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Projective symmetry group classifications of quantum spin liquids on the simple cubic, body
centered cubic, and face centered cubic lattices
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We perform extensive classifications of Z2 quantum spin liquids on the simple cubic, body centered cubic, and
face centered cubic (fcc) lattices using a spin-rotation-invariant fermionic projective symmetry group approach.
Taking into account that all three lattices share the same point group Oh, we apply an efficient gauge where
the classification for the simple cubic lattice can be partially carried over to the other two lattices. We identify
hundreds of projective representations for each of the three lattices, however, when constructing short-range
mean-field models for the fermionic partons (spinons) these phases collapse to only very few relevant cases.
We self-consistently calculate the corresponding mean-field parameters for frustrated Heisenberg models on
all three lattices with up to third-neighbor spin interactions and discuss the spinon dispersions, ground-state
energies, and dynamical spin structure factors. Our results indicate that phases with nonuniform spinon hopping
or pairing amplitudes are energetically favored. An unusual situation is identified for the fcc lattice where the
spinon dispersion minimizing the mean-field energy features a network of symmetry-protected linelike zero
modes in reciprocal space. We further discuss characteristic fingerprints of these phases in the dynamical spin
structure factor which may help to identify and distinguish them in future numerical or experimental studies.

DOI: 10.1103/PhysRevB.102.125140

I. INTRODUCTION

In recent years, quantum spin liquids have become one
of the most vibrant research fields in condensed-matter
physics [1,2]. Aside from the absence of magnetic order,
these phases realize the fascinating scenario where long-range
entanglement, topological order, and fractional quasiparti-
cle excitations combine to form novel quantum many-body
states [3,4]. Two main strategies of theoretical investigations
are currently pursued: In a direct numerical treatment, a given
spin Hamiltonian is investigated with respect to its magnetic
correlations or excitations aiming to identify quantum-spin-
liquid behavior. While this approach has led to invaluable
insights into quantum spin liquids and possible Hamiltonians
realizing them, powerful numerical methods are scarce and
often limited by the general difficulty of probing topologi-
cal order and fractional quasiparticles. The second strategy
of approaching quantum spin liquids amounts to proposing
effective low-energy theories for the system’s fractional ex-
citations which are then further theoretically studied. While
within this strategy it is often difficult (if not impossible) to
relate the considered theories to an actual spin Hamiltonian,
it allows for an investigation of quantum spin liquids on a
fundamental level and in a systematic manner.
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One approach related to this second strategy is the so-
called projective symmetry group (PSG) method [5] which
constitutes the central theme of this work. By reformulating
the original spin degrees of freedom in terms of parton opera-
tors (which, here, are chosen to be fermionic) [6–8] the PSG
approach allows one to classify possible free-parton theories
for quantum spin liquids based on the symmetries of the
system. The partons may be identified with spinons (which are
the fundamental spinful and fractional quasiparticle excita-
tions of a quantum spin liquid) and via an additional coupling
to an emergent gauge field the system may be conveniently
described by a lattice gauge theory which is widely believed
to capture the essential low-energy physics of a quantum spin
liquid. Even though incapable of directly probing a given
spin Hamiltonian with respect to a spin-liquid ground state, a
PSG classification may serve as a guide for further theoretical
and experimental investigations. For example, the fermionic
states obtained within a PSG analysis can be used as trial
wave functions in a variational Monte Carlo study of specific
quantum spin models [9–11]. Furthermore, one may calculate
dynamical spin structure factors for the classified spin-liquid
phases based on the two-parton excitation spectrum. Com-
paring these predictions with results from other numerical
studies or neutron scattering experiments might allow one
to identify and characterize spin-liquid behavior for concrete
spin Hamiltonians or even for real materials [12].

As the field of quantum spin liquids progresses and new
systems beyond standard two-dimensional (2D) spin models
on triangular, honeycomb, or kagome lattices are explored,
the focus shifts more toward spin liquids in three dimensions
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(3D) [13–15]. While quantum fluctuations generally decrease
in higher dimensions, there is consensus that magnetic frus-
tration can still be strong enough to melt magnetic long-range
order. Since the numerical challenges of treating quantum spin
systems increase further when going to 3D, analytical ap-
proaches such as the PSG become more important. However,
there are so far only very few PSG studies classifying quantum
spin liquids on 3D lattices [16–19]. Indeed, for the simple
cubic (sc), body centered cubic (bcc), and face centered cubic
(fcc) lattices representing classic textbook examples of 3D
lattices, a PSG classification has not been achieved so far,
even though the corresponding Heisenberg models are known
for their rich quantum phase diagrams potentially hosting
quantum paramagnetic states. For example, the antiferro-
magnetic J1-J2-J3 Heisenberg model on the sc lattice, aside
from various commensurate magnetically ordered phases, has
been proposed to host an extended nonmagnetic regime in
the vicinity of a classical triple point (possibly realizing a
quantum spin liquid) [20–23]. Similarly, the antiferromag-
netic J1-J2-J3 Heisenberg model on the bcc lattice shows an
interplay of five different magnetically ordered phases, in-
cluding incommensurate spirals, where there is evidence that
quantum fluctuations can melt the magnetic long-range order
in certain parameter regimes [24]. For the fcc lattice, already a
nearest-neighbor antiferromagnetic Heisenberg coupling frus-
trates the system and leads to a subextensive manifold of
degenerate classical ground states forming lines in momen-
tum space [25,26]. By adding a second-neighbor coupling
J2 = J1/2 the classical ground-state degeneracy is enhanced
even more and manifests as surfaces in momentum space [27].
In both cases, the classical degeneracies are expected to am-
plify quantum fluctuations promising a rich physical behavior
when the spin magnitude is lowered toward the quantum limit
S = 1

2 .
Also from a material perspective these lattices open up

new directions of investigations. Mott insulating materials
featuring S = 1

2 magnetic moments and realizing cubic crystal
systems have recently shown potential as candidates host-
ing the quantum-spin-liquid state or being proximate to one.
In particular, the garnet compound Ca3Cu2GeV2O12 fea-
tures S = 1

2 Cu2+ ions occupying the B sites which realize
a bcc lattice [28]. Neutron diffraction experiments find an
absence of magnetic ordering down to 70 mK and indicate
a large frustration ratio of at least f = 13.29. This behav-
ior has been argued to originate from the likely proximity
of this system to the quantum phase transition point in the
S = 1

2 J1-J2 antiferromagnetic model, which is known to
be at J2/J1 ∼ 0.7 [24,29–33]. Recently, a double-perovskite
compound Ba2CeIrO6 has been argued to be an excellent
realization of a pseudospin j = 1

2 spin-orbit-coupled Mott
insulator on the fcc lattice with a high degree of frustration
f ∼ 13 [34]. Although the system undergoes magnetic order-
ing argued to be driven by Kitaev interactions, an estimate of
the exchange parameters places it in proximity to a putative
quantum-spin-liquid phase of the J1-J2 Heisenberg model.
Another interesting S = 1

2 fcc antiferromagnet is the molec-
ular antiferromagnet Cs3C60, wherein specific-heat measure-
ments have revealed the occurrence of both long-range
antiferromagnetic order and a quantum paramagnetic state
below 2.2 K [35].

