53]. When J2 is absent, the model can
be solved with QMC without suffering from the negative
sign problem [54–56]. The ground state is known to have
long-range antiferromagnetic (AF) order, i.e., Néel order. In
the other limit when J1 = 0, the system decouples into two
independent square lattices, and an infinitesimal J1 can drive
the ground state into the striped AF order. Between these two
limits, the nature of the ground state is still under extensive de-
bate [57–65] in the vicinity of J2/J1 = 0.5, where the system
is maximally frustrated in the sense that in the classical limit,
the J1-J2 Ising model has a macroscopic degenerate ground
state.

III. PROJECTED ENTANGLED PAIR STATES

To construct a PEPS, we put a rank 5 tensor A[σ ]
ldru on each

vertex of the square lattice [see Fig. 1(b)], where σ is the
physical degree of freedom with dimension d , while l, d, r, u
are the auxiliary degrees of freedom with dimension D [24].
Contracting the auxiliary degrees of freedom gives the PEPS
wave function

ψ =
∑
{σ }

Tr(A[σ0]A[σ1] · · · A[σN−1] )|σ0, σ1, . . . , σN−1〉, (2)

where the trace means contraction of the tensors. To obtain
the ground state of the J1-J2 Heisenberg model in Eq. (1),
we apply the imaginary-time projection operator exp(−τH )
repeatedly to an initial PEPS until convergence. As in Trotter-
Suzuki decomposition [66], we first divide the lattice into four
groups of plaquettes in a way that the projection operators of
each plaquette within a group are independent or commute
with each other. In each group, a projected entangled pair
operator [PEPO; see Fig. 1(c)] for the projection operator
within a single plaquette is constructed and is applied to the
initial PEPS simultaneously. This procedure is carried out re-
currently for the four groups [see Fig. 1(d)]. Because the bond
dimension increases after the application of the PEPO [67]
[see Fig. 1(e)], we need to truncate it back to the original value
D to make the calculation be under control [see Fig. 1(f)]. This

l r

d

u

FIG. 1. PEPSs and the optimization process. (a) A PEPS on a
square lattice, where there is a local tensor on each vertex. (b) The
local tensor. The wave function is obtained by contracting all the
auxiliary indexes. (c) PEPO for a plaquette. (d) The application of a
PEPO to PEPS in a plaquette. (e) The bond dimension of PEPS is
increased after the application of a PEPO; (f) The bond dimension is
truncated back to the original value in (a).

is done in a variational fashion [68]. The whole procedure
is a realization of the cluster update approach [69], which is
a generalization of the simple update [25]. The most time-
consuming part of this approach is the calculation of physical
quantities after the PEPSs are optimized, which requires con-
traction of double-layer tensor networks with bond dimension
D2. As we will discuss later, when combining PEPSs with
GFMC, we need to calculate only single-layer tensor net-
works with bond dimension D, which reduces the complexity
substantially. We notice the existence of a single-layer-like
algorithm in the literature [70]. In the more sophisticated full
update scheme of PEPS, the contraction of the double-layer
tensor network is also needed in the optimization process
[26,71].

IV. GREEN’S FUNCTION MONTE CARLO

In Green’s function Monte Carlo [72–75], the ground state
of a system is also obtained by the imaginary-time projection
|ψg〉 ∝ limβ→∞ exp(−βH )|ψ0〉. The projection length β is
then divided into small slices with β = Mτ , with τ being a
small number. In GFMC, we take the first-order expansion
of the exponential function: exp(−τH ) ∝ C − H , with C (or
1/τ ) being a positive real number large enough to ensure all
the diagonal elements of H are positive. Then the ground state
can formally be written as |ψg〉 ∝ limk→∞ Kk|ψ0〉, with K =
C − H . A mixed estimate is employed in GFMC to calculate
the ground state energy as E = 〈ψg|H |ψG〉

〈ψg|ψG〉 , which gives the
exact ground state energy if |ψg〉 is the true ground state of H .
Here we introduce a guiding wave function ψG whose effect
will be discussed later. We use S to denote the spin configu-
ration of the whole system, i.e., S = (sz

1, sz
2, . . . , sz

N ), which
is also the walker in the sampling process. We define the
kernel as K̃ (S′, S) = ψ∗

G(S′)K (S′, S)/ψ∗
G(S), with K (S′, S) =

〈S′|K|S〉 and ψG(S) = 〈S|ψG〉. Then the ground state energy
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from the mixed estimate is

E = 〈ψg|H |ψG〉
〈ψg|ψG〉 =

∑
{S} Eloc(S)ψG(S)ψ∗

g (S)∑
{S} ψG(S)ψ∗

g (S)
, (3)

where the local energy is defined as Eloc(S) = 〈S|H |ψG〉
〈S|ψG〉 . By

introducing f ∗(S) = ψ∗
G(S)ψg(S), we have

E =
∑

{S} Eloc(S) f (S)∑
{S} f (S)

. (4)

So we can view f (S) as probability density (if f (S)
is non-negative) and take advantage of Monte Carlo
techniques, Metropolis, for example, to evaluate the
summation in Eq. (4). It is easy to show f ∗(S) =∑

K̃ (S, SM )K̃ (SM, SM−1) · · · K̃ (S2, S1)ψ0(S1)ψ∗
G(S1) where

the summation is over {S1, S2, . . . , SM}.
The procedure of GFMC can be summarized as follows.

