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Van Hove points are special points in the energy dispersion, where the density of states exhibits analytic
singularities. When a Van Hove point is close to the Fermi level, tendencies towards density wave orders,
Pomeranchuk orders, and superconductivity can all be enhanced, often in more than one channel, leading to
a competition between different orders and unconventional ground states. Here we consider the effects from
higher-order Van Hove points, around which the dispersion is flatter than near a conventional Van Hove point, and
the density of states has a power-law divergence. We argue that such points are present in intercalated graphene
and other materials. We use an effective low-energy model for electrons near higher-order Van Hove points
and analyze the competition between different ordering tendencies using an unbiased renormalization-group
approach. For purely repulsive interactions, we find that two key competitors are ferromagnetism and chiral
superconductivity. For a small attractive interaction, we find an unconventional spin Pomeranchuk order, in wich
the spin oder parameter winds around the Fermi surface. The supermetal state, predicted for a single higher-order
Van Hove point, is an unstable fixed point in our case.
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I. INTRODUCTION

The competition between different types of ordering ten-
dencies plays a key role in many quantum materials. For
example, unconventional superconductivity often develops
near a charge or spin order and is viewed as mediated by
soft charge or spin fluctuations. Within an itinerant electron
scenario, the formation of an ordered phase can be understood
as an instability of the parent electron liquid, driven by ex-
citations around the Fermi energy. Therefore, the density of
states (DOS) near the Fermi level and the geometry of the
Fermi surface strongly affect the low-energy phase formation.
In a two-dimensional crystal, both quantities can change sig-
nificantly when the fermionic dispersion possesses a saddle
point, which is one of the prominent examples of Van Hove
points [1]. The DOS near such a point diverges logarithmi-
cally and the Fermi surface transforms between a holelike and
electronlike form. If the Fermi level lies in the vicinity of a
Van Hove point, the singular DOS determines the physical
behavior due to the large number of available low-energy
states. In particular, interaction effects get amplified not only
in the particle-particle, but also in the particle-hole channels,
leading to the notion of competing orders. A prototypical ex-
ample is the interplay of spin-density-wave order and d-wave
superconductivity near Van Hove filling in the Hubbard model
on the square lattice [2].

For electrons on the honeycomb lattice, e.g., in single-layer
graphene, the competition is again between d-wave super-
conductivity and spin-density-wave order, but the ordered

states are more nontrivial: d-wave superconductivity is chi-
ral [3–7], and spin-density-wave order is a half metal [8],
which additionally breaks lattice translational symmetry [9].
On the other hand, while for square-lattice systems the Van
Hove points are located reasonably close to the Fermi level
already at charge neutrality, they are at higher energies for
electrons on the honeycomb lattice, and it requires a substan-
tial amount of doping to reach them. Recently, such doping
levels have been made accessible by intercalation of graphene
[10,11]. The intercalation leads to a renormalization of the
band structure, which reduces the bandwidth and, hence, the
value of the chemical potential required to bring the Van
Hove points to the Fermi level. However, the intercalation also
brings another effect: it flattens the band dispersion around
the Van Hove points. This flattening gives rise to a stronger
power-law singularity of the DOS, which can qualitatively
affect the balance between different ordering tendencies.
In particular, it suppresses finite wave-vector density-wave
fluctuations and enhances fluctuations with zero-momentum
transfer, e.g., Stoner-type instabilities. Consequently, a new
type of competition occurs between the pairing and zero-
momentum instabilities in the particle-hole channel.

A Van Hove point with a power-law divergence of the DOS
has been termed a higher-order Van Hove (HOVH) point, as
opposed to a conventional Van Hove (CVH) point. HOVH
points were proposed to exist in moiré superlattices, e.g.,
twisted bilayer graphene and trilayer graphene, in which the
twist angle, pressure, or an electric field can be used to tune
the band structure [12]. Germanene on MoS2 shows similar
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effects as intercalated graphene: a reduced Van Hove energy
and the band flattening around the Van Hove points [13].
Other examples for systems with HOVH points include biased
bilayer graphene at charge neutrality [14] and magnetic-field-
tuned Sr3Ru2O7 [15] and β-YbAlB4 [16]. The case of a single
HOVH point in the Brillouin zone has recently been studied
in Ref. [17]. It was shown that fluctuations around this single
HOVH point drive the system towards a critical non-Fermi-
liquid ground state, dubbed a supermetal.

In this paper, we analyze the competition of ordering ten-
dencies arising from the presence of multiple HOVH points
near the Fermi level. In this more general case, additional
types of couplings occur, and we show that the supermetal
state becomes an unstable fixed point. Instead, the system
develops an instability towards either superconductivity or
Pomeranchuk order.

We set up a renormalization-group (RG) framework within
an effective low-energy model for electrons near the HOVH
points, with parameters appropriate for gadolinium-doped
graphene. This allows us to account for the interplay between
different ordering tendencies and identify the leading instabil-
ity. We show that chiral superconductivity can still develop,
as for the case of a CVH point, but the pair-hopping term,
which drives it, needs to be sufficiently strong compared to
other couplings. For other ranges of interactions, we find a
ferromagnetic instability and a special d-wave spin Pomer-
anchuk order, in which the spin order parameter winds around
the Fermi surface.

II. HIGHER-ORDER VAN HOVE SINGULARITY
IN GRAPHENE

It was shown in Ref. [10] that the doping levels needed
to reach the Van Hove energy in graphene can be made ac-
cessible by intercalation, with large-scale homogeneity and
very good crystallinity. In the process, the electronic spec-
trum undergoes strong renormalizations, which not only bring
down the Van Hove energy but also flatten the energy dis-
persion around the M points, i.e., transform CVH points into
HOVH points. While electronic correlations may be respon-
sible for the band renormalization [10], we can model their
effect by introducing an effective single-particle Hamiltonian
for electrons on the honeycomb lattice with hopping up to
the third neighbor. This allows us to qualitatively reproduce
the observed band flattening along the K-M direction and
the measured Fermi-surface geometry. However, we empha-
size that our analysis of the competing orders below does
not depend on the precise band structure or the mechanisms
causing it.

A. Effective hopping Hamiltonian

The effective Hamiltonian including up to third-neighbor
hopping reads

H0 =
[

t1
∑

〈i, j〉,σ
c†

iσ c jσ + t2
∑

〈〈i, j〉〉,σ
c†

iσ c jσ

+ t3
∑

〈〈〈i, j〉〉〉,σ
c†

iσ c jσ + H.c.

]
− μ

∑
iσ

niσ . (1)

FIG. 1. Lattice and tight-binding model. Left panel: Lattice in
real space with neighboring vectors �an, �bn, �cn. The nearest-neighbor
vectors on the honeycomb lattice are �a1 = (

√
3, 1)/2,

�a2 = (−√
3, 1)/2, �a3 = (0, −1); the second-nearest-neighbor

vectors are �b1 = (
√

3, 0), �b2 = (
√

3, 3)/2, �b3 = (−√
3, 3)/2,

�b4 = −�b1, �b5 = −�b2, �b6 = −�b3; and the third-nearest-neighbor
vectors are �c1 = −2�a1, �c2 = −2�a2, �c3 = −2�a3. Middle panel:
Energy dispersion for t1 = 1, t2 = 0.1, t3 = 0.2. The valence
and conduction band touch at the Dirac points. The Van Hove
points appear at the M points, which are marked by black
dots for the conduction band. Right panel: Energy contours for
the same hopping amplitudes and the high-symmetry points
K1 = 2π/3(1/

√
3, 1), K2 = 2π/3(−1/

√
3, 1) and M1 = π (0, 2/3),

M2 = π (−1/
√

3, 1/3), M3 = −π (1/
√

3, 1/3). The Fermi level at
Van Hove filling is given by the red line. At this filling, the system
undergoes a Lifshitz transition from a closed to an open Fermi
surface. For a small variation of the filling, the Fermi surface is
either closed as demonstrated by the nearby dashed line, or changes
to open Fermi-surface pockets given by the dotted lines around the
K points.

We have introduced c(†)
i,σ as the fermion annihilation (creation)

operator at site i and spin projection σ ∈ {↑,↓}. The nearest-,
second-nearest-, and third-nearest-neighbor hopping ampli-
tudes are t1, t2, and t3, and the Fermi level can be adjusted
with the chemical potential μ. We have defined ni,σ = c†

iσ ciσ

as the particle number operator. The honeycomb lattice and
the locations of first, second, and third neighbors are sketched
in Fig. 1.

From the model Eq. (1) we obtain the energy bands

ε±(�k) = ±|t1α(�k) + t3γ (�k)| − t2β(�k) − μ, (2)

with α(�k) =∑3
n=1 e−i�k·�an , β(�k) =∑6

n=1 e−i�k·�bn , and γ (�k) =∑3
n=1 e−i�k·�cn , where �an, �bn, �cn denote nearest-, second-

nearest-, and third-nearest-neighbor vectors (see Fig. 1).
The energy dispersion and the corresponding Fermi surface

depend on the choice of the hopping amplitudes t1, t2, t3 and
the chemical potential μ. For definiteness, we consider the
branch ε+(�k) and discuss how it changes with the chemical
potential. At small μ, the Fermi surface consists of six pockets
around the Dirac points (see Fig. 1). As μ increases, the edges
of the Fermi pockets come closer to each other, and at

μ = t1 + 2t2 − 3t3 (3)

they merge at the three special high-symmetry points on the
edges of the first Brillouin zone, i.e., M1, M2, M3 (see Fig. 1).
At larger μ, the Fermi surface is a closed loop, centered at the
� point.
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FIG. 2. Band flattening at Van Hove point. Left panel: Dispersion
along K1 − M1 − K2 for fixed t2 = 0.1t1 and varying t3 = 0 (orange,
dotted), t3 = 0.1t1 (green, dashed), and t3 = 0.2t2 (blue, solid). The
last value of t3 leads to a HOVH singularity. Right panel: Corre-
sponding Fermi surface.

The points Mp, p ∈ {1, 2, 3}, are Van Hove points. We can
verify this by expanding the dispersion around them:

εM1 (�x) = b1y2 − a1x2 + · · · , (4)

εM2 (�x) = a2x2 − c2xy + b2y2 + · · ·

= b2[y − c2x/(2b2)]2 − 1

b2

(
c2

2/4 − a2b2
)
x2 + · · · ,

(5)

εM3 (�x) = a2x2 − c2xy + b2y2 + · · ·

= b2[y + c2x/(2b2)]2 − 1

b2

(
c2

2/4 − a2b2
)
x2 + · · · ,

(6)

where εMp (x, y) = ε±(Mp,x + x, Mp,y + y) + μ, and the dots
denote higher-order terms in x, y. The coefficients are given by
the hoppings t1, t2, t3 (see Appendix A). All ap, bp, cp � 0 and
cp � (2a2b2)1/2. Since the dispersion is quadratic, with oppo-
site signs along the two directions, the DOS is logarithmically
singular. This holds as long as the prefactors are nonzero, i.e.,
a1, b1 > 0 for εM1 (�x) and b2, (c2

2/4 − a2b2) > 0 for εM2/3 (�x).