The results of our extensive PSG classifications can be
summarized as follows: The fact that all three lattices share the
same point group Oh simplifies the calculation significantly.
Particularly, we present a scheme that allows us to reuse the
PSGs from the sc case when treating the other two lattices.
Due to the large number of point group elements (Oh max-
imizes their number in 3D) we obtain a plethora of PSGs
with a Z2 gauge structure, reaching several hundreds or even
more than a thousand phases. However, when constructing
actual parton mean-field theories for these PSGs, consisting
of short-range hopping and pairing terms, the symmetries act
as constraints and thus only very few relevant cases remain.
Aside from the most simple mean-field phases where hopping
and pairing amplitudes are uniform on bonds of the same
type, we identify cases where these terms show nontrivial sign
structures or a special symmetry-induced locking between
hopping and pairing. We further compare the mean-field en-
ergies for all relevant phases. While on a mean-field level, the
ground-state energies are certainly not accurate in terms of
absolute numbers and would be significantly lowered when
performing a more elaborate Gutzwiller projection, they still
allow for a relative comparison between different phases.
A rather general observation is that nonuniform mean-field
models tend to have lower energies compared to the uni-
form ones. An interesting situation occurs for the fcc lattice
where the energetically preferred parton state exhibits an un-
usual symmetry-protected network of linelike zero modes in
momentum space. Finally, we compare the dynamical spin
structure factors of several mean-field phases and discuss
characteristic patterns of response which in the future may
serve as a guide to identify these phases in numerical or
experimental studies.

The rest of the paper is organized as follows: We start with
a general introduction into the PSG method in Sec. II. In the
following Sec. III, we outline the PSG classification for the sc,
bcc, and fcc lattices more specifically. Afterward, in Sec. IV,
we demonstrate, as an example, the derivation of short-range
mean-field models for the bcc lattice. The main results of our
work are presented in Sec. V where we discuss in detail the
relevant short-range mean-field states including their spinon
dispersions, ground-state energies, and dynamical spin struc-
ture factors for all three lattices. The paper ends in Sec. VI
with a discussion and conclusion. More explicit calculations
and tables presenting details on the PSG classifications are
contained in several appendices.

II. GENERAL PROJECTIVE SYMMETRY
GROUP APPROACH

In this section we provide a general introduction into the
projective symmetry group (PSG) approach which allows us
to classify effective low-energy theories for quantum spin liq-
uids based on their behavior under symmetry transformations.
Our starting point is a general Heisenberg Hamiltonian on an
arbitrary lattice,

H =
∑
rr′

Jrr′Sr · Sr′ . (1)

The fermionic version of the PSG approach which we apply
in the following first amounts to rewriting the spin operators
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in terms of fermionic parton operators frα on each lattice
site r [36],

Sμ
r = 1

2

∑
αβ

f †
rατ

μ
αβ frβ, (2)

where α = ↑,↓ and τμ (μ = x, y, z) are the Pauli matrices.
The parton operators may be naturally identified as the spinful
and fractional quasiparticle degrees of freedom of quantum
spin liquids, called spinons. In Eq. (2) their fractional nature
is directly expressed by the fact that one spin operator is
decomposed into two partons.

The key property of the mapping onto a fermionic sys-
tem via Eq. (2) is that it enlarges the Hilbert space. While
the original spin model only corresponds to single fermionic
occupancies on each site, the Hilbert space of the full fermion
model also includes doubly occupied and vacant sites. This
property might first appear as an obstacle since the physical
content of any fermionic wave function is only obtained after
Gutzwiller projection onto the singly occupied subspace. On
the other hand, the parton representation has the advantage
that it is directly associated with a local SU(2) gauge free-
dom [7,8,37,38] (see below) and, hence, allows us to describe
the system by an effective gauge theory, which is known
to be central for the understanding of quantum spin liquids.
In a zeroth-order approximation, the gauge fields may be
treated as (static) numbers which is equivalent to a standard
mean-field decoupling of the quartic terms in the fermionic
version of Eq. (1). Neglecting magnetic contributions of the
form ∼〈Sr〉 · Sr′ (which are irrelevant for our description of
quantum spin liquids) and performing the decoupling in the
fermionic hopping and pairing channels,

χrr′δαβ = 2〈 f †
rα fr′β〉, �rr′εαβ = −2〈 frα fr′β〉, (3)

the fermionic Hamiltonian becomes

Hmf =
∑
〈rr′〉

−3

8
Jrr′

(
ψ†

r urr′ψr′ + H.c. − 1

2
Tr[u†

rr′urr′ ]

)

+
∑

r

ψ†
r aμ(r)τμψr. (4)

Here, we have introduced the spinor fields ψ†
r = ( f †

r↑, fr↓)
and the Lagrange multipliers aμ(r) that enforce the single
occupancy constraint on the mean-field level (i.e., on average),〈∑

α

f †
rα frα

〉
= 1, 〈 f †

rα f †
rβ〉 = 〈 frα frβ〉 = 0 ∀ r. (5)

Note that the second condition is a consequence of the first
one. The 2 × 2 matrix urr′ contains the hopping (χrr′) and
pairing (�rr′ ) mean-field amplitudes and is often referred to
as Ansatz,

urr′ =
(

χ
†
rr′ �rr′

�
†
rr′ −χrr′

)
= iα0

rr′τ
0 + α

μ

rr′τ
μ. (6)

In this equation we have also expressed urr′ in terms of Pauli
matrices and the identity matrix τ 0 where α0

rr′ and α
μ

rr′ are real
coefficients. This representation will later become very useful.

The mean-field Hamiltonian only contains free-fermion
terms and can be readily solved, but the assumption of static

fields urr′ is uncontrolled and the resulting mean-field solution
does not even describe a physical spin system. However, a
proper low-energy theory beyond mean field can be obtained
by reintroducing fluctuations around a self-consistently ob-
tained saddle-point solution for urr′ , restoring an effective
lattice gauge theory [39]. Depending on whether these fluc-
tuations act as variations of the overall sign of urr′ or of the
overall complex phase of urr′ , the resulting gauge theories
are of Z2 or U(1) type which fundamentally characterize
the quantum spin liquids they describe. By construction,
these effective gauge theories are strongly interacting where
fermionic spinons (partons) couple to an emergent gauge field
(whose excitations are referred to as visons) and, therefore,
cannot be easily solved. The purpose of this work is not to
study the actual gauge theories but to classify all possible
mean-field Hamiltonians of the form of Eq. (4). Still, on a
pure mean-field level, the invariant gauge group (IGG) which
will be introduced below allows one to infer the type of gauge
fluctuations [SU(2), U(1), or Z2] [5,40,41] that would arise,
given an Ansatz urr′ . We will initially assume a Z2 gauge
group since these simplest and most restricted types of gauge
fluctuations yield gapped vison excitations which ensures
stability of the theory beyond mean field. However, when
investigating short-range Ansätze urr′ we will still encounter
situations where the gauge group is lifted to U(1) or SU(2).