At the first step, we sample S1 according to ψ0(S1)ψ∗
G(S1)

and set the weight of each walker to 1. This gives us an
ensemble of walkers {Si

1, ω
i
1 = 1}. We usually choose ψ0 =

ψG and sample {S1} with probability |ψG(S1)|2. Then each
walker {Si

1, ω
i
1} is propagated to {Si

2, ω
i
2} with probability

p(Si
2) = K̃ (Si

2, Si
1)/β i

2,1, where the normalization factor is
β i

2,1 = ∑
Si

2
K̃ (Si

2, Si
1). After a new walker is chosen, we up-

date the weight of it by multiplying the normalization factor
as ωi

2 = β i
2,1ω

i
1. This process is repeated, and we can start the

measurement of energy after equilibrium is reached.
When the off-diagonal elements of H are all nonpositive,

the ground state of H can be chosen to be non-negative
according to the Perron-Frobenius theorem. Under this cir-
cumstance, f (S) is non-negative if we choose an arbitrary
non-negative guiding wave function because it is easy to prove
the kernel K (S′, S) is non-negative. Then we can view f (S)
as the probability density without suffering from the negative
sign problem.

For a Hamiltonian whose off-diagonal elements are not all
negative, e.g., when the system is frustrated, we cannot ensure
the non-negativeness of f (S), and the negative sign prob-
lem emerges. Applying the fixed-node approximation [76]
can solve this issue. With the fixed-node approximation, we
actually study an effective Hamiltonian Heff instead of the
original Hamiltonian H . The off-diagonal of Heff is defined
as 〈S′|Heff |S〉 = 〈S′|H |S〉 if ψG(S′)H (S′, S)/ψ∗

G(S) < 0, and
it is zero if ψG(S′)H (S′, S)/ψ∗

G(S) � 0, which means the off-
diagonal elements causing the sign problem are discarded in
Heff . The diagonal part is defined as 〈S|Heff |S〉 = 〈S|H |S〉 +
〈S|Vs f |S〉, with 〈S|Vs f |S〉 = ∑

S′ 〈S|H |S′〉ψG(S′ )
ψG(S) , where the

summation is over all neighboring configurations S′ of S for
which ψG(S′)H (S′, S)/ψ∗

G(S) > 0. The effect of Vs f is a re-
pulsion suppressing the wave function close to the node which
is essential for the energy to be variational [76]. Different
from the continuum system, both the sign and magnitude of
the guiding wave function affect the accuracy in GFMC for
lattice systems [76]. The off-diagonal elements of Heff are
now all nonpositive by definition, which allows us to obtain its
ground state with GFMC without suffering from the negative
sign problem. It can be proven GFMC is variational [76], and
Eeff � 〈ψG|H |ψG〉/〈ψG|ψG〉, which ensures GFMC gives a
more accurate energy than the variational energy of ψG [76].

In practice, a fixed number of walkers is carried in the projec-
tion process [77], and a reconfiguration process is performed
periodically [77] to reduce the fluctuation among walkers.

We can see that ψG serves as an important function in
the GFMC sampling process when there is no sign problem.
When the sign problem is present, ψG is also used to control
the sign problem. So the quality of ψG controls both the
accuracy and efficiency of GFMC. PEPSs are known to be
accurate wave function for 2D systems, which makes them
good candidates for ψG. In GFMC, we need to calculate
only the overlap between ψG and walker, which is a tensor
network also with bond dimension D, while in the calculation
of the physical quantities of PEPSs, contraction of the double-
layer tensor network with bond dimension D2 is needed.
Although it is known that the rigorous contraction of the ten-
sor network in two dimensions is fundamentally difficult [78],
many effective approximate algorithms exist [68,79–86] in the
literature.

This work is not the first time TNS and GFMC have
been combined. Many attempts have been made in the past
to either optimize tensor network states [87–92] with Monte
Carlo techniques or to take MPSs as a guiding [93] or trial
wave function [94] to control the negative sign problem. The
advance in our work is that we take true 2D TNSs, PEPSs,
as the guiding wave function in GFMC, which can reduce the
cost of PEPS substantially and at the same time improve the
accuracy over PEPS.

V. RESULTS

It is known that the Heisenberg model without the J2 term
is sign problem free [72–75]. By a rotation of the spin along
the z axis on one sublattice, the sign of the coupling for x
and y components is flipped, and the off-diagonal elements of
H in Eq. (1) are all negative. This is the so-called Marshall
sign in the ground state of the Heisenberg model [95] on
bipartite lattices. In the following, we show benchmark results
for both J2 = 0 and J2 	= 0 for 4 × 4 and 6 × 6 lattice sizes.
The “exact” ground state energies are from DMRG with a
truncation error below 10−8 and with an extrapolation to zero
truncation error.