B. Higher-order Van Hove points

The CVH points become HOVH points when one of the
prefactors in Eq. (4) vanishes, and one has to expand further
to get the dispersion in the corresponding direction. In our
model this happens for

t3 → t3,c = (t1 − 2t2)/4. (7)

For this special case, a1 and c2
2/4 − a2b2 in Eq. (4) vanish. We

show the flattening of the dispersion for increasing t3 in Fig. 2,
together with the change of the Fermi surface, which becomes
rounder. This qualitatively mimics the effect observed for
gadolinium intercalation in graphene [10].

For t3 = t3,c, we have to expand to higher order, i.e.,

εM1 (�x) = b1y2 − d1x4 + · · · , (8)

εM2 (�x) = b2[y − c2x/(2b2)]2 − d2x4 + · · · , (9)

εM3 (�x) = b2[y + c2x/(2b2)]2 − d2x4 + · · · , (10)

with d1,2 > 0. The saddle-type dispersion near this HOVH
point is shown in Fig. 3. For such a dispersion, the DOS shows

FIG. 3. DOS and saddle point. Left panel: DOS of the band
dispersion for hopping parameters t1 =1, t2 =1/10, t3 = 1

4 (1 − 2/10)
(solid line) and DOS for hopping parameters t1 =1, t2 = t3 =0 for
comparison (dashed line). Right panel: Corresponding higher-order
saddle point at M1.

a power-law divergence:

ρ(ε) =
{
ρ+ε−1/4 for ε > 0,

ρ−|ε|−1/4 for ε < 0,
(11)

where ρ+ = �[1/4]/[8π5/2(b2
1d1)1/4] and ρ− = ρ+/

√
2 (see

Ref. [17]). This divergence is stronger than the logarithmic
one at a CVH point. The singular behavior of the DOS near
the HOVH point can be determined from a scaling argument
[18] (see Appendix A); for an alternative see Ref. [19].

We also consider the generalized case with

εM1 (�x) = b1y2 − d1x2α + · · · , (12)

εM2 (�x) = b2[y − c2x/(2b2)]2 − d2x2α + · · · , (13)

εM3 (�x) = b2[y + c2x/(2b2)]2 − d2x2α + · · · , (14)

where α > 1. The case α = 1 corresponds to a CVH point; the
case α = 2 corresponds to the HOVH point in our model of in-
tercalated graphene. For α < 2, this generalized saddle-point
dispersion can also be interpreted to effectively model the case
where the system is slightly doped away from a HOVH point.

The DOS for the generalized dispersion in Eq. (12) is

ρ(ε) =
{
ρ+ε−κ for ε > 0,

ρ−|ε|−κ for ε < 0,
(15)

where κ = 1/2 − 1/(2α), ρ+ = �[1/(2α)]�[1/2 −
1/(2α)]/(4απ5/2b1/2

1 d1/(2α)
1 ), and ρ− = ρ+ sin [π/(2α)] (see

Ref. [17]). For α = 2, we recover κ = 1/4. When α → 1,
κ → 0, and ρ± formally diverges as 1/κ . The divergence
becomes [1 − (ε/�)κ ]/κ = ln �/ε, once we keep a UV
cutoff �. The logarithmic divergence is the expected result
for a CVH point. There are other examples of systems with
a HOVH singularity with various exponents. The HOVH
singularity in twisted bilayer graphene is also described by
κ = 1/4 (see Ref. [12]). In bilayer graphene, one can tune
the dispersion with an interlayer voltage bias to a power-law
singularity with κ = 1/3 at charge neutrality [14]. Sr3Ru2O7

[15] and β-YbAlB4 [16] are expected to have a HOVH
singularity with κ = 1/2.

III. PATCH MODEL

Because the DOS has a power-law singularity near the
HOVH points, the low-energy physics is determined by
fermions with momenta near these points. Accordingly, we re-
strict our consideration to momentum states in patches around
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FIG. 4. Three-patch model and interaction couplings. Graphic
representation of the four interaction couplings gi, i ∈ {1, . . . , 4}
representing the scattering processes between the three Mp points
for the Van Hove doped dispersion. Solid, dashed, and dotted lines
represent electrons near the three Mp points.

the HOVH points. The patch size is related to the UV energy
cutoff �. We assume that degrees of freedom with energies
larger than � are integrated out, and microscopic information
is incorporated into the bare parameters of the effective patch
model.

Within the effective model, we include all scattering pro-
cesses between fermions near the HOVH points, allowed by
symmetry and momentum conservation. This gives four dif-
ferent couplings gi, i ∈ {1, . . . , 4}, like for the case of CVH
points at Mp (see Ref. [3]). The interaction part of the effective
Hamiltonian then reads

Hg =
∑

k1 . . . k3
σσ ′

3∑
p, p′ = 1
p �= p′

[
g1c†

p′σk3
c†

pσk4
cp′σ ′k2 cpσk1

+ g2c†
pσk3

c†
p′σk4

cp′σ ′k2 cpσk1 + g3c†
p′σk3

c†
p′σk4

cpσ ′k2 cpσk1

]
+
∑

k1 . . . k3
σσ ′

3∑
p = 1

g4c†
pσk3

c†
pσk4

cpσ ′k2 cpσk1 . (16)

Here, cpσk is the annihilation operator for an electron in
the vicinity of the point Mp, p ∈ {1, 2, 3}, with momentum
Mp + k and spin σ . The momentum k is restricted to the patch
around Mp. The couplings are independent on the flavor index
p due to sixfold rotational symmetry. The scattering processes
are sketched in Fig. 4. We note in passing that an analogous
description can be derived for the square lattice with the
only difference that there are only two patches p = 1, 2 (see
Ref. [20]).

IV. SUSCEPTIBILITIES

The interactions receive corrections through different scat-
tering channels. These corrections grow with decreasing T
and, if the dressed interaction diverges at a finite T in at
least one channel, the Fermi liquid is not the stable ground
state. In the patch model, potential divergences can occur in
the particle-particle or particle-hole channel, due to processes
with momentum transfer near zero or near Mp. To understand
the relative strength of various corrections, we first compute

the corresponding particle-particle and particle-hole suscepti-
bilities for free fermions, i.e.,

χX
pp := T

∑
ω

∫
d2k

(2π )2
G0(ω, k)G0(−ω, X − k), (17)

χX
ph := −T

∑
ω

∫
d2k

(2π )2
G0(ω, k)G0(ω, X + k), (18)

where G0(ω, q) = 1/[iω − ε(q)] and the wave vector X is
either zero or Mp. We have set the frequency transfer to zero
because there the corrections are the largest.

For κ = 0, i.e., the case of a CVH singularity, χ0
pp di-

verges as ln2 �/T , and χ
Mp

ph diverges either as ln2 �/T for
a nested Fermi surface with nesting vector Mp or as ln �/T

for nonperfect nesting [3,20]. The susceptibilities χ
Mp
pp and

χ0
ph diverge less strongly, as ln �/T even for perfect nesting.

Then the thermal evolution of the couplings comes primar-
ily from renormalizations in the particle-particle channel at
zero-momentum transfer and in the particle-hole channel at
momentum transfer Mp, leading to a competition between
tendencies towards a spin-density-wave order and supercon-
ductivity. The situation changes qualitatively at a HOVH
point, where the DOS diverges with a power law. We will
show below that in this case χ0

pp and χ0
ph diverge as 1/T κ ,

while χ
Mp
pp remains logarithmically singular, and χ

Mp

ph becomes
constant. In this case, the key ordering tendencies are super-
conductivity and q = 0 spin and charge orders.

A. Zero-momentum transfer

The particle-hole susceptibility with zero-momentum
transfer is

χ0
ph = −T

∑
ω

∫
d2k

(2π )2

1

[iω − εM (k)]2

= −T
∑

ω

∫
dερ(ε)

∂

∂ε

1

iω − ε
= −

∫
dερ(ε)

∂

∂ε
nF (ε)

= 1

4T

∫
dε

ρ0

|ε|κ
1

cosh2(ε/2T )

= ρ0

T κ
f (κ ), (19)

where nF (ε) is the Fermi function, ρ0 = (ρ+ + ρ−)/2, and we
defined f (κ ) = 1

4

∫
dε |ε|−κ cosh−2(ε/2). In the limit κ →

1/4, we obtain f (κ = 1/4) ≈ 1.08. For κ → 0, the DOS be-
comes a logarithmic function and we recover the logarithmic
temperature dependence in χ0

ph. We see that, for κ > 0, χ0
ph

increases by a power law as T decreases.
For the particle-particle susceptibility χ0

pp, using inversion
symmetry ε(k) = ε(−k), we obtain

χ0
pp = T

∑
ω

∫
d2k

(2π )2

1

[iω − εM (k)][−iω − εM (−k)]

= −
∫

dερ(ε)
nF (ε) − nF (−ε)

2ε

= ρ0

T κ
g(κ ), (20)
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where g(κ ) = 1
2

∫
dε |ε|−(1+κ )| tanh(ε/2)|. For κ = 1/4,

g(1/4) ≈ 4.33, for κ → 0, g(κ → 0) ∝ 1/κ . Combining the
last behavior with the logarithmic divergence of the DOS in
this limit, we find χ0

pp ∝ (ln �/T )2, as expected for a CVH
point.

B. Finite momentum transfer

In contrast to χ0
pp/ph, the susceptibilities at the momen-

tum transfer Mp do not exhibit a power-law divergence. For
definiteness, we consider χ

M1
pp/ph. For the particle-hole suscep-

tibility we obtain

χ
M1
ph = − T

∑
ω

∫
d2k

(2π )2

1[
iω − εM3 (k)

][
(iω − εM2 (k)

]
= −

∫
d2k

(2π )2

nF
[
εM3 (k)

]− nF
[
εM2 (k)

]
εM3 (k) − εM2 (k)

≈ 1

2c̃2

∫ �
T d2k̃

(2π )2

1
k̃x k̃y

sinh(c̃2k̃xk̃y)

cosh
(
k̃2

x + k̃2
y

)+ cosh(c̃2k̃x k̃y)
, (21)

where we have rescaled kx = √
T/a2k̃i, ky = √

T/b2k̃y and in-
troduced c̃2 = c2/

√
a2b2. For the case of a pure HOVH point,

c̃2 = 2. In this case, χ
M1
ph remains finite. Indeed, a potential

singular temperature dependence in Eq. (21) can come from
the singularity at the upper limit of the integration over d2k̃
for �/T → ∞. Using polar coordinates, we can reexpress the
potential singularity in Eq. (21) as∫ �

T dr

r

∫
sin (2φ)>2/c̃

dφ

sin (2φ)

er2[ c̃
2 sin (2φ)−1]

1 + er2[ c̃
2 sin (2φ)−1]

. (22)

In case c̃2 = 2, the integration over φ gives 1/r2, and the
integral over r converges, i.e.,

χ
M1
ph → const. (23)

For a quadratic dispersion along the x direction c̃2 > 2. In
this case, there is a finite range of angles φ, for which
(c̃/2) sin φ > 1. In this range, the integration over φ now
yields a finite number, and the integral over r gives ln �/T .
This is the expected behavior for a CVH point.