We now describe the PSG procedure of classifying Z2

mean-field Ansätze by exploiting the system’s lattice symme-
tries. As mentioned before, the fermionic representation in
Eq. (2) has a local SU(2) gauge invariance which manifests
in the freedom to perform gauge transformations ψr → Wrψr
where Wr is an arbitrary site-dependent 2 × 2 SU(2) matrix.
In terms of the local fermionic basis states, this transformation
acts as a rotation in the unphysical subspace of doubly occu-
pied and vacant sites but keeps the physical spin states in the
singly occupied subspace unchanged. Alternatively, one can
implement a gauge transformation as an operation acting on
the Ansatz and not on the spinor:

urr′ → W †
r urr′Wr′ . (7)

A generic mean-field Hamiltonian breaks the local SU(2)
gauge freedom of the original fermionic system. However,
there still exists a subgroup G ⊆ SU(2) (which is at least Z2)
such that the Ansatz remains invariant for all sites,

urr′ = W †
r urr′Wr′ , Wr ∈ G. (8)

The basic idea behind the PSG is that due to the system’s
gauge invariance any symmetry operation may be combined
with a gauge transformation

urr′ → W †
S(r)uS(r)S(r′ )WS(r′ ), (9)

which is referred to as a projective implementation of symme-
tries. Here, S is an element of the system’s symmetry group
acting on the lattice sites. The condition that an Ansatz urr′

satisfies the projective implementation of S is then given by

G†
S (S (r))uS(r)S(r′ )GS (S (r′)) = urr′ . (10)

Here and in the following, the specific site-dependent gauge
transformation which fulfills this equation is denoted by
GS (r). In other words, even though an Ansatz urr′ seems to
naively break the system’s lattice symmetries there may still
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exist a suitable gauge transformation such that the general-
ized symmetry condition in Eq. (10) is fulfilled. Different
projective implementations GS (r) satisfying Eq. (10), hence,
allow one to distinguish between different spin-liquid phases
with the same physical symmetries [5]. The above may be
summarized by noting that the PSG is an extension of the
symmetry group (SG) by the IGG:

PSG = SG � IGG. (11)

The first purpose of this work is to classify all PSGs for
systems with an octahedral point group using Eq. (10). In a
second step, we construct the corresponding Ansätze urr′ as
self-consistent saddle-point solutions and discuss their proper-
ties such as spinon band structures and physically observable
spin structure factors.

III. PSG REPRESENTATIONS FOR CUBIC LATTICES

We now apply the concepts outlined in the last section to
derive the projective representations of symmetries for lattices
with an octahedral point group. In the Sec. III A we start
with the sc lattice, followed investigations of the bcc and fcc
lattices in Secs. III B and III C, respectively. Particularly, we
will demonstrate how the PSG classification of the sc lattice
may be reused to treat the latter two systems.

A. Simple cubic lattice

The point group of the sc lattice is the octahedral group
Oh. One possible choice of defining its generators (which we
apply throughout this work) is given by


z(x, y, z) = (−x,−y, z), 
y(x, y, z) = (−x, y,−z),


xy(x, y, z) = (y, x,−z), I (x, y, z) = (−x,−y,−z),

P(x, y, z) = (z, x, y). (12)

The full space group includes the translations

Tx(x, y, z) = (x + 1, y, z), Ty(x, y, z) = (x, y + 1, z),

Tz(x, y, z) = (x, y, z + 1), (13)

where the components of r = (x, y, z) take integer values. For
the bcc and fcc lattices considered below we will keep the
convention that the lattice constant of the cubic unit cell is
always set to unity.

Aside from these lattice symmetries we assume that time-
reversal symmetry is satisfied. While time reversal T does not
change the lattice coordinates and commutes with all other

symmetry operations, it has a nontrivial action on the parton
operators T ( fr↑, fr↓) = ( fr↓,− fr↑). It then follows that time
reversal acts on the spinor fields as T (ψr ) = [(iτ 2ψr )†]T . It is
convenient to perform a global gauge transformation ψr →
−iτ 2ψr which yields a simplified action of time reversal:
T (ψr ) = [(ψr )†]T . If we now implement T as an operation
acting on the Ansatz, one finds T (urr′ ) = −urr′ and likewise
for the Lagrange multiplier fields T (aμ(r)) = −aμ(r).

A valid projective representation needs to obey the same
algebraic relations as the system’s space group itself. This
yields a set of constraints on the representation. For example,
all generators of the point group in Eq. (12), except for P
[which performs a rotation by 2π/3 around the (1,1,1) axis]
map back onto the identity when applied twice. Thus, they
need to be represented by a cyclic group of order 2 while P
forms a cyclic group of order 3. Most importantly, the gauge
transformation associated with the identity operation is the
IGG, which in our case is Z2. This means that in a projective
construction the identity is only defined up to a sign factor. As
demonstrated below, different choices of these signs lead to
different PSGs.

To ensure that different representations are gauge inequiv-
alent, one has to fix the gauge. It is convenient to choose a
gauge in which the gauge transformations GTμ

(r) related to
translations are represented by the identity matrix modulated
with a spatial sign structure. As explained in Appendix A one
can find a gauge in which

GTx (r) = ηz
zx
ηy

yx
τ 0, GTy (r) = ηz

zy
τ 0, GTz (r) = τ 0, (14)

where the signs ηzx = ±1, ηyx = ±1, and ηzy = ±1 can be
chosen independently (at least if no other symmetries are
considered). Hence, for a system with only translation sym-
metries Tx, Ty, Tz one would find 23 PSGs. Note that fixing
the GTμ(r) matrices does not yet fix the entire gauge freedom
but leaves the possibility to perform a global gauge transfor-
mation. The projective representations of the remaining point
group generators and time reversal are determined by consid-
ering successive applications of group transformations such
that the combined operation is given by the identity. Using
the fixed representation for GTμ(r) in Eq. (14) one can show
that the gauge transformations associated with the point group
generators may be brought into the form GS (r) = η

fS (r)
S gS

where ηS = ±1, fS (r) is a function yielding integer values
for all sites r, and gS is a 2 × 2 SU(2) matrix. An example
of this procedure is given in Appendix B where it is also
demonstrated that as a result of the symmetry P one finds
ηzx = ηyx = ηzy ≡ ηX = ±1. All PSGs for the sc lattice are
then given by

GTz (r) = τ 0, GTy (r) = ηz
X τ 0, GTx (r) = η

z+y
X τ 0, GT (r) = η

x+y+z
T gT , g2

T = ±τ 0, GI (r) = η
x+y+z
I gI ,

g2
I = ±τ 0, G
z (r) = η

x+y

 g
z , g2


z
= ±τ 0, G
y (r) = ηx+z


 g
y , g2

y

= ±τ 0, G
xy (r) = η
xy
X ηz


xy
g
xy ,

g2

xy

= ±τ 0, GP(r) = η
x(y+z)
X η

x+y
P gP, g3

P = ±τ 0, [gT , gO]± = 0, [gI , gO 
=I ]± = 0, [g
z , g
y ]± = 0,

g
z g
xy g
−1

y

g−1

xy

g
y = ±τ 0, g
z gPg−1

y

g−1
P = ±τ 0,

gPg
xy gPg
xy g
−1

y

= ±τ 0, η
η
xyηP = 1, (15)
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where the generators of the point group are denoted by O.
All parameters ηX , ηT , ηI , η
, η
xy , and ηP take the values
±1 and [. . .]± stands for the commutator or anticommutator.