In Fig. 2 we show results for J2 = 0 on a 4 × 4 lattice
with open boundary conditions. We first obtain a D = 4 PEPS
with cluster update, which gives ED=4 = −9.034333. We then
carry out a GFMC calculation with this PEPS as the guiding
wave function. As we can see from Fig. 2, the final converged
energy [−9.189(1)] matches the exact energy (−9.189207)
within the error bars, which is reasonable because there is no
negative sign problem here. When there is no sign problem,
the guiding PEPS wave function plays the role of an important
function whose quality affects only the sampling efficiency in
GFMC.

We then move to the more challenging J2 	= 0 case, where
the negative sign problem emerges and we need to employ
the fixed-node approximation. In Fig. 3, we show the GFMC
results for a system on a 6 × 6 lattice with OBCs and J2 = 0.5,
which represents the most difficult region of the J1-J2 Heisen-
berg model. A PEPS with D = 4 from the cluster update is
taken as the guiding wave function in GFMC. The variational
energy for the D = 4 PEPS is −16.763(4), while the energy
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FIG. 2. Energy versus step in the GFMC calculation for a 4 ×
4, J2 = 0 system with OBCs. A PEPS with bond dimension D = 4
is used as the guiding function. The energy at step 0 is the variation
energy of the D = 4 PEPS, which is −9.034333. There is no sign
problem in this case, so GFMC should give numerically exact energy.
The exact energy is −9.189207, as indicated by the blue dashed line,
while the GFMC energy is −9.189(1). The inset shows a zoom of
the energy after equilibrium.

from GFMC is −16.965(1). This means the error to the exact
energy (−17.24733) is reduced nearly by half with GFMC in
this case. In Fig. 4 we show a comparison of the converged
GFMC energy and the energy of the corresponding PEPS
guiding wave function for a range of bond dimensions. We
can see for all D values that the GFMC energies are lower
than PEPS energy and the errors are reduced by about 40%.
We want to emphasize that J2 = 0.5 is the most difficult re-
gion for the J1-J2 Heisenberg model. We anticipate that the
improvement in other regions will be even larger (the J2 = 0
result above is an example).

Usually in the GFMC calculation, a variational Monte
Carlo (VMC) calculation is performed first to obtain the
guiding wave function [75]. TNSs can also be viewed as
variational wave functions. Nevertheless, the form of the wave
function needs to be specified in VMC, while TNSs are more

0 500 1000 1500 2000
step
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−17.0

−16.8

−16.6

en
er

gy

GFMC

Exact

1000 1500 2000

−16.98

−16.96

−16.94

FIG. 3. Same as Fig. 2, but for energy of a 6 × 6 system with
OBCs and J2 = 0.5. The guiding wave function is a D = 4 PEPS
with variational energy −16.763(4) (the energy at step 0). The
GFMC energy is −16.965(1), and exact energy (the blue dashed line)
for this system is −17.24733.
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FIG. 4. Comparison of the GFMC energy and the energy of the
corresponding PEPS guiding wave functions for a range of bond
dimensions. The relative error of the energy is shown. The system
size is 6 × 6, and J2 = 0.5.

general and are systematically improvable with the increase
of bond dimension D [29]. Moreover, PEPSs satisfy the area
law [24] by design.

VI. SUMMARY AND PERSPECTIVES

In conclusion, we proposed an approach to study the
ground state properties of quantum many-body systems in
which TNSs and GFMC are combined to take advantage of
both of them. Benchmark results for the J1-J2 Heisenberg
model on a square lattice were provided to demonstrate the
effectiveness of this method. One benefit to combine PEPSs
and GFMC is that only contraction of the single-layer tensor
network is needed, which reduces the computational complex-
ity substantially (from D12 to D6) and enables the reach of the
large bond dimension in PEPSs if the optimization process
does not involve contraction of the double-layer tensor net-
work. Nevertheless, after obtaining the optimized PEPSs with
a full update, we can further improve the energy by taking it
as the guiding wave function, although the bottleneck is the
optimization of the PEPS itself in the full update. The energy
obtained in GFMC is guaranteed to be variational and lower
than the PEPS guiding wave function. Our method can be
improved in many aspects. With the stochastic reconfiguration
technique [96], the bias from the guiding wave function can
be reduced. We can generalize the single PEPS guiding func-
tion to a linear combination of PEPSs [97], which can give
lower variational energy. Generalization to fermionic systems
is straightforward [46,47]. We calculated only the ground state
energy in this work, but excitation gaps can be calculated eas-
ily by enforcing symmetry, conservation of Stot

z , for example,
in PEPSs. Quantities other than energy can be calculated with
the forward propagation technique [75] without increasing
computational complexity. Tensor network states other than
PEPSs [98–100] can also be adopted as the guiding wave
function. We believe that this approach will provide us an
accurate and efficient tool in the study of strongly correlated
many-body systems in the future.
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