For χM
pp, we obtain

χM1
pp = − T

∑
ω

∫
d2k

(2π )2

1[
iω − εM3 (k)

][
iω + εM2 (k)

]
= −

∫
d2k

(2π )2

nF
[
εM3 (k)

]− nF
[−εM2 (k)

]
εM3 (k) + εM2 (k)

≈ 1

2

∫ �
T d2k̃

(2π )2

√
a2b2

k̃2
x +k̃2

y
sinh(k̃2

x + k̃2
y )

cosh
(
k̃2

x + k̃2
y

)+ cosh(c̃2k̃x k̃y)
. (24)

Using polar coordinates, we find that

χM1
pp ∝ ln

�

T
. (25)

This result holds for all κ . To verify the expressions for the
susceptibilities, we computed χ0

ph/pp and χM
ph/pp numerically,

by integrating over the entire Brillouin zone (see Appendix B).
We obtained the same behavior as in the patch model.

FIG. 5. Ladder series for vertices. Graphic representation of the
ladder series for the spin (top row), charge (middle rows), and pairing
(bottom row) vertex. States close to the three Mp points are repre-
sented by solid, dashed, and dotted lines. The couplings are colored
according to Fig. 4.

C. Ladder series

The divergences that we found in χ0
pp and χ0

ph can lead
to a pairing or to a q = 0 instability in either spin or charge
channel, when we separately sum up the corresponding lad-
der series. We follow a standard protocol and introduce
three types of infinitesimally small trial (bare) vertices �0

SC,
�0

s , and �0
c , where SC stands for superconducting, and s(c)

stands for spin (charge). Because there are three nonequiva-
lent HOVH points, each vertex is a three-component vector:
�̂0

i = (�0
i (M1), �0

i (M2), �0
i (M3)) (i = SC, c, s).

The full vertices �̂i are obtained by summing up ladder
series of renormalizations. In each section of a ladder we have
the product of some combination of the couplings gi and either
χ0

pp or χ0
ph. The ladder series are shown graphically in Fig. 5.

In analytical form, we obtain

�̂s = �̂0
s + �̂sÂsχ

0
ph,

�̂c = �̂0
c + �̂cÂcχ

0
ph,

�̂SC = �̂0
SC + �̂SCÂSCχ0

pp,

(26)

where Âi are 3 × 3 matrices:

Âi =
⎛
⎝di oi oi

oi di oi

oi oi di

⎞
⎠ (27)

with the matrix elements being combinations of the cou-
plings, i.e., ds =g4, os =g1, dc =−g4, oc =g1 − 2g2, dSC =
−g4, oSC =−g3. We have absorbed a constant into �0

i . Each
matrix equation can be decomposed into three independent
equations for the eigenvectors:

� j,s = �0
j,s

1 − Aj,sχ
0
ph

,

� j,c = �0
j,c

1 − Aj,cχ
0
ph

, (28)

� j,SC = �0
j,SC

1 − Aj,SCχ0
pp

,
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where j = 1, . . . , 3. We find

A1,s = g4 + 2g1, A2,s = A3,s = g4 − g1,

A1,c = −g4 + 2g1 − 4g2,

A2,c = A3,c = −g4 − g1 + 2g2,

A1,SC = −g4 − 2g3, A2,SC = A3,SC = −g4 + g3. (29)

We see that the Fermi-liquid state becomes unstable when
Aj,iχ

0
pp(ph) = 1, i.e., at T ∼ |Aj,i|1/κ for small gi. As χ0

pp and
χ0

ph are of the same order, the type of the leading instability,
i.e., whether it is superconducting or Pomeranchuk-type, and
for which j, depends on the bare values of the couplings
g1, . . . , g4.

In the ladder approach, we consider each channel inde-
pendently. This is the legitimate approximation if Aχ0 in one
particular channel is much larger than in other channels. How-
ever, in our case, the susceptibilities in the particle-particle
and the particle-hole channel are of the same order. In this
situation, the diagrams that couple different channels are of
the same order as the ladder diagrams, and cannot be ne-
glected. Then we have to account for the mutual influence
of fluctuations in different channels to correctly describe the
low-energy behavior.

V. RENORMALIZATION GROUP

To include the mixing between different channels, we em-
ploy a RG approach, in which we keep all leading divergences
at each loop order. More formally, in a perturbation expansion
the leading diagrams on the n-loop level will be proportional
to T nκ . This includes n-loop diagrams from the different
particle-particle and particle-hole ladders, but also mixed di-
agrams with insertions of a singular l-loop particle-particle
contribution into a singular (n − l )-loop particle-hole dia-
gram and vice versa (l < n). The RG procedure approximates
these mixed contributions by the product of decoupled l-loop
particle-particle and (n − l )-loop particle-hole diagrams (or
vice versa). The analogous approximation appears for mixed
diagrams of crossed and direct particle-hole type. While this
reproduces the correct temperature dependence, or, more gen-
erally, the dependence on the RG scale, it introduces an
inaccuracy in the prefactor of the mixed diagrams as typical
moments in both channels are comparable, and the decoupling
is justified only for the order-of-magnitude analysis. The error
is formally controlled by the exponent κ in the sense that for
the logarithmic RG for κ → 0 the decoupling is justified, to
logarithmic accuracy. To estimate the error introduced by the
decoupling, we compute the two-loop mixed diagrams and
compare them with the RG result in Appendix C. We find
that the two are reasonably close to each other. We there-
fore believe that the renormalization-group approach, albeit
approximate for HOVH points, is qualitatively accurate.

A. RG equations

When setting up the RG procedure, it is important to
choose a suitable regularization. As we have shown in the
previous section, the leading contributions come from bubbles
with zero-momentum transfer. It is known that momentum-
shell cutoffs can be disadvantageous for processes that involve

small-momentum particle-hole fluctuations around the Fermi
surface because they suppress these fluctuations by construc-
tion [21,22]. In a random-phase approximation treatment,
this does not lead to problems, but in the description of
the interplay of different ordering tendencies particle-hole
fluctuations with small and large momentum are not treated
equivalently. While this does not affect the competition of
superconductivity and spin-density waves with large typical
momentum, it is important in our case, where superconducting
tendencies compete with zero-momentum orders. Therefore,
we choose an RG scheme in which the temperature regularizes
interaction corrections and can be used as flow parameter
[21]. Alternatively, one can use a frequency regularization
scheme and integrate out modes with frequencies larger than
a cutoff [5,22]. Eventually, both approaches yield the same
renormalization-group flow equations.

To systematically derive the RG equations, we start from a
more general point of view and write down all possible vertex
corrections within the patch model. This includes not only
the leading processes with characteristic momentum of zero,
but also the subleading ones with momentum transfer Mi. The
flow equations read

ġ1 = −2χ̇M
ppg1g2 + χ̇0

ph

[
(N − 2)g2

1 + 2g1g4
]

+ χ̇M
ph

[
2g1g2 − Nf g2

1 + (2 − Nf )g2
3

]
, (30)

ġ2 = −χ̇M
pp

(
g2

1 + g2
2

)+ χ̇M
ph

(
g2

2 + g2
3

)+ χ̇0
ph{2g4[g1

+ (1 − Nf )g2] + (N − 2)g2(2g1 − Nf g2)}, (31)

ġ3 = 2χ̇M
phg3[2g2 − (Nf − 1)g1] − χ̇0

pp

[
2g3g4 + (N − 2)g2

3

]
,

(32)

ġ4 = χ̇0
ph

[
(N − 1)

(
g2

1 + 2g1g2 − Nf g2
2

)+ (3 − Nf )g2
4

]
− χ̇0

pp

[
g2

4 + (N − 1)g2
3

]
, (33)

where the dots denote the derivatives with respect to the
logarithm of the temperature t = ln �/T , i.e., ġi = d

dt gi and
χ̇X

i = d
dt χ

X
i , and χM

i = χ
M1
i = χ

M2
i = χ

M3
i due to rotational

symmetry. In our case, the number of patches is N = 3, but
we keep N as a parameter because the same set of RG equa-
tions holds for other cases, e.g., for the square lattice, where
N = 2. We also introduced the number of fermion flavors Nf

to account for additional orbital degrees of freedom. In our
case, Nf = 2, e.g., Nf = 4 has been considered for moiré het-
erostructures [23]. We note in passing that these three-patch
RG equations can be systematically derived from the more
general functional RG (FRG) equations, by restricting the pos-
sible scattering wave vectors accordingly (see Appendix D).
Equations (30)–(33) with κ → 0 reproduce the logarithmic
equations for CVH points (see Refs. [3,20]).

For κ > 0, the leading terms in these equations are propor-
tional to χ̇0

pp and χ̇0
ph, which both scale as T −κ . We express

their ratio as

d0 = χ0
ph/χ

0
pp. (34)

Equations (19) and (20) yield d0 ≈ 0.25. Below, we will use
d0 as a free parameter to keep the equations applicable to
other systems with HOVH points. As we said, we neglect
subleading terms proportional to χM

i in Eqs. (30)–(33). We
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FIG. 6. RG flow equations. Diagrams representing the different RG flow in Eqs. (40)–(43). Note that the two internal lines correspond to
the same M point in each diagram. We show the flow equations for three Mp points represented by solid, dashed, and dotted lines.

have checked numerically that the inclusion of constant χ̇M
i ,

i.e., logarithmic χM
i , does not change the results qualitatively.

B. Dimensionless couplings

Keeping only χ̇0
pp and χ̇0

ph in Eqs. (30)–(33) and introducing
the dimensionless couplings ĝi = gi∂tχ

0
pp, we obtain the flow

equations for the case of N HOVH points:

∂t ĝ1 = κ ĝ1 + d0
[
(N − 2)ĝ2

1 + 2ĝ1ĝ4
]
, (35)

∂t ĝ2 = κ ĝ2 + 2d0ĝ4[ĝ1 + (1 − Nf )ĝ2]

+ d0(N − 2)ĝ2(2ĝ1 − Nf ĝ2), (36)

∂t ĝ3 = κ ĝ3 − ĝ3[2ĝ4 + (N − 2)ĝ3], (37)

∂t ĝ4 = κ ĝ4 − [ĝ2
4 + (N − 1)ĝ2

3

]+ d0(3 − Nf )ĝ2
4

+ d0(N − 1)
(
ĝ2

1 + 2ĝ1ĝ2 − Nf ĝ2
2

)
. (38)

We show a diagrammatic representation in Fig. 6.
For the case of a single HOVH point, the only available

coupling is g4. Setting g1 = g2 = g3 = 0, N = 1, and Nf = 2
in Eq. (38), we reproduce the RG equation in Ref. [17]: ∂t ĝ4 =
κ ĝ4 − (1 − d0)ĝ2

4. As demonstrated in Ref. [17], this equation
has a nontrivial fixed point ĝ∗

4 = κ/(1 − d0), to which the
system flows if the bare ĝ4 is small enough (see also Ref. [14]).
This fixed point describes a critical, metallic ground state—
the supermetal—featuring power-law divergent charge and
spin susceptibilities, but no long-range spin or charge order.