It is worth emphasizing that Eq. (15) has been obtained
after performing a gauge transformation of the form W (r) =
ηx

wx
η

y
wyη

z
wz

τ 0 where ηwx = ±1, ηwy = ±1, ηwz = ±1. This
gauge transformation acts on the projective representations of
translations as GTμ

(r) → ηwμ
GTμ

(r), yielding a global sign
which can be absorbed by a redefinition of GTμ

(r). Fur-
thermore, the projective representations of the point group
elements remain unaffected, except for P and 
xy. For
these latter two symmetry operations the gauge transfor-
mation acts as G
xy (r) → η

x+y
wx η

x+y
wy G
xy (r) and GP(r) →

ηx+z
wx

η
x+y
wy η

y+z
wz GP(r). Thus, by properly choosing ηwμ

one ob-
tains the simplified sign structure of G
xy (r) and GP(r) as
presented in Eq. (15).

One finds that Eq. (15) can be solved by 21 gauge-
inequivalent sets of gS matrices which are listed in
Appendix C. Note that in all these solutions one has g
z =
g
y = τ 0. The total number of combinatorially distinct PSGs
is two to the power of the number of independent ηS pa-
rameters times the number of gauge-inequivalent sets of gS
matrices. The condition η
η
xyηP = 1 connects three dif-
ferent sign factors such that only two can be counted as
independent. This yields 21 × 25 = 672 PSGs for the sc lat-
tice. However, due to the property T (urr′ ) = −urr′ it is clear
that no finite mean-field Ansatz can be constructed if projec-
tive time reversal acts trivially (i.e., ηT = 1 and gT = τ 0).
Hence, when investigating actual Ansätze, only 21 × 25 −
9 × 24 = 528 cases need to be considered.

B. Body centered cubic lattice

We now extend the previous discussion to the bcc lattice.
While the space group Oh remains unaffected, a new generator
for translations needs to be incorporated, which corresponds
to a translation along the space diagonal by half the lattice
constant of the cubic unit cell:

t (x, y, z) = (x + 1/2, y + 1/2, z + 1/2). (16)

By viewing the bcc lattice as two interpenetrating sc lat-
tices with sublattice A = {r = (x, y, z)|x, y, z ∈ Z} and
B = {r = (x + 1

2 , y + 1
2 , z + 1

2 )|x, y, z ∈ Z} we may reuse
our results form the previous section. Here, we only sketch
the procedure and refer to Appendix D for details. Before
including t , we assume that each of the two sublattices inde-
pendently realizes one of the PSGs already classified. We may
symbolically write this as GS (r ∈ A) = GA

S (r) and GS (r ∈
B) = GB

S (r) where GA/B
S (r) fulfills Eq. (15). Initially, this con-

struction requires that the point group symmetries acting on
sublattice B need to leave one site rB

0 invariant in the same way
as the point group symmetries leave the origin rA

0 = (0, 0, 0)
on sublattice A unchanged. We choose this site as rB

0 =
( 1

2 , 1
2 , 1

2 ). As an example, site inversion IB acting on sublattice
B does not obey IB(x + 1

2 , y + 1
2 , z + 1

2 ) = (−x − 1
2 ,−y −

1
2 ,−z − 1

2 ), as one would naively expect, but operates as
IB(x + 1

2 , y + 1
2 , z + 1

2 ) = (−x + 1
2 ,−y + 1

2 ,−z + 1
2 ).

The extension by t , which connects the two sublattices,
adds further algebraic conditions which are obtained from

FIG. 1. Illustration of the bcc lattice where blue (red) points
denote sublattice A (B). The bold black lines in the upper right part of
the figure highlight a cubic unit cell where the dark blue and dark red
points are considered to lie inside this unit cell. The eight red points
are the first neighbors of the dark blue site in the center.

successive applications of symmetry operations yielding iden-
tity, similar to the approach in the previous section. It can
be shown that the representation matrices gA

S = gB
S and the

sign parameter ηA
S = ηB

S of the two sublattices have to be
identical for all symmetries. An important consequence is
that the sign factor corresponding to translations can only be
positive ηA

X = ηB
X = +1. This also simplifies the handling of

point group symmetries: Since inversion on sublattice B obeys
IB(r ∈ B) = TxTyTzI (r ∈ B), where I is the conventional in-
version satisfying I (r) = −r on both sublattices and Tμ is
associated with a trivial gauge transformation, one finds that
GI (r ∈ B) = GIB (r ∈ B). The same also holds for the other
point group symmetries, such that one can implement them
in the usual way where their action only leaves one point
r0 = (0, 0, 0) invariant. In total, the gauge transformations
associated with the symmetry operations are given by the
same equations as for the sc lattice [Eq. (15)] but additional
conditions for the projective representation of t have to be
included:

Gt (r) = η
x+y+z
t gt , g2

t = ±τ 0 , [gt , gS 
=
y,
z ]± = 0,

g
xy gPgt g
xy gP = ±gt . (17)

Note that the last three identities hold because all translations
Tμ are now represented by the identity and g
z = g
y = τ 0.
It is important to emphasize that the components x, y, z in
Eq. (17) label the cubic unit cell of a site at position r, i.e., for
a site on sublattice B they obey r = (x + 1

2 , y + 1
2 , z + 1

2 ) with
x, y, z ∈ Z (see Fig. 1). The projective representations defined
by the possible sets of gS matrices are listed in Appendix C.
Combined with the possible choices for the sign parameters,
one obtains a total of 59 × 25 = 1888 distinct PSGs for the
body centered cubic. Subtracting again the cases where time
reversal acts trivially such that no finite mean-field Ansatz can
be constructed, yields 59 × 25 − 23 × 24 = 1520.
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C. Face centered cubic lattice

We finally discuss the fcc lattice where we proceed in
analogy to the bcc lattice. Compared to the sc case, one now
has to add two more translations given by

t1(x, y, z) = (x, y + 1/2, z + 1/2),
(18)

t2(x, y, z) = (x + 1/2, y + 1/2, z).

The fcc lattice can be constructed by four sc sub-
lattices defined by A = {(x, y, z)|x, y, z ∈ Z}, B = {(x +
1
2 , y + 1

2 , z)|x, y, z ∈ Z}, C = {(x + 1
2 , y, z + 1

2 )|x, y, z ∈ Z},
and D = {(x, y + 1

2 , z + 1
2 )|x, y, z ∈ Z} which are connected

by t1 and t2. Using the same line of arguments as for the bcc
lattice we find that the gauge transformations again have to be
represented equally on all sublattices, i.e., GA

S = GB
S = GC

S =
GD

S . Furthermore, like for the bcc case, the sign factor cor-
responding to translations must be positive ηX = +1 (which
again simplifies the handling of point group symmetries due
to the same reason already discussed for the bcc lattice). The
gauge transformations associated with the new generators t1
and t2 and the additional algebraic relations for the gt1 and gt2
matrices have the form

Gt1 (r) = η
x+y+z
t gt1 , g2

t1 = ±τ 0, Gt2 (r) = η
x+y+z
t gt2 ,

g2
t2 = ±τ 0, (gt1 gt2 )2 = ±τ 0, [gT , gt1 ]± = 0,

[gT , gt2 ]± = 0, [gI , gt1 ]± = 0, [gI , gt2 ]± = 0,

[g
xy , gt2 ]± = 0, gt2 gt1 g
xy gt1 g
xy = ±τ 0,

gPgt2 g−1
P gt1 = ±τ 0, g
xy gPgt1 g
xy gPgt1 = ±τ 0. (19)

We again emphasize that x, y, z ∈ Z are the coordinates of the
cubic unit cell in which the site r lies. Note that there is only
one sign factor ηt for both transformations t1 and t2. Further-
more, in contrast to the bcc lattice one finds that Eq. (19) only
allows for solutions where the matrix representations for the
translations t1 and t2 are trivial, Gt1 (r) = Gt2 (r) = η

x+y+z
t τ 0.

As a consequence, one obtains the same gauge-inequivalent
sets of gS matrices as for the sc lattice (see Appendix C). This
means the total number of PSGs is 21 × 25 = 672 and after
subtracting the ones where the gauge transformation of time
reversal is trivial one finds 21 × 25 − 9 × 24 = 528.

IV. CONSTRUCTING SHORT-RANGE MEAN-FIELD
ANSÄTZE

With the PSG representations at hand we are now able
to construct mean-field Ansätze which satisfy the projective
symmetries. In this section, as an example, we explicitly con-
struct such Ansätze for the bcc lattice with nearest-neighbor
mean-field amplitudes. Afterward, we will discuss Ansätze for
all three lattices with mean-field amplitudes up to third neigh-
bors focusing more on their physical properties rather than
their construction. Therefore, this section can be considered as
a guide of how to use the PSG classification for constructing
Ansätze and readers only interested in the results may proceed
to the next section.

The entire construction is based on Eq. (10) where the
symmetry operators of the bcc lattice are given by S =
{Tx, Ty, Tz, t, T , I,
z,
y,
xy, P}. Since the gauge transfor-

mations of translations are all represented by the identity
GTμ

(r) = τ 0, it immediately follows that

ur+êμr′+êμ
= urr′ ≡ uδr, (20)

where δr = r′ − r. Note that this does not hold for the sc
lattice where a negative sign factor ηX = −1 is possible. There
are eight first neighbors on the bcc lattice described by the
vectors δr = {± 1

2 ,± 1
2 ,± 1

2 } where all combinations of signs
are possible, as shown in Fig. 1. Even though the mean-field
matrices only depend on δr = r′ − r and not on r and r′
separately, we fix r = (0, 0, 0) as a reference point to simplify
the discussion below. Thus, the nearest-neighbor mean-field
matrices considered here are urr′ = u(0,0,0),(±1/2,±1/2,±1/2) ≡
u(±1/2,±1/2,±1/2). Among these matrices we can choose one,
for instance u(1/2,1/2,1/2) ≡ uδr1 , and all others follow by
applying the point group operations. Before formulating re-
lations between different u(±1/2,±1/2,±1/2), we first specify the
general form of uδr1 . Time reversal dictates a property which
has to be fulfilled by all uδr:

−G†
T (r)urr′GT (r′) = urr′ ⇐⇒ −η

x′+y′+z′
T g−1

T uδrgT = uδr.

(21)

This means that for δr = δr1 where r and r′ lie in the same
cubic unit cell the sign factor ηT cancels out. Therefore,
uδr1 has to anticommute with the representation matrix gT
which is either given by τ 0 or by iτ 2 (see Appendix C).
Since a finite matrix cannot anticommute with the identity
one finds gT = iτ 2. This requires that in the expansion of
the mean-field matrix two coefficients vanish α0

δr1
= α2

δr1
= 0

[see Eq. (6)] and consequently (uδr1 )† = uδr1 . Generally, the
effect of Hermitian conjugation is given by (uδr )† = u−δr such
that uδr1 = u−δr1 = u(−1/2,−1/2,−1/2). The vector −δr1 points
from the origin to the cubic unit cell with the coordinates
(x, y, z) = (−1,−1,−1) such that the sign factor ηT does not
cancel out in Eq. (21). It is then obvious that only ηT = +1
leads to a finite Ansatz.

Combining Hermitian conjugation and inversion leads to
another condition that holds for all mean-field matrices,

G†
I (I (r))uI (r)I (r′ )GI (I (r′)) = urr′

⇐⇒ η
I (x′ )+I (y′ )+I (z′ )
I g−1

I u−δrgI = uδr

⇐⇒ η
I (x′ )+I (y′ )+I (z′ )
I g−1

I (uδr )†gI = uδr. (22)

In the case δr = δr1 this condition demands that uδr1 has to
commute with the representation matrix gI . Thus, gI can be
represented by the identity or by iτ 3. Since this equally holds
for u−δr1 one finds that the corresponding sign factor has to be
positive, ηI = +1.

Next, we consider a requirement dictated by permutation:

G†
P(P(r))uP(r)P(r′ )GP(P(r′)) = urr′

⇐⇒ η
P(x′ )+P(y′ )
P g−1

P uP(δr)gP = uδr. (23)

Using P(δr1) = δr1 and observing that the sign factor cancels
out it follows that uδr1 has to commute with gP which can only
be accomplished by a trivial representation gP = τ 0 (see Ap-
pendix C). In contrast to the considerations for time reversal
T and inversion I , the case δr = −δr1 does not lead to the
condition ηP = 1 in Eq. (23).
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TABLE I. Possible PSG representations for first-neighbor
Ansätze on the bcc lattice. Note that in the second line at least one of
the matrices gI , g
xy , or gt must be given by iτ 3.

ηT gT ηPgP ηI gI η
xy g
xy ηt gt

+iτ 2 ±τ 0 +τ 0 +τ 0 +τ 0

+iτ 2 ±τ 0 +τ 0/ + iτ 3 +τ 0/ + iτ 3 +τ 0/ + iτ 3

The other point group operations can be used to relate
different u(±1/2,±1/2,±1/2) with each other:

η

z (x′ )+
z (y′ )

 u
z (δr) = uδr, (24)

η

y (x′ )+
y (z′ )

 u
y (δr) = uδr, (25)

η

xy (z′ )

xy

g−1

xy

u
xy (δr)g
xy = uδr. (26)

Combining 
z, 
y, or 
xy with inversion leads
to further conditions. For instance, one finds that

xy( 1

2 , 1
2 , 1

2 ) = ( 1
2 , 1

2 ,− 1
2 ) = 
z(I ( 1

2 , 1
2 , 1

2 )) which yields
gI g

−1

xy

uδr1 g
xy g
−1
I = uδr1 , i.e., g
xy g

−1
I has to commute with

uδr1 and, consequently, g
xy = τ 0 or g
xy = iτ 3. Furthermore,
from the relation 
xy( 1

2 ,− 1
2 ,− 1

2 ) = I ( 1
2 ,− 1

2 ,− 1
2 ) =

(− 1
2 , 1

2 , 1
2 ) it follows that the sign factor for 
xy has to be

positive, η
xy = +1. The constraint η
xyη
ηP = 1 determines
the remaining sign factor ηP = η
.

It remains to be shown how t transforms the mean-field
matrices. Using

G†
t (t (r))ut (r)t (r′ )Gt (t (r′)) = urr′ (27)

for the case r′ − r = δr1 yields ηt g
−1
t uδr1 gt = uδr1 where the

invariance of the mean-field matrices under lattice translations
Tx, Ty, and Tz was used. Repeating the same for u−δr1 one finds
g−1

t uδr1 gt = uδr1 . Thus, we conclude that ηt = +1 and uδr1 has
to commute with gt which leads to the two possibilities gt =
τ 0 or iτ 3.