For more than one HOVH point, we find that the supermetal
fixed point becomes unstable. More generally, we searched for
fixed points of Eqs. (35)–(38), i.e., solutions with finite ĝi. We
find that all fixed points have at least one relevant direction in
coupling space, i.e., they are all unstable. The details of the
calculation can be found in Appendix E. We will search for
fixed trajectories, instead, along which some couplings tend to
infinity, indicating an instability of the ordinary metallic state.

C. Flow to strong coupling

In the following, we determine the possible ground states
of the system with more than one HOVH point. We fo-
cus on our model with N = 3 and Nf = 2. As a convenient
reparametrization we use as flow parameter

b = χ0
pp(T ) − χ0

pp(�) = ρ0g(κ )

�κ

[(
�

T

)κ

− 1

]
. (39)

We subtracted from χ0
pp(T ) its value at the UV cutoff � so that

b ranges from zero at the UV cutoff to infinity in the IR limit.
Using this b as the RG scale and returning back to dimension-
full couplings gi, we obtain the compact flow equations:

∂bg1 = d0
(
g2

1 + 2g1g4
)
, (40)

∂bg2 = 2d0(g1 − g2)(g4 + g2), (41)

∂bg3 = −g3(2g4 + g3), (42)

∂bg4 = d0
[
4g2(g1 − g2) + 2g2

1 + g2
4

]− (g2
4 + 2g2

3

)
. (43)
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FIG. 7. Flow to strong coupling. Integration of the flow in
Eqs. (40)–(43) for four sets of bare couplings and d0 = 0.25. The
bare values are g0

1 = g0
2 = g0

4 = 0.5, g0
3 = 0 (top left), −g0

1 = g0
2 =

g0
4 = 0.5, g0

3 = 0 (top right), g0
2 = g0

3 = g0
4 = 0.5, g0

1 = 0 (bottom
left), and g0

2 = −g0
3 = g0

4 = 0.5, g0
1 = 0 (bottom right). g1, dashed

purple; g2, dotted blue; g3, solid green; g4, solid orange.

The solution of this equation is shown graphically in Fig. 7.
We see that the running couplings diverge at a critical scale bc,
which signals an instability towards an ordered ground state.
Below, we discuss which instability develops first. To reach
the supermetal state, we have to fine tune the bare values. For
example, we can set bare g1 = g2 = 0 and keep the bare g3

within certain limits (see Fig. 8). In this case, the couplings
g1 and g2 remain zero, and g3 and g4 flow to zero as T κ .
This means that the corresponding, rescaled dimensionless
couplings ĝ3,4 = κg3,4χ

0
pp approach fixed-point values. Once

the bare g1 and/or g2 are finite, the flow of the couplings is as
in Fig. 7.

Note that we did not include the self-energy corrections
into our RG equations. The reason is that the contributions
from the self-energy are subleading in their temperature de-
pendence because the first nonanalytic contribution to the
self-energy �(T ) ∝ T 1−2κ appears at the two-loop order. One
can check that including such a self-energy into the diagrams
for the renormalization of gi will only give rise to subleading
terms. Still, self-energy corrections can be relevant because
they renormalize the chemical potential and can be expected
to generate some additional quadratic momentum dependence
in both directions of deviations from the Van Hove points.
Both effects spoil the HOVH behavior. We absorb the renor-
malization of the chemical potential into the effective μ,
which we tune to the HOVH point. We also assume that
the scale bc, at which the couplings diverge, is smaller than
the one at which the momentum dependence, induced by the
self-energy, becomes relevant.

D. Fixed trajectories

When the couplings run into a singularity, they do so in a
specific way, where the ratios of the couplings tend to finite
values. This is called a fixed trajectory (FT). In general, there
are several stable FTs, and it depends on the bare couplings
which one the system approaches. Along a FT, the solutions

FIG. 8. Phase diagrams. Bare interactions g0
2 = g0

4 are held fixed
and g1 and g3 are varied, d0 = 0.25 (top) and d0 = 1 (bottom). Bare
values are g0

2 = g0
4 = 0.1 (left) or g0

2 = 0, g0
4 = 0.1 (right, top), and

g0
2 = −0.1, g0

4 = 0.1 (right, bottom). The coloring encodes the scale
where the couplings diverge, i.e., where correlations grow strong. If
it is too large, e.g., in the red regime, there is no instability or it only
occurs at the lowest scales. This can be used to estimate phase bound-
aries. FM, ferromagnet; dFM, d-wave spin Pomeranchuk; sPOM,
s-wave charge Pomeranchuk; dPOM, d-wave charge Pomeranchuk;
sSC, s-wave superconductivity; dSC, d-wave superconductivity.

of the RG equations follow the behavior

gi = Gi/(bc − b). (44)

Solving the algebraic equations for Gi, we find different FTs.
We are interested in stable FTs, to which the system flows
under the RG for a range of bare couplings, i.e., without fine
tuning. We find eight such stable trajectories for general d0

(see Table I). For d0 ≈ 0.25, we can reach FTs I–IV. We show
the flow to these FTs in Fig. 7. When the UV cutoff is such that
d0 ∼ 1, i.e., the susceptibilities in particle-hole and particle
channels are about the same, FTs V and VIII also become
available, while FT IV becomes unstable.

E. RG-enhanced susceptibilities

Next, we use the information about the fixed trajectories to
study how the susceptibilities for different ordering tendencies
behave. To that end, we again introduce the trial vertices �̂i

in superconducting, and spin and charge q = 0 channels (i ∈
{SC, s, c}). We rewrite Eq. (27) as a differential equation, i.e.,

∂b�̂i = Âi�̂i, (45)

where Âi are the 3 × 3 matrices still given by Eq. (27), but the
couplings now are the running ones—the solutions of the RG
Eqs. (40)–(43), which include the contributions from mixed
diagrams.
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TABLE I. Fixed trajectories. For convenience, we introduced the abbreviations D1 = √
d0(12 + 13d0 ), D3 = √

9 + 8d0, D5 =√
d0(13d0 − 4), and D7 = √d0(−24d2

0 + 85d0 − 36). See Fig. 8 for abbreviations of instabilities.

FT Range of stability G1 G2 G3 G4 Instability

I No restriction −1+D1
d0 (13d0−1) G1/2 0 13d0−D1

2d0 (13d0−1) FM

II d0 > 1/13 ≈ 0.077 −1−D1
d0 (13d0−1) G1/2 0 13d0+D1

2d0 (13d0−1) d-FM

III d0 < 1
16 (19 + √

73) ≈ 1.73 0 0 d0−D3
9−d0

− 4
9+D3

s-SC

IV d0 < 1
16 (19 − √

73) ≈ 0.65 0 0 d0+D3
9−d0

− 4
9−D3

d-SC

V d0 > 1
6 (9 − √

33) ≈ 0.54 0 −1+2d0−D5
2d0 (1+3d0 ) 0 −5d0+D5

2+6d0
s-POM

VI d0 > 1
6 (9 + √

33) ≈ 2.46 0 −1+2d0+D5
2d0 (1+3d0 ) 0 −5d0−D5

2+6d0
d-POM

VII
0.49 � d0 � 0.54

1.72 � d0 � 3.05
0 −9+10d0−D7

6d0 (3+d0 )
4d0−3d2

0 −D7

3d0 (3+d0 )
−13d0+D7
6d0 (3+d0 )

s-POM

s-SC/d-POM

VIII 0.65 � d0 � 2.45 0 −9+10d0+D7
6d0 (3+d0 )

4d0−3d2
0 +D7

3d0 (3+d0 )
−13d0−D7
6d0 (3+d0 ) d-SC/d-POM

Solving Eq. (45), we find that the eigenvectors � j,i, j ∈
{1, 2, 3} diverge as (bc − b)−β j,i , where the exponents β j,i

are expressed via the parameters G1, G2, G3, G4 character-
izing the fixed trajectories. Out of the three � j,i for each i,
�1,i ∝ (1, 1, 1) corresponds to s-wave symmetry, and �2,i ∝
(0, 1,−1) and �3,i ∝ (1,−1/2,−1/2) correspond to d-wave
symmetry. For the latter, the exponents are degenerate [3,24].
We label the exponents as β1,i = β

(s)
i and β2,i = β3,i = β

(d )
i

and find

β (s)
s = d0(G4 + 2G1), (46)

β (d )
s = d0(G4 − G1), (47)

β (s)
c = d0(−G4 + 2G1 − 4G2), (48)

β (d )
c = d0(−G4 − G1 + 2G2), (49)

β
(s)
SC = −G4 − 2G3, (50)

β
(d )
SC = −G4 + G3. (51)

The corresponding susceptibilities behave like

χ j,i ∝
∫

db�2
j,i ∝ (bc − b)1−2β j,i (52)

(see Refs. [25–29] for earlier discussions on this issue). The
leading instability at b = bc will be into the ordered state
for which β j,i is the largest. Comparing the exponents on
different fixed trajectories (see Appendix F), we find that
the following orders develop, depending on the bare cou-
plings: (I) ferromagnetism; (II) d-wave spin Pomeranchuk
order; (III) s-wave superconductivity; (IV) d-wave supercon-
ductivity; (V) s-wave charge Pomeranchuk order; (VI) d-wave
charge Pomeranchuk order; (VII) for 0.49�d0�0.54 s-wave
charge Pomeranchuk, for 1.72�d0�2.41 s-wave supercon-
ductivity, for 2.41 � 3.05 d-wave charge Pomeranchuk order;
and (VIII) for 0.65 � d0 < 1 d-wave superconductivity, and
for 1<d0�2.45 d-wave charge Pomeranchuk order. Based
on this analysis, we can now determine the phase diagram by
solving the flow equations for various bare couplings. The
result is shown in Fig. 8. We consider different ranges of
the bare couplings to map out all possible instabilities. For

a specific lattice model with onsite interaction U , nearest-
neighbor interaction V , and nearest-neighbor spin exchange
J on the honeycomb lattice, we obtain g0

1 = U − V/2 −
J , g0

2 = U + 3V/2 − J , g0
3 = U − V/2 + J , and g0

4 = U +
3V/2 − 3J . However, note that the bare values of the patch
model can be altered from the microscopic interactions due to
modes with energies higher than the UV cutoff.

We find that for purely repulsive bare couplings the leading
instabilities for d0 ∼ 0.25 are ferromagnetism and d-wave
superconductivity. Superconductivity is driven by the pair-
hopping term g3, which needs to be sufficiently larger than
g1. For larger d0, the ferromagnetic region grows. For d0 > 1,
d-wave superconductivity is replaced by d-wave charge
Pomeranchuk order.

In case some couplings become attractive, we find an
s-wave pairing, charge Pomeranchuk order, and a tendency
towards a d-wave spin Pomeranchuk order. In fact, only a
small negative g1 is needed to induce the d-wave spin Pomer-
anchuk order. We also find the supermetal phase [17], where
couplings do not diverge in our phase diagram. However, as
we explained in Sec. V A, the bare couplings must be tuned to
certain values to reach this phase (see Fig. 8).