Putting everything together we have identified all PSG
representations on the nearest-neighbor level which are distin-
guished by ηP (which is either +1 or −1) and gI , g
xy , gt can
all be independently given by τ 0 or iτ 3. One can subdivide
these 16 PSGs into 2 groups (see Table I): In the first case
gI = g
xy = gt = τ 0 and in the second case at least one of the
matrices gI , g
xy , gt is given by iτ 3. The latter representations
(second line in Table I) require that an Ansatz as given in
Eq. (6) has only finite α3

δr coefficients such that uδr = α3
δrτ

3

for all δr (i.e, not only for nearest-neighbor distances). In the
first case where gI = g
xy = gt = τ 0 the projective symme-
tries are less restrictive and an Ansatz can have the general
form uδr = α1

δrτ
1 + α3

δrτ
3. Particularly, the “direction” of an

Ansatz uδr in the τ 1-τ 3 plane as defined by the coefficients
(α1

δr1
, α3

δr1
) is the same for all nearest neighbor δr. Since all

projective symmetries except for time reversal are represented
by the identity one can apply a global gauge transformation
W = e−iθτ 2

, with θ = θ (α1
δr1

, α3
δr1

) denoting the polar angle
in the plane spanned by τ 1 and τ 3, without altering the PSG
representation. This gauge transformation rotates the nearest-
neighbor mean-field matrices along the τ 3 axis and thus

α1
δr = 0. After this rotation, there are only two distinct

mean-field Ansätze on the bcc lattice for nearest-neighbor
amplitudes which are distinguished by the sign parameter ηP.
The precise form of these two Ansätze and their physical
properties are discussed in Sec. V.

Some comments about the Lagrange multiplier fields are
in order. In analogy to the relations for the mean-field matri-
ces in Eq. (10), they have to satisfy conditions ensuring the
invariance under projective symmetries:

G†
S (S(r))aμ(S (r))τμGS (S(r)) = aμ(r)τμ. (28)

One immediately finds that aμ(r + êν ) = aμ(r) ≡ aμ for ν =
{x, y, z} by taking advantage of translational invariance. Since
the two gauge transformations in Eq. (28) act on the same
site, the η factors square and, hence, become irrelevant. For
the other symmetry operations the term aμτμ transforms
according to

−g−1
T aμτμgT = aμτμ, g−1

O aμτμgO = aμτμ, (29)

where O is a point group generator. In other words,
aμτμ has to commute (anticommute) with the representation
matrix gO (gT ).

The above discussion shows that the matrix structure of
urr′ and the type of allowed Lagrange multipliers aμ, which
both determine the mean-field Hamiltonian, are fixed by the
PSG. However, symmetry properties alone do not determine
the actual values of the nearest-neighbor hopping amplitude
α3

δr1
≡ χ1 and the chemical potential a3. They may, however,

be obtained self-consistently by calculating the expectation
values in Eqs. (3) and (5) for the ground state of the mean-field
Hamiltonian. These self-consistent mean-field theories form
the basis for the discussions in the next section.

V. SHORT-RANGE MEAN-FIELD STATES

In Sec. III we have shown that there exist hundreds of
fermionic PSG representations for the sc, bcc, and fcc lattices.
These large numbers follow from the fact that the octahedral
group Oh is the largest point group in three dimensions, con-
taining a total of 48 elements. In simple terms, the larger the
numbers of symmetries, the more algebraic relations between
them exist, which increases the possibilities for constructing
PSG representations. However, as demonstrated in the last
section, when trying to determine actual mean-field Ansätze
with short-range amplitudes only, the symmetries act as con-
straints which drastically reduce their number. Hence, the
considered systems are characterized by a pronounced dis-
crepancy between a large variety of PSGs but very limited
numbers of mean-field theories, such that in this section only
a few cases have to be discussed for each of the three lattices.
This also implies that if quantum spin liquids exist in these
systems their low-energy effective theories and excitation
spectra (e.g., spin structure factor) are already predetermined
to some extent. This property possibly simplifies their identi-
fication in experiments.

For each of the three lattices, we start with the nearest-
neighbor case and then add terms up to third neighbors. We
emphasize that it is actually unlikely that a mean-field model
with only nearest-neighbor terms can describe a quantum spin
liquid on the sc and bcc lattices [42–44]. This is because on a
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TABLE II. Possible PSG representations on the sc lattice which
yield Ansätze with symmetry-allowed first- and second-neighbor
amplitudes. Note that some of the listed cases have been gauge trans-
formed compared to Table IV to ensure that the nearest-neighbor
Ansätze all consist of hopping terms. Note that in the second line
either gI or g
xy must be given by iτ 3.

ηX ηT gT ηPgP ηI gI η
xy g
xy

+ +iτ 2 +τ 0 +τ 0 +τ 0

+ +iτ 2 +τ 0 +τ 0/ + iτ 3 +τ 0/ + iτ 3

+ −iτ 3 +τ 0 +τ 0/ − iτ 2 +τ 0

+ −iτ 3 −τ 0 +τ 0/ − iτ 2 −iτ 2

− +iτ 2 −τ 0 +τ 0/ + iτ 3 −iτ 2

− −iτ 3 +τ 0 +τ 0/ − iτ 2 +iτ 3

mean-field level, the range of spinon hopping/pairing ampli-
tudes is directly tied to the range of spin interactions J1, J2, . . .

and beyond mean field one may assume that such a constraint
exists at least approximately. Therefore, one would expect that
a nearest-neighbor mean-field model only describes quantum
spin liquids in systems with dominant nearest-neighbor spin
interactions J1 in the presence of additional frustrated longer-
range interactions. However, without being frustrated, the sc
system has been rigorously shown to order into a simple Néel
state for J1 > 0 [45] (where the two sublattices have oppo-
site spin orientations) and, the same has been numerically
demonstrated for the bcc lattice [29], hence, a quantum spin
liquid would not occur in these systems with nearest-neighbor
interactions only. We will still briefly consider this case, as it
forms the basis for our investigations of longer-range models.

In the following, we discuss all the relevant cases for the
three lattices.

A. Simple cubic lattice

On the sc lattice, two different types of mean-field Ansätze
can be constructed, and they are classified according to the
sign value of ηX . The case of ηX = +1 corresponds to transla-
tionally invariant Ansätze and ηX = −1 yields Ansätze which
double the unit cell in two of the three cubic lattice vector
directions. We shall only consider mean-field Ansätze with
nonvanishing nearest-neighbor amplitudes, and these corre-
spond to PSG representations with gP = τ0 in Appendix C.