VI. FREE ENERGY FOR d-WAVE ORDERS

Within the RG analysis, the exponents in the d-wave
channels β2,i and β3,i are equal. Hence, the system si-
multaneously becomes unstable towards the order with the
structure set by the (normalized) �2 = 1/

√
2(0, 1,−1) and

�3 = √
2/3(1,−1/2,−1/2). The corresponding order pa-

rameters are commonly called dxy and dx2−y2 due to their
symmetry. To determine which combination of the dxy and
dx2−y2 orders develops, one needs to analyze the Landau free
energy.

For a SC order, we introduce �SC = �2�2 + �3�3. Both
�1 and �2 are U (1) complex order parameters. The free
energy is of the form

FdSC = α

2
(|�2|2 + |�3|2) + β1(|�2|2 + |�3|2)2

+ β2

∣∣�2
2 + �2

3

∣∣2. (53)
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FIG. 9. d-wave spin Pomeranchuk order. Left panel: The or-
der parameter of the d-wave spin Pomeranchuk order winds twice
around the Fermi surface. Right panel: Diagonalization leads to a
Zeeman-like term without net magnetization which splits the Fermi
surface.

The coefficient α changes sign at the transition. We verified
that for a HOVH point β1, β2 > 0, like for the case of a CVH
point in graphene [3]. In this case, the combination �3 =
±i�2 minimizes the free energy, i.e., �SC = (�2 ± i�3)�
with complex �. This is a chiral d ± id superconducting state
[7].

For d-wave charge Pomeranchuk order, we introduce two
real order parameters ϕ2 and ϕ3 and the total order parameter
is ϕc = ϕ2�2 + ϕ3�3. A hexagonal lattice allows for a cubic
term in the free energy [30–35]. Keeping this term and ne-
glecting ϕ4 terms, we obtain

FdPOM = ᾱ

2

(
ϕ2

2 + ϕ2
3

)+ β̄
(
ϕ3

3 − 3ϕ3ϕ
2
2

)
. (54)

Minimizing the free energy (including quartic terms), we
find that the system chooses one out of three equivalent
states: either ϕc ∝ (2,−1,−1), ϕc ∝ (−1, 2,−1), or ϕc ∝
(−1,−1, 2). Each state selects one particular HOVH point
where the order is largest. Such a state breaks lattice C3

rotational symmetry and is a charge nematic [30–35].
For the d-wave spin channel, we express the order param-

eter via O(3)-symmetric vectors �φ = �φ2�2 + �φ3�3 (φi and �i

live in different vector spaces). The cubic term is absent and
the free energy up to quartic order in �φ2,3 is given by the
expression

SdFM = α̃

2

( �φ2
1 + �φ2

2

)
+ β̃

2

[( �φ2
1 + �φ2

2

)2 − 4

3
�φ2

1
�φ2

2 + 4

3
( �φ1 · �φ2)2

]
. (55)

The coefficient β̃ is obtained by integrating out the fermions
near a HOVH point. We find a positive result, reading

β̃ =
∫

G4 = T
∑

ω

∫
dε

ρ(ε)

6
∂3
ε

1

iω − ε
(56)

= ρ0

48
T −(2+κ )

∫
du

2 − cosh u

|u|κ cosh4
(

u
2

) > 0. (57)

For κ = 1/4, we have β ≈ 0.96/T 9/4. Minimizing the free
energy, we find that both �φ2 and �φ3 are nonzero. Specifi-
cally, | �φ2| = | �φ3| = | �φ|, and �φ2 and �φ3 are perpendicular to
each other. Combining this with the d-wave modulation, and
extending the modulation to the full Fermi surface, we find
that the spin order parameter winds twice around the Fermi
surface. We illustrate this in Fig. 9. This order breaks SU (2)

spin symmetry, but does not generate net magnetization due
to the d-wave form factor.

To see the effect of the d-wave spin Pomeranchuk order
on the energy dispersion, we consider the mean-field Hamil-
tonian

HMF =
∑
pσ

ε( �p)c†
pσ cpσ + gs,d

∑
pσ,σ ′

�φ( �p)c†
pσ �σσσ ′cpσ ′ , (58)

with free energy dispersion ε( �p) and coupling gs,d . We express
the order parameter �φ( �p) as �φ( �p) = dxy( �p)φ̂2 + dx2−y2 ( �p)φ̂3,
where φ̂2 and φ̂3 are orthogonal order parameters and dxy( �p)
and dx2−y2 ( �p) are the momentum-dependent d-wave form
factors dxy = sin 2θp and dx2−y2 = cos 2θp with the polar
angle θp.

HMF is nondiagonal in the spin index. Diagonalization
leads to the reconstructed energy bands

E (�k) = ε(�k) − μ ± | �φ|. (59)

We see that the d-wave spin Pomeranchuk order introduces a
Zeeman-like splitting (see Fig. 9), which is, however, not spin
polarized. In real space, the d-wave form factor translates to
a modulation of the nearest-neighbor hopping. As �φ couples
to the electron spin [see Eq. (58)], the hopping becomes spin
dependent.

VII. CONCLUSION

We presented an analysis of competing instabilities for a
system of interacting electrons in the presence of multiple
HOVH points. At a HOVH point, the density of states diverges
by a power law, and we have shown that this gives rise to a
qualitatively new type of competition between superconduct-
ing and zero-momentum particle-hole orders. Our analysis of
particle-particle and particle-hole susceptibilities has revealed
that the ones with zero-momentum transfer diverge by a power
law, with the same exponent in the particle-particle and the
particle-hole channel, while the ones at a finite momentum
transfer diverge at most logarithmically. This is in sharp con-
trast to CVH points, where the divergences are logarithmic,
and the susceptibilities in the particle-hole channel are either
subleading to the ones in the particle-particle channel or are
comparable, but at finite momentum transfer, if the Fermi
surface is nested.

We argued that the physics associated with multiple HOVH
points in the Brillouin zone is relevant for intercalated
graphene, where Van Hove filling has recently been achieved
experimentally. It was observed that near this filling the
band dispersion is strongly flattened around the Van Hove
points [10]. HOVH points also appear in, e.g., twisted bilayer
graphene, where they can be accessed by single-parameter
tuning [12].

To model the HOVH scenario in graphene-based systems,
we introduced a tight-binding model on the honeycomb lat-
tice with up to third-nearest-neighbor hopping and tuned
the hopping amplitudes such that higher-order saddle points
appear at the three inequivalent M points in the Brillouin
zone. We derived the effective patch model for electrons
around the HOVH points, which includes couplings for all
symmetry-allowed scattering processes. To analyze the com-
petition between different ordering channels in an unbiased
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way, we set up the renormalization-group approach that ac-
counts for all leading fluctuation corrections. The patch model
and the renormalization-group equations are valid for both
hexagonal and tetragonal systems with HOVH points at the
Brillouin-zone edges.

We have shown that the supermetal state, which was pre-
dicted to be the ground state for a single HOVH point, is
unstable when several HOVH points are present. It can only
survive under special fine-tuned conditions for the initial cou-
plings. For generic initial conditions, we observed a flow to
strong coupling, indicating that an initial Fermi-liquid state
becomes unstable towards a symmetry-broken ordered state.
We obtained the phase diagram for parameters relevant for
intercalated graphene. It includes regions of ferromagnetism,
charge and spin Pomeranchuk orders, as well as s- and d-wave
superconductivity. The development of a specific instability
depends on model parameters, i.e., the bare couplings and
the ratio of the particle-particle and the particle-hole sus-
ceptibilities. For purely repulsive interactions, we found that
two key competitors are ferromagnetism and chiral d + id
superconductivity. We note that slightly away from Van Hove
filling spin-triplet f -wave superconductivity can also become
a competitor [4,6,13,36,37]. We expect this tendency to be
stronger in the vicinity of HOVH points because of increased
ferromagnetic fluctuations. If some interactions turn attrac-
tive, s-wave superconductivity can develop. In addition, we
found that under some initial conditions the system develops
d-wave charge or spin Pomeranchuk order. We analyzed the
free energy for the d-wave Pomeranchuk orders to determine
the ground-state configurations. We found that the d-wave
charge Pomeranchuk order breaks lattice rotational symmetry.
For the d-wave spin Pomeranchuk order, we found that the or-
der parameter winds twice around the Fermi surface. Such an
order is very unconventional: it breaks spin SU (2) symmetry
and splits the Fermi surface, but it does not introduce a net
magnetization. Our results demonstrate that the many-body
phase diagram of intercalated graphene and similar systems is
very rich and hosts not only chiral superconductivity but also
unconventional spin and charge orders.

In future work, it will be interesting to improve our RG pro-
cedure regarding self-energy corrections or the approximation
error of the mixed diagrams, by, e.g., employing functional
RG techniques with more sophisticated truncations. Another
future research direction is to adapt our formalism to systems
that possess HOVH points in different locations of the Bril-
louin zone. One straightforward application is to the case of
twisted bilayer graphene, where three HOVHs lie along the
�-M line away from the zone boundary [12].
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APPENDIX A: BAND DISPERSION NEAR THE M POINTS

To demonstrate how the HOVH points come about in our
model, we expand the dispersion around the M points. For the
expansion at M1 = π (0, 2/3), we obtain

εM1 (�x) = −a1x2 + b1y2 + c1x4 + d1y4 + e1x2y2 + · · · ,

where �x = (x, y) = (kx − M1,x, ky − M1,y) is the deviation
from the corresponding M point and the dots denote higher-
order terms in x, y. The coefficients are

a1 = 3

4
(t1 − 2t2 − 4t3), (A1)

b1 = 2t2
1

t1 − 3t3
+ t1

4
+ 3t3 − 9t2

2
, (A2)

c1 = 3

64
[t1 − 2(7t2 + 8t3)], (A3)

d1 = 3(9t2 − 8t3)

32
+ 7t3t2

1 − 63t3
1 + 27t2

3 t1 + 405t3
3

64(t1 − 3t3)3/(3t1)
,

e1 = 27

16
t2 + 27

(
t3
1 − 14t3t2

1 + 33t2
3 t1 − 16t3

3

)
32(t1 − 3t3)2

. (A4)

The energy dispersion near the other M points, M2 =
π (−1/

√
3, 1/3) and M3 = −π (1/

√
3, 1/3), is

εM2 (�x) = a2x2 + c2xy + b2y2 + · · · , (A5)

εM3 (�x) = a3x2 + c3xy + b3y2 + · · · , (A6)

where �x is again measured from the corresponding M point
and the coefficients are

a2 = a3 = 3t2
1

2(t1 − 3t3)
− 3t2 + 3t3, (A7)

b2 = b3 = 9(t1 − 2t3)t3
2(t1 − 3t3)

, (A8)

c2 = −c3 = −3
√

3[t2
1 − (2t2 + t3)t1 + 6t2t3]

2(t1 − 3t3)
. (A9)

1. High-order saddle point

We note that the quadratic term ∝ x2 in Eq. (4) can be tuned
to zero by choosing

t3 → t3,e = (t1 − 2t2)/4. (A10)

In that case, the usual saddle point is replaced by an even
flatter energy dispersion. More explicitly, the band dispersion
near M1 then reads

εM1 (�x)
∣∣
t3,e

= b̄1y2 − c̄1x4 − ē1x2y2 + . . . , (A11)
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where we have introduced

b̄1 = t1 − 6t2 + 8t2
1

t1 + 6t2
, (A12)

c̄1 = 9

64
(t1 + 2t2), (A13)

ē1 = 27(t1 + 2t2)
(
11t2

1 − 28t1t2 − 52t2
2

)
32(t1 + 6t2)2

. (A14)

For these parameters we not only have ∇�xεM1 (�x) = 0 at the
saddle point, but also the Hessian matrix Hi j = ∂xi∂x j εM1 (�x)
has a vanishing determinant, i.e., det H (�x) = 0. The higher-
order saddle point is shown in Fig. 3.