1. SC 1: ηX = +1 state

This case is realized for the projective representations in
the first four lines of Table II. At the nearest-neighbor level
only a single Ansatz with uniform hopping and a chemical
potential can be constructed,

SC 11 : uδr = χ1τ
3, ∀ δr first neighbors, a3 
= 0 ,

(30)

which realizes a gapless SU(2) spin liquid. Here, and in the
following the notation “SC Xy” indicates the Ansatz enu-
merated by “X” with “y” being the range of the mean-field
amplitudes. Possible subcases for longer-range terms are la-
beled “SC Xya”, “SC Xyb”, etc. The self-consistently calculated
hopping amplitude χ1, onsite term a3, and mean-field energy

per site ε for J1 = 1 are given by

χ1 = 0.167, a3 = 0.0, ε = −0.188. (31)

The spinon dispersion of this Ansatz for both bands is shown
in Fig. 2(a). (Note that even though the dispersion of a uniform
hopping term on a Bravais lattice can be presented with one
band only, here and in the following, we prefer to use the
two-component spinor basis to be consistent with cases where
pairings are finite). In Fig. 2(b), we see the presence of a Fermi
surface which can be topologically characterized as a triply
periodic Schwarz-P surface with an Euler characteristic χ =
−4 [27,46]. The dynamical structure factor (see Appendix E
for a brief explanation of how the structure factor is calcu-
lated) shown in Fig. 2(c) displays two principal variations in
intensity, the first one is dispersive arising out of the � point
with strong and localized distribution of spectral weight at
progressively higher ω as one traverses the �X segment. This
feature is a direct consequence of the system’s Fermi surface.
The second noticeable characteristic is the appearance of a
relatively weaker conelike signal around the R point.

There exist three distinct ways of incorporating further
neighbor amplitudes on top of the nearest-neighbor Ansatz
of Eq. (30). The first and most general scenario corresponds
to the PSG in the first line of Table II which allows for the
simultaneous occurrence of hopping and pairing amplitudes
on second- and third-nearest-neighbor bonds:

SC 12a : uδr = χ2τ
3 + �2τ

1, ∀ δr second neighbors,

SC 13a : uδr = χ3τ
3 + �3τ

1, ∀ δr third neighbors.
(32)

Here, second- (third-) neighbor bonds are of the form
δr = (±1,±1, 0) and permutations of coordinates [δr =
(±1,±1,±1)]. Note that the second-neighbor terms in
Eq. (32) lower the IGG down to U(1), in particular, the �2

term opens a gap in the spinon spectrum except of nodal
Dirac points along �R at (π/2, π/2,±π/2). The inclusion
of third-neighbor terms further reduces the IGG down to Z2.

The second way of including further neighbor amplitudes
(“SC 12b” and “SC 13b”) is given by the second line of
Table II. Compared to Eq. (32) the projective implementation
of symmetries forbid spinon pairing terms, i.e., �2 = �3 = 0.
Our self-consistent calculations indicate that for a generic set
of interaction parameters in the Hamiltonian, the �2 and �3

terms are finite and lower the mean-field energies ε such that
the PSG in the first line turns out to be energetically favorable,
in general. Therefore, we will not further discuss the case
�2 = �3 = 0, but instead focus on the more general type of
Ansatz in Eq. (32).

The third way corresponds to the different cases in the third
and fourth lines in Table II. In this Ansatz class, the projec-
tive symmetries dictate a uniform second-neighbor imaginary
pairing term and a third-neighbor real hopping term:

SC 12c : uδr =�2τ
2, ∀ δr second neighbors,

SC 13c : uδr =χ3τ
3, ∀ δr third neighbors. (33)

This case may, likewise, be obtained from the general Ansatz
in Eq. (32) by setting χ2 = �3 = 0 and performing a global
gauge transformation around the τ 3 axis (which, however,
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FIG. 2. Nearest-neighbor model SC 11. (a) Spinon dispersion of Eq. (30) along the high-symmetry path through the Brillouin zone where
� = (0, 0, 0), X = (π, 0, 0), M = (π, π, 0), and R = (π, π, π ) (and symmetry-related wave vectors). The Fermi surface is depicted in (b).
(c) Dynamical spin structure factor plotted along the high-symmetry path in reciprocal space.

changes the g matrices in the third and fourth lines in Table II).
Since the exclusion of χ2 and �3 terms again increases the en-
ergy, this case also does not need to be considered separately.

We consider the extension in Eq. (32) for two special
coupling scenarios for J2 and J3 where enhanced quantum
fluctuations are expected, thereby increasing the propen-
sity for spin-liquid behavior. The first scenario is given
by (J2/J1, J3/J1) = (0.25, 0) where the corresponding clas-
sical model undergoes a phase transition between the q =
(π, π, π ) Néel and q = (π, π, 0) stripe ordered phases (see
Fig. 3), and some studies have hinted at the possible exis-
tence of a nonmagnetic phase in the vicinity of this point
for the S = 1

2 model [33,48,49]. In the second scenario, we
consider (J2/J1, J3/J1) = (0.5, 0.25) which is a triple point
of the q = (π, π, π ), q = (π, π, 0), and q = (π, 0, 0) phases
in the corresponding classical model (see Fig. 3). Recent
studies [20–22] have identified a nonmagnetic phase (marked
by the red area in Fig. 3) in the vicinity of this point for the

FIG. 3. Quantum phase diagram of the S = 1
2 antiferromagnetic

J1-J2-J3 Heisenberg model on the sc lattice. Gray regions denote
the classical phases with the corresponding ordering wave vectors
indicated. Spin configurations are illustrated for all classical orders.
Thick black lines are the classical phase boundaries. The red area is
the regime where Ref. [21] identifies a quantum paramagnetic phase.
Red points mark the sets of Heisenberg couplings considered here.

S = 1
2 model. While both sets of couplings are characterized

by increased quantum fluctuations, they lie in proximity to
(or possibly within) magnetically ordered phases. It is worth
mentioning that magnetic long-range order cannot be de-
scribed within our mean-field framework since the Ansatz in
Eq. (4) does not contain any time-reversal symmetry-breaking
magnetic terms. Hence, it is generally not expected that our
results contain residual signatures of nearby magnetically
ordered phases.

For the first set of couplings (J2/J1, J3/J1) = (0.25, 0) the
Ansatz in Eqs. (32) yields self-consistently calculated ampli-
tudes given by

χ1 = 0.167, χ2 = 0.0, �2 = 1.97 × 10−3,

a3 = 0.0, ε = −0.188,

which does not lead to any noticeable changes compared
to the J1 only case. In the second coupling scenario, at
(J2/J1, J3/J1) = (0.5, 0.25), we find a small additional χ3

term and a comparatively smaller �2 term:

χ1 = 0.167, χ2 = 0.0, �2 = 0.0127, χ3 = −0.0598,

�3 = 0.0, a3 = 0.0, ε = −0.197. (34)

As expected, the presence of a finite �2 in the self-consistent
parameters of the SC 13a Ansatz [Eq. (34)] gaps out the
Fermi surface leaving behind nodal Dirac points along �R at
(π/2, π/2,±π/2) [see Fig. 4(a)]. Due to the smallness of �2

term, its manifestation in the dynamical spin structure factor
is not visible, while, we notice that the effect of a finite χ3 is to
suppress the intensity and broaden the relatively sharp signal
[see Fig. 4(b)] of the χ1 only case [Eq. (30) and Fig. 2(c)]
along the �X segment.