2. Density of states

At such a two-dimensional higher-order saddle point, the
DOS shows a power-law divergence:

ρ(ε) ∝ |ε|−κ , (A15)

with some exponent κ > 0. This divergence is stronger than
the logarithmic one at a CVH singularity. The singular be-
havior of the DOS near the high-order saddle point can be
determined from a scaling argument [18]. To that end, the
Taylor expanded dispersion εM1 (�x) is decomposed into two
parts, the canonical part εc(�x) and a perturbation εp(�x), i.e.,
εM1 (�x) = εc(�x) + εp(�x). The canonical part has vanishing gra-
dient and is defined by being scale invariant:

εc(λpx, λqy) = λεc(x, y). (A16)

The perturbation part can, again, be decomposed into mono-
mials with individual scaling behavior reading

εp(λpx, λqy) = λrεp(x, y). (A17)

The perturbation is irrelevant at the HOVH point for r > 1 and
relevant for r < 1. In our present scenario, we have

εc(x, y) = −c̄1x4 + b̄1y2 ⇒ p = 1/4, q = 1/2, (A18)

εp(x, y) = −ē1x2y2 + . . . , (A19)

so the scaling exponent of the monomial ∝ ē1 is r = 3/2 > 1
and therefore it is irrelevant along with all higher-order terms.
Using the canonical dispersion, the scale invariance, and the
definition of the DOS ρ(ε) = ∫�x δ[ε − εc(�x)], one can show
that the DOS is also scale invariant:

ρ(λε) = λκρ(ε), (A20)

with κ = p + q − 1 and p, q as determined above. Then, the
singular part of the DOS behaves according to

ρ(ε) ∝ |ε|κ ∝ |ε|− 1
4 , (A21)

i.e., in our model κ = 1/4.

APPENDIX B: NUMERICAL EVALUATION OF THE LOOPS

We confirm the hierarchy of particle-particle and particle-
hole bubbles that we obtained through expansion around
the Van Hove points by numerical evaluation of the loops
in the full Brillouin zone with the microscopic dispersion.
We use the third-neighbor hopping as the tuning parame-
ter to change from a logarithmic divergence to a power-law

FIG. 10. Temperature derivative of loop corrections. We plot
d/dtχX

pp and d/dtχX
ph [see Eqs. (17) and (18) with t = ln �/T for

the microscopic model Eq. (1)]. From left to right and top to bottom,
we show d/dtχ 0

pp, d/dtχM
ph , d/dtχM

pp , and d/dtχ 0
ph. As an example

for the situation with a HOVH singularity we chose t3 = t1/4, t2 = 0
(solid, purple). For comparison, we also show the case with a loga-
rithmic DOS for t3 = 0.01t1, t2 = 0 (dashed, yellow). When plotted
as a function of the logarithmic temperature t , χX

i ∝ (�/T )κ leads
to an exponential growth as observable in χ 0

pp and χ 0
ph (solid, purple).

The logarithmic singularity χX
i ∝ ln2 �/T leads to a linear behavior

in the derivative as observable for χ 0
pp and χM

ph (dashed, yellow). The
linear growth in χM

ph is cut for small enough temperatures t � 5 due
to imperfect nesting t3 = 0.01t1.

divergence at the Van Hove points. Figure 10 shows the
temperature dependence of ∂tχ

X
pp/ph [Eq. (17)] for two cases:

an almost perfectly nested situation with t3 = 0.01t1 and the
situation with an HOVHS for t3 = t1/4 (t2 = 0 in both cases).
Because we plot the loop derivatives against the logarithm
of the temperature t = ln �/T , we expect a linear behavior
for the derivatives of ln2-divergent bubbles, i.e., χ0

pp and χM
ph,

and a constant for the derivatives of ln-divergent bubbles,
i.e., χM

pp and χ0
ph in the nested case. Furthermore, a finite t3

destroys nesting at the lowest scales, so that the growth of
χM

ph is stopped. In the case with the eVHS, we expect the
particle-particle bubble with zero incoming momentum and
the particle-hole bubble with zero-momentum transfer to grow
like a power law, which is an exponential when plotted against
t = ln �/T . This is exactly what we find, in agreement to the
approximate analytical calculation Eqs. (20) and (19). This
confirms that there is a qualitative change in the loop hier-
archy with χ0

pp and χ0
ph growing large at small temperatures

while the other loops become subleading. In Fig. 11, we show
how this hierarchy changes when t3 is varied. We can also
extract an estimate for the parameter d0 when we compare the
magnitude of χ̇0

pp and χ̇0
ph. We obtain a similar value as before:

d0 ≈ 0.30.

APPENDIX C: RG VS PERTURBATION EXPANSION

To verify the accuracy of the RG equations, it is instruc-
tive to compare it with a direct perturbative computation
of the renormalization of the couplings. A straightforward
comparison shows that our RG approach reproduces the
correct temperature dependence and the prefactors of the
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FIG. 11. Loop derivatives ∂tχ
X
pp/ph as a function of t3 for a fixed

(arbitrary) temperature t = ln �/T = 5.8.

contributions coming from the ladder diagrams, and that
it also contains contributions, which in perturbation the-
ory come from the diagrams which contain segments with
particle-particle and particle-hole bubbles. However, these
last contributions are not reproduced exactly within our
RG. Specifically, the power-law forms of the temperature
dependencies are captured correctly, but the prefactors are
reproduced only up to corrections of order 1. In the limit of
κ → 0, i.e., for the logarithmic RG, these deviations vanish;
i.e., to logarithmic accuracy, RG exactly reproduces perturba-
tion theory order by order.

To exemplify this, we compare the expressions, obtained
from the RG and from the direct perturbation expansion up to
two-loop order. For clarity, we simplify the problem and set
g1 = g2 = g3 = 0, i.e., we consider the case when only the g4

coupling is nonzero (with our RG, if bare g1 = g2 = g3 = 0,
the dressed couplings also vanish). Then, the RG equation for
g4 is

∂bg4 = (d0 − 1)g2
4 (C1)

[see Eq. (43)]. Solving this equation iteratively, starting from
bare g0, we obtain the following series:

g4 = g0 + (d0 − 1)bg2
0 + (d2

0 − 2d0 + 1
)
b2g3

0. (C2)

Within the diagrammatic perturbation theory, the O(bg2
0) term

comes from the one-loop diagrams, and the O(b2g3
0) term

comes from the two-loop diagrams. At one-loop order, the two
diagrams describe the renormalization of g4 by particle-hole
and particle-particle bubbles (see Fig. 12). There are bg2

0 con-
tributions from other diagrams (not shown), but they cancel

FIG. 12. Exemplary diagrams at one- and two-loop level if g1 =
g2 = g3 = 0. Diagrams can be classified into three channels, often
denoted as crossed particle-hole, particle-particle, and direct particle-
hole channel. On the one-loop level (first line), we have contributions
from the crossed particle-hole and the particle-particle channel. Dia-
grams in the direct particle-hole channel cancel against each other.
On the two-loop level, we can distinguish pure diagrams, which
consist only of contributions belonging to the same channel, and
mixed diagrams, which contain subdiagrams from different channels.
The second line contains pure diagrams in the crossed particle-hole
and the particle-particle channel. The last line shows examples of
mixed diagrams: a mixed crossed and direct particle-hole (left) and
a mixed particle-particle and particle-hole diagram (right). The RG
approximates the mixed diagrams as the product of its subdiagrams.

out. Evaluating these diagrams, we reproduce the prefactor
d0 − 1 in Eq. (C2).

We next move to two-loop order. One can identify what
kinds of two-loop diagrams would reproduce the three terms
of order b2g3

0 in Eq. (C2). The power of d0 indicates that the
term d2

0 b2g3
0 is the contribution with two particle-hole bubbles:

DRG
ph = T 2g3

0

∑
k0,q0

∫
d�k
∫

d �qG2(q)G2(k). (C3)

For brevity, we collect Matsubara frequency and momentum
as k = (k0, �k). Here and below we assume that �q and �k denote
deviations from the Mi point. The term −2d0b2g3

0 is a mixed
particle-particle/particle-hole contribution,

DRG
pp,ph = 2T 2g3

0

∑
k0,q0

∫
d�k
∫

d �qG2(q)G(k)G(−k), (C4)

and the term b2g3
0 is the contribution from two bubbles in the

particle-particle channel:

DRG
pp = T 2g3

0

∑
k0,q0

∫
d�k
∫

d �qG(q)G(−q)G(k)G(−k). (C5)

Here and below we use that −�k − Mi = −�k + Mi (up to the
reciprocal-lattice vector), i.e., �q and �k also denote deviations
from the Mi point in particle-particle bubbles. We see that in
all contributions in Eqs. (C3)–(C5) the integration/summation
over k and q decouples, i.e., these terms are the products of
one-loop diagrams.

In the direct perturbation theory, the perturbative con-
tributions can also be assembled into contributions from
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two particle-hole loops, two particle-particle loops, and one
particle-hole and one particle-particle loop. Exemplary dia-
grams (not all), which contribute to the renormalization of g4

at two-loop order, are shown in Fig. 12.
The two-loop diagram with two particle-particle loops (the

top right one in Fig. 12) is the direct product of two one-loop
particle-particle diagrams, and it yields the same result as in
the RG:

Dpert
pp = g3

0T 2
∑
k0,q0

∫
d�k
∫

d �q G(q)G(−q)G(−k)G(k)

= DRG
pp . (C6)

In the particle-hole channel, we get two types of diagrams
from the perturbation expansion. Diagrams of one type are the
ones in which the integration/summation over k and q factor-
izes (e.g., the top left diagram in Fig. 12). In the diagrams of
the other type (e.g., the bottom left one in Fig. 12), there is
no factorization. In total, the two-loop particle-hole diagrams
sum to

Dpert
ph = 2T 2g3

0

∑
k0,q0

∫
d�k
∫

d �q G2(q)G2(k)

− 2T 2g3
0

∑
k0,q0

∫
d�k
∫

d �q G2(q)G(k)G(Mi + k − q).

Here and below we have set all external frequencies and mo-
menta to be the same, assuming they are located at M points
Mi. In the logarithmic case with DOS ρ(ε) = ρ0 ln(�/ε), the
main contribution in the coupled integral comes from εk � εq

and we can approximate the second integral via

T 2
∑
k0,q0

∫
d�k
∫

d �q G2(q)G(k)G(Mi + k − q)

≈ T 2
∑
k0,q0

∫
d �q G2(q)

∫
εk�εq

d�k G2(k)

=
∫

dερ(ε)n′
F (ε)

∫
ε′>ε

dε′ρ(ε′)n′
F (ε′)

≈ ρ2
0 ln2(�/T )

∫
dε

1

4 cosh2(ε/2)

∫
ε′>ε

dε′ 1

4 cosh2(ε′/2)

= 1

2

[
ρ0 ln(�/T )

∫
dε

1

4 cosh2(ε/2)

]2

= 1

2
T 2
∑
k0,q0

∫
d �q
∫

d�k G2(q)G2(k). (C7)

Here, we have neglected terms that are smaller than ln2(�/T ).
Substituting into (C7), we find that the direct perturbation
theory yields, to logarithmic accuracy,

Dpert
ph = DRG

ph . (C8)

However, in the case of the HOVH point, we cannot decouple
the integrations over k and q, i.e., Dpert

ph �= DRG
ph . Thus, there is

a difference between the RG and the perturbation expansion.
We show below that this leads to corrections in the prefac-

tor, while the temperature dependence is reproduced correctly,
i.e., Dpert

ph = cDRG
ph with a constant c = O(1).

Finally, the mixed particle-particle/particle-hole diagrams
in the perturbation expansion sum to

Dpert
pp,ph = 2T 2g3

0

∑
k0,q0

∫
d�k
∫

d �qG2(q)G(k)G(Mi + q − k)

+ 2T 2g3
0

∑
k0,q0

∫
d�k
∫

d �qG(q)G(−q)

× G(k)G(Mi + k + q) (C9)

(see the bottom right diagram in Fig. 12 for an example). The
second term in Eq. (C9) becomes subleading in the logarith-
mic case, because the second logarithm of the particle-particle
channel is cut by the particle-hole insertion:

T 2
∑
k0,q0

∫
d �q
∫

d�kG(q)G(−q)G(k)G(Mi + k + q)

≈ T 2
∑
k0,q0

∫
d �q
∫

εk�εq

d�k G(q)G(−q)G2(k)

=
∫

dερ(ε)
1 − 2nF (ε)

2ε

∫
ε′>ε

dε′ρ(ε′)n′
F (ε′)

≈ −ρ2
0 ln2(�/T )

∫
dε

tanh ε/2

2ε

∫
ε′>ε

dε′ 1

4 cosh2 ε′/2

= ρ2
0 ln2(�/T )

∫
dε

tanh ε/2

2ε

tanh ε/2 − 1

2
. (C10)

This contribution is of order ln2(�/T ). In contrast, the first
term in Eq. (C9) is of order ln3(�/T ). Indeed,

T 2
∑
k0,q0

∫
d�k
∫

d �qG2(q)G(k)G(Mi + q − k)

≈ T 2
∑
k0,q0

∫
d �q
∫

εk�εq

d�kG2(q)G(k)G(−k)

=
∫

dερ(ε)n′
F (ε)

∫ �/T

ε

dε′ρ(ε′)
1 − 2nF (ε′)

2ε′

≈ −ρ2
0 ln2(�/T )

∫
dε

1

4 cosh2 ε/2

∫ �/T

ε

dε′ tanh ε′/2

2ε′

= O[ln3(�/T )]. (C11)

One can verify that, to logarithmic accuracy,

T 2
∑
k0,q0

∫
d�k
∫

d �qG2(q)G(k)G(Mi + q − k)

= T 2
∑
k0,q0

∫
d �q
∫

d�kG2(q)G(k)G(−k). (C12)

We note that if the calculation is performed at zero tem-
perature and regularized by a nonzero deviation from the
Van Hove points, both contributions in Eq. (C9) are of order
ln3(�/T ), but eventually sum to the same prefactor as the one
at a nonzero temperature. So we find that for the logarithmic
DOS (the case κ → 0)

Dpert
pp,ph = DRG

pp,ph (C13)
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to logarithmic accuracy. For our case of HOVH points, Dpert
pp,ph

and DRG
pp,ph are not equivalent because the integrals over k

and q do not decouple. Like before, Dpert
pp,ph = c̃Dpp,ph with

c̃ = O(1). For verification, we explicitly calculate the coupled
integrals to show that we still get the correct temperature
dependence.

For concreteness, we consider Van Hove filling and κ = 1/4. We use the dispersions for the vicinity of the M points Eq. (8),
i.e., ε�q = εM1 (�q), ε�k = εM1 (�k), and εMi+�q−�k = εM1 (�q − �k) [we also abbreviate εM1 ( �p) by ε

M1

�p ]. We denote the external frequency
by ip0. For Matsubara sums, we use

T
∑

iω

1

(iω − ε1)(iω − ε2)
= nF (ε1) − nF (ε2)

ε1 − ε2
, (C14)

T
∑

iω

1

(iω − ε1)(iω − ε2)(iω − ε3)
= nF (ε1)

(ε1 − ε2)(ε1 − ε3)
− nF (ε2)

(ε1 − ε2)(ε2 − ε3)
+ nF (ε3)

(ε1 − ε3)(ε2 − ε3)
, (C15)

T
∑

iω

1

(iω − ε1)2(iω − ε2)
= n′

F (ε1)

ε1 − ε2
− nF (ε1)

(ε1 − ε2)2
+ nF (ε2)

(ε1 − ε2)2
, (C16)

and nF (ip0 + ε) = −nB(ε), nB(ε2 − ε1)[nF (ε1) − nF (ε2)] = nF (−ε1)nF (ε2), where nF is the Fermi and nB the Bose function.
We obtain for the coupled particle-particle/particle-hole diagram

2T 2
∑
k0,q0

∫
d�k
∫

d �q 1(
iq0 − ε

M1

�q
)2(

ik0 − ε
M1

�k
)(− ik0 + iq0 + ip0 − ε

M1

�q−�k
)

= 2
∫

d�k
∫

d �q
{[

1 − nF
(
ε

M1

�q−�k
)− nF

(
ε

M1

�k
)]⎡⎣ −n′

F

(
ε

M1

�q
)

(
ip0 + ε

M1

�q − ε
M1

�k + ε
M1

�q−�k
) +

nF
(
ε

M1

�q
)

(
ip0 + ε

M1

�q − ε
M1

�k + ε
M1

�q−�k
)2
⎤
⎦

+
nF
(
ε

M1

�k
)
nF
(
ε

M1

�k−�q
)

(
ip0 + ε

M1

�q − ε
M1

�k + ε
M1

�q−�k
)2
}

. (C17)

To see the temperature dependence of this expression, we rescale kx = T 1/4k̃x, ky = √
T k̃y, qx = T 1/4q̃x, qy = √

T q̃y and express
the external frequency as p0 = (2n + 1)iπT , which yields

2√
T

∫
d �̃k
∫

d �̃q
⎧⎨
⎩[1 − ñF

(
ε

M1

q̃−k̃

)− nF
(
ε

M1

k̃

)]⎡⎣ [4 cosh2
(
ε

M1

�q
)
]−1[

(2n + 1)iπ + ε
M1
q̃ − ε

M1

k̃
+ ε

M1

q̃−k̃

] + ñF
(
ε

M1
q̃

)
[
(2n + 1)iπ + ε

M1
q̃ − ε

M1

k̃
+ ε

M1

q̃−k̃

]2
⎤
⎦

+
ñF
(
ε

M1

k̃

)
ñF
(
ε

M1

k̃−q̃

)
[
(2n + 1)iπ + ε

M1
q̃ − ε

M1

k̃
+ ε

M1

q̃−k̃

]2
⎫⎬
⎭ (C18)

where we defined ñF (x) = 1/[1 + exp(x)]. The integrand is finite and independent of temperature, so indeed we obtain the
correct temperature dependence T 2κ for κ = 1/4. The same is true for the second integral in Eq. (C9). In the particle-hole
channel, we get

− 2T 2
∑
k0,q0

∫
d�k
∫

d �q 1(
iq0 − ε

M1

�q
)2(

ik0 − ε
M1

�k
)(

ik0 − iq0 + ip0 − ε
M1

�k−�q
)

= −2
∫

d�k
∫

d �q
⎧⎨
⎩
[
nF
(
ε

M1

�k
)− nF

(
ε

M1

�k−�q
)]⎛⎝ n′

F

(
ε

M1

�q
)

ip0 + ε
M1

�q + ε
M1

�k − ε
M1

�k−�q
−

nF
(
ε

M1

�q
)

(
ip0 + ε

M1

�q + ε
M1

�k − ε
M1

�k−�q
)2
⎞
⎠

− nF
(
ε

M1

�k−�q
) 1 − 2nF

(
ε

M1

�k
)

(
ip0 + ε

M1

�q + ε
M1

�k − ε
M1

�k−�q
)2
⎫⎬
⎭, (C19)

which after rescaling is also proportional to 1/
√

T . We can
calculate the remaining integrals numerically. The calcula-
tion does indeed show that there is a factor of order O(1)

difference between the perturbation expansion and the RG.
These results can be generalized to arbitrary loop order with
the result that the iterative solution of the RG equations
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reproduces the temperature dependence, which one obtained
in the order-by-order diagrammatic expansion, and the pref-
actors are generally different because for power-law-singular
DOS the momentum integrations do not factorize.

We note that the discrepancy between the perturbation
expansion and the RG may be systematically studied by
employing advanced truncation schemes such as, e.g., the
recently developed multiloop functional RG [38].

APPENDIX D: THREE-PATCH RG
FROM FUNCTIONAL RG

To investigate the quantum many-body instabilities of our
model we employ a parquet RG approach. The parquet RG
flow equations can be straightforwardly derived within a more
general functional integral framework based on a one-loop ex-
act FRG flow equation for the one-particle irreducible vertices
of a correlated fermion system (see Refs. [39–41] for reviews).

With this renormalization-group scheme we can then iden-
tify the leading instabilities in the presence of competing
interactions by successively integrating out fermion degrees
of freedom starting from an initial RG scale �0, e.g., corre-
sponding to the bandwidth down to the infrared scale � → 0.
We now briefly set up the functional RG approach.

We consider the action for a many-fermion system corre-
sponding to our model Hamiltonian, i.e.,

S[ψ̄, ψ] = −(ψ̄, G−1
0 ψ

)+ V [ψ̄, ψ], (D1)

where ψ̄ and ψ are the Grassmann-valued fermion field de-
grees of freedom; the first term is the quadratic part including
the free fermion propagator G0(ωn, �k, b) = 1/[iωn − εb(�k)],
the Matsubara frequency ωn, and wave vector �k. The energy
dispersion εb(�k) with band index b follows from diagonaliza-
tion of the free part of the Hamiltonian H0 and we assume
that the fermionic propagator is diagonal with respect to
the spin quantum number. The second term V [ψ̄, ψ] in the
above equation is the interaction term, which is quartic in
the fermionic fields ψ̄ and ψ and can be inferred from the
interaction part of the Hamiltonian.

To set up the functional RG flow equations, the bare
propagator is regularized by an infrared momentum cutoff
represented by the scale �:

G0(ωn, �k, b) → G�
0 (ωn, �k, b). (D2)

The purpose of the regularization and the introduction of the
modified propagator G�

0 is to cut off infrared modes below the
scale � and the implementation of this regularization can be
realized in different ways, i.e., employing a momentum cutoff,
a frequency cutoff, or a temperature cutoff. We leave this
choice open for the moment, as it does not affect the structure
of the FRG equations.

The modified propagator G�
0 is now used in the generating

functional for the one-particle irreducible correlation func-
tions and an exact flow equation is generated upon variation
with respect to the cutoff scale �. More explicitly, we start
with the generating functional for the fully connected correla-
tion functions [42]:

G[η̄, η] = − ln
∫

DψDψ̄ e−S[ψ̄,ψ]+(η̄,ψ )+(ψ̄,η). (D3)

For convenience, we consider the Legendre transform of
G[η̄, η], i.e., �[ψ̄, ψ] = (η̄, ψ ) + (ψ̄, η) + G[η̄, η], which is
called the effective action and which generates the one-
particle irreducible correlation functions. Note that the field
arguments in the effective action � are ψ = −∂G/∂η̄ and
ψ̄ = ∂G/∂η.

Using the modified propagator G�
0 provides a cutoff depen-

dence to the effective action � → ��. Taking the derivative
of that scale-dependent effective action with respect to �

produces an exact RG flow equation, reading

∂

∂�
��[ψ̄, ψ] = − (ψ̄,

(
Ġ�

0

)−1
ψ
)

− 1

2
Tr
{(

Ġ�
0

)−1
(�̇(2)�[ψ̄, ψ])−1

}
, (D4)

where (Ġ�
0 )−1 = diag((G�

0 )−1, (G�t
0 )−1) and

�(2)�[ψ̄, ψ] =
(

∂2��

∂ψ̄∂ψ

∂2��

∂ψ̄∂ψ̄

∂2��

∂ψ∂ψ
∂2��

∂ψ∂ψ̄

)
. (D5)

The initial condition of this differential equation is defined at
the ultraviolet scale �UV by the microscopic action ��UV = S
and in the limit � → 0 by the full quantum effective action �.

For tractability of the exact flow equation, we employ a
truncation of the effective action �� in the form of the vertex
expansion ansatz:

��[ψ, ψ̄] =
∞∑

i=0

(−1)i

(i!)2

∑
k1, . . . , ki

k′
1, . . . , k′

i

�(2i)�(k′
1, . . . , k′

i, k1, . . . , ki )

× ψ̄ (k′
1) . . . ψ̄ (k′

i )ψ (ki ) . . . ψ (k1). (D6)

This ansatz is inserted into the exact flow equation, which
generates a hierarchy of flow equations for the one-particle
irreducible vertex functions �(2i)�. We truncate the tower of
flow equations and exclusively consider the RG evolution of
the two-particle interaction �(4)�, which carries spin indices
σi and multi-indices k collecting Matsubara frequencies, wave
vectors, and band indices. We also neglect the self-energy
feedback.

For the spin-rotation invariant system that we consider in
this paper, the two-particle interaction can be written as

�(4)�
σ1σ2σ3σ4

= V �δσ1σ3δσ2σ4 − V �δσ1σ4δσ2σ3 , (D7)

introducing the effective interaction vertex V � =
V �(k1, k2, k3, b4). For the analysis of instabilities, we are
interested in the most singular part of V �, which comes from
the smallest Matsubara frequency, and we therefore only
consider this one. Then, the RG flow of V � can be derived
from the exact flow equation Eq. (D4) and reads

d

d�
V � = τpp + τph,d + τph,cr (D8)

with the particle-particle, the direct particle-hole, and the
crossed particle-hole contributions on the right-hand side of
the equation, reading

τpp = −1

2

∑∫
V �(k1, k2, k, b′)L�(k, qpp)V �(k, qpp, k3, b4),
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where we defined
∑∫ = −A−1

BZT
∑

ω

∫
d2k

∑
b,b′ and ABZ is the

area of the Brillouin zone. Further, we have

τph,d = 1

2

∑∫
[2V �(k1, k, k3, b′)L�(k, qd )V �(qd, k2, k, b4)

− V �(k, k1, k3, b′)L�(k, qd )V �(qd, k2, k, b4)

− V �(k, k1, k3, b′)L�(k, qd )V �(k2, qd, k, b4)],

and

τph,cr = −1

2

∑∫
V �(k, k2, k3, b′)L�(k, qcr )V

�(k1, qcr, k, b4).

Above, we have used the definitions qpp = −k + k1 + k2,
qd = k + k1 − k3, and qcr = k + k2 − k3 and the loop kernel

L�(k, k′) = d

d�

[
G�

0 (k)G�
0 (k′)

]
, (D9)

with the free modified propagator G�
0 due to the neglect of the

self-energy.
To derive the N = 3 patch parquet RG flow equations [see

Eqs. (30)–(33)], we now introduce further approximations.
Since we are interested in instabilities, we will consider only

the strongest contributions to the flow of V �, which come
from wave vectors where the density of states is large, i.e.,
in our model the wave vectors at or near the M1,2,3 points.
Therefore, we introduce an N = 3 patch approximation by
evaluating V � only at the singularity momenta M1,2,3. We
exclusively take into account two-particle scattering processes
on these three patches, as indicated in Fig. 4. Further, we
assume that the interaction vertex is approximately constant
within small patches surrounding the Mi points where the
energy dispersion can be approximated by a pure saddle-point
behavior. We can thus relate the interaction vertex V � with the
interaction couplings gi (see Fig. 4):

V �(Mi, Mj, Mi, Mj ) = g1, i �= j, (D10)

V �(Mi, Mj, Mj, Mi ) = g2, i �= j, (D11)

V �(Mi, Mi, Mj, Mj ) = g3, i �= j, (D12)

V �(Mi, Mi, Mi, Mi ) = g4. (D13)

These relations can be put into the flow equation for the
interaction vertex, Eq. (D8), yielding

d

d�
g1 = d

d�
V �(M1, M2, M1, M2) = τpp(M1, M2, M1, M2) + τph,d(M1, M2, M1, M2) + τph,cr (M1, M2, M1, M2),

d

d�
g2 = d

d�
V �(M1, M2, M2, M1) = τpp(M1, M2, M2, M1) + τph,d(M1, M2, M2, M1) + τph,cr (M1, M2, M2, M1),

d

d�
g3 = d

d�
V �(M1, M1, M2, M2) = τpp(M1, M1, M2, M2) + τph,d(M1, M1, M2, M2) + τph,cr (M1, M1, M2, M2),

d

d�
g4 = d

d�
V �(M1, M1, M1, M1) = τpp(M1, M1, M1, M1) + τph,d(M1, M1, M1, M1) + τph,cr (M1, M1, M1, M1).

Evaluating the various channels’ contributions within the
small patches around the M points and for the respective
wave-vector configurations then yields—after some straight-
forward algebra—the flow equations for the interaction
couplings gi, i ∈ {1, 2, 3, 4} presented in the main text [see
Eqs. (30)–(33)].

APPENDIX E: RG FIXED POINTS

We look for fixed points in the flow equations for the
dimensionless couplings Eqs. (35)–(38), i.e., solutions g∗ =
(g∗

1, g∗
2, g∗

3, g∗
4) of

βg1 = ∂t ĝ1 = 0, (E1)

βg2 = ∂t ĝ2 = 0, (E2)

βg3 = ∂t ĝ3 = 0, (E3)

βg4 = ∂t ĝ4 = 0. (E4)

In general, there are several fixed-point solutions and we are
interested in their stability, i.e., if they are reachable without
fine tuning. The stability of a fixed point can be determined by
calculating the eigenvalues of the stability matrix evaluated at

the fixed point:

∂

∂gi

βg j

∣∣∣∣
g∗

. (E5)

The fixed point is stable when all eigenvalues are negative. A
negative eigenvalue corresponds to an irrelevant direction and
a positive eigenvalue corresponds to a relevant one.

In general, the existence of a real solution and the number
of relevant directions depend on d0, N , and Nf . In our case,
we set Nf = 2. We find that all fixed-point solutions possess
one or more relevant directions, i.e., all are unstable. Among
others, we can identify the interacting fixed point found in
Ref. [17], where just one HOVH point was considered, so
that only g4 is present. In our more general setup with several
HOVH points, it is given by

g∗
1 = g∗

2 = g∗
3 = 0 and g∗

4 = 1

1 − d0
κ. (E6)

It has two relevant directions for d0 < 1/3 and one relevant
direction for d0 > 1/3. Furthermore, there are two more pos-
sible solutions with just one relevant direction for sufficiently
small d0.

For N =2 and d0 � 2(N −1)/[N2+2(N −1)], they are

g∗
1 = g∗

3 = 0,
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FIG. 13. Susceptibility exponents for the stable fixed trajectories as a function of d0. They correspond to I–VIII from left to right, from top
to bottom. s-wave spin, solid orange; d-wave spin, dashed light orange; s-wave charge, solid purple; d-wave charge, dotted light purple; s-wave
SC, solid blue; d-wave SC, dot-dashed light blue. Fixed trajectory VII has two regimes of stability; for clarity we connect the exponents in
both regimes by thin lines.

g∗
2 = (N − 2)(1 − 2d0)

2d0{(N − 2)2 − d0[N2 − 6(N − 1)]}κ

∓
√

d0{d0[N2 + 2(N − 1)] − 2(N − 1)}
2d0{(N − 2)2 − d0[N2 − 6(N − 1)]} κ,

g∗
4 = d0[2 + N (N − 2)]

2d0{(N − 2)2 − d0[N2 − 6(N − 1)]}κ

± (N − 2)
√

d0{d0[N2 + 2(N − 1)] − 2(N − 1)}
2d0{(N − 2)2 − d0[N2 − 6(N − 1)]} κ.

For N = 3, they have two relevant directions. The two solu-
tions with one relevant direction for N = 3 are

g∗
1 =

9 + 16d0 −
√

d0
(
72 + 481d0 + 72d2

0

)
9d0(d0 − 1)

κ,

g∗
2 = −2g∗

4 =
25d0 −

√
d0
(
72 + 481d0 + 72d2

0

)
9d0(d0 − 1)

κ,

g∗
3 =

16d0 + 9d2
0 −

√
d0
(
72 + 481d0 + 72d2

0

)
9d0(d0 − 1)

κ, (E7)

and for d0 < 9/13

g∗
1 = g∗

2 =
9 + 8d0 +

√
d0
(
108 + 213d0 + 104d2

0

)
d0(13d0 − 9)

κ,

g∗
3 =

12d0 + 13d2
0 +

√
d0
(
108 + 213d0 + 104d2

0

)
d0(13d0 − 9)

κ,

g∗
4 = −

21d0 +
√

d0
(
108 + 213d0 + 104d2

0

)
2d0(13d0 − 9)

κ. (E8)

APPENDIX F: SUSCEPTIBILITY EXPONENTS

To determine the leading ordering tendency, we compare
the susceptibilities for superconducting, charge, and spin or-
ders. The largest susceptibility has the largest exponent [see
Eqs. (47)–(51)]. Furthermore, the exponent has to be larger
than 1/2 for the susceptibility to diverge approaching the
critical scale. Based on the largest exponent, we assign the or-
dering tendency to the fixed trajectories. We plot the different
exponents as a function of d0 for the stable fixed trajectories
in Fig. 13.
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