2. SC 2: ηX = −1 state

The mean-field Ansätze in this case corresponding to the
last two lines of Table II require doubling the unit cell in both
x and y directions. At the nearest-neighbor level one obtains
the following sign structure of real hopping terms:

SC 21 : u(±1,0,0) = χ1τ
3, u(0,±1,0) = ηx

X χ1τ
3,

u(0,0,±1) = η
(x+y)
X χ1τ

3, (35)
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FIG. 4. SC 13a model with mean-field amplitudes up to third
neighbors. (a) Self-consistent spinon dispersion for the first-neighbor
terms in Eq. (30), second- and third-neighbor terms in Eqs. (32)
[fixed to their self-consistently determined values given in Eq. (34)]
along the high-symmetry path through the first Brillouin zone.
(b) Corresponding dynamical spin structure factor along the same
path in reciprocal space.

and a uniform onsite chemical potential term a3. This Ansatz
realizes a SU(2) spin liquid which is gapless at two isolated
points (π/2, π/2,±π/2) in the reduced Brillouin zone kx ∈
(0, π ), ky ∈ (0, π ), kz ∈ (−π, π ). The self-consistently cal-
culated hopping amplitude χ1, onsite term a3, and mean-field
energy per site ε for J1 = 1 are given by

χ1 = 0.199, a3 = 0.0, ε = −0.267. (36)

This energy is considerably lower compared to that of
Eq. (30). The spinon dispersion of this state is shown in
Fig. 5(a). The dynamical spin structure factor in Fig. 5(b) dis-
plays an entirely different distribution of signal compared to
the SC 1 case with weakly dispersing features at low energies
around the X , M, and R points, while at intermediate energies
one observes a high-intensity concentration of diffuse spectral
weight.

The inclusion of second-neighbor amplitudes in the Ansatz
of Eq. (35) follows a similar scheme as in the SC 1 case. The
most general second-neighbor extension is given by the fifth
line of Table II when ηI gI = +τ 0, allowing for a simultaneous
existence of hopping and pairing terms:

SC 22a : u(±1,±1,0) = ηx
X (χ2τ

3 + �2τ
1),

u(±1,0,±1) = −η
(x+y)
X (χ2τ

3 + �2τ
1),

u(0,±1,±1) = η
y
X (χ2τ

3 + �2τ
1), a3 = 0. (37)

Γ X M R Γ M
−1.5

0

1.5

(a)

k

ε(
k
)

(b)

FIG. 5. Nearest-neighbor model SC 21. (a) Spinon dispersion of
Eq. (35) along the high-symmetry path through the Brillouin zone.
(b) Dynamical spin structure factor plotted along the high-symmetry
path in reciprocal space.

Here, (±1,±1, 0) denotes the four bonds (1,1,0), (1,−1, 0),
(−1, 1, 0), (−1,−1, 0) and equivalently for the other terms.
This Ansatz lowers the IGG from SU(2) to U(1), and splits the
degeneracy of the bands but keeps the gapless point along �R
intact. Other ways of including second-neighbor terms such
as for the case ηI gI = +iτ 3 in the fifth line or the various
cases in the last line of Table II are more restrictive and
forbid parts of the terms in Eq. (37). In either case, how-
ever, self-consistently calculated second-neighbor terms are
vanishingly small at moderate J2. Similarly, third-neighbor
terms are either forbidden by symmetry or numerically eval-
uate to very small values. Thus, this spin-liquid phase is
rather insensitive with respect to J2 and J3 couplings such
that the identified quantum-spin-liquid phase is the same
for both sets of couplings. Furthermore, in both cases the
self-consistent mean-field amplitudes, spinon dispersion, and
dynamical spin structure factor are nearly the same and repre-
sented by Eqs. (35) and (36) and Fig. 5.

Since the mean-field energies of the SC 2 case are signif-
icantly lower compared to the SC 1 Ansatz, we conclude that
Fig. 5(b) represents a typical intensity distribution of the dy-
namical spin structure factor for possible quantum spin liquids
on the sc lattice. Our analysis also shows that third-neighbor
amplitudes are required in the Ansätze to realize a Z2 quantum
spin liquid on the sc lattice. A summary of the short-range
mean-field models and the corresponding projective imple-
mentations of symmetries is given in Appendix F.

B. Body centered cubic lattice

We have already found in Sec. IV that on the nearest-
neighbor level, the bcc lattice only allows for two different
Ansätze which are distinguished by their sign factor ηP. While
in the case ηP = +1 (referred to as BCC 1) only uniform hop-
ping and pairing amplitudes are possible, the representations
with ηP = −1 (called BCC 2) are characterized by mean-field
amplitudes which are modulated by certain sign patterns. In
the following two subsections we discuss these cases in more
detail and demonstrate how they can be physically distin-
guished by their spin structure factor.

1. BCC 1: ηP = +1 state

The BCC 1 mean-field Hamiltonian on the nearest-
neighbor level only contains a simple uniform hopping term
and a chemical potential

BCC 11 : uδr = χ1τ
3, ∀ δr first neighbors, a3 
= 0,

(38)

for which the IGG is SU(2). The self-consistently calculated
hopping amplitude χ1, onsite term a3, and mean-field energy
per site ε for J1 = 1 are given by

χ1 = 0.129, a3 = 0.0025, ε = −0.149. (39)

The spinon dispersion of this Ansatz for both bands is shown
in Fig. 6(a). The system exhibits a Fermi surface, illustrated in
Fig. 6(b), which consists of (almost) parallel planes forming
a cube in momentum space. Due to the presence of a small
a3 term, the Fermi surface is slightly distorted compared to
a perfect cube. The dynamical structure factor illustrated in
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FIG. 6. Nearest-neighbor model BCC 11. (a) Spinon dispersion of Eq. (38) along a path through the first Brillouin zone where H =
(0, 0, 2π ), N = (0, π, π ), and P = (π, π, π ) (and symmetry-related wave vectors). The Fermi surface is depicted in (b) where the green
region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.

Fig. 6(c) shows strong intensities around the H point [i.e.,
q = (2π, 0, 0) and symmetry-related wave vectors]. This
spectral distribution can be understood from the form of the
Fermi surface in which two opposite planes are connected by
a nesting vector q = (2π, 0, 0). A second characteristic is the
conelike signal around the � point. The opening angle of the
cone can be linked to the spinon Fermi velocity vF. Comparing
this angle for different directions emanating from the � point,
one finds that it is smaller on the line �P than on the line �H
indicating a momentum-dependent Fermi velocity.

We now investigate longer-range mean-field terms in the
BCC 1 case. As explained in Sec. IV, one can apply a cer-
tain gauge transformation such that on the nearest-neighbor
level the two groups of projective representations in Table I
become indistinguishable. However, this is no longer possi-
ble for longer-range terms, i.e., when allowing for second-
and third-neighbor amplitudes on top of the nearest-neighbor
model in Eq. (38) one needs to distinguish between these two
cases. Particularly, for the PSGs in the first line, hopping and
pairing amplitudes of second- and third-neighbor type may
occur simultaneously:

BCC 12 : uδr = χ2τ
3 + �2τ

1, ∀ δr second neighbors,

BCC 13 : uδr = χ3τ
3 + �3τ

1, ∀ δr third neighbors. (40)

Here, second- (third-) neighbor bonds are of the form δr =
(±1, 0, 0) [δr = (±1,±1, 0)], and permutations of coordi-
nates. For the PSGs in the second line of Table I, the projective
implementations of symmetries forbid spinon pairing terms,
i.e., �2 = �3 = 0. However, all our self-consistent calcula-
tions indicate that finite �2 and �3 terms significantly lower
the mean-field energies ε such that the PSGs in the second line
are energetically unfavorable. Therefore, we will not further
discuss the case �2 = �3 = 0 but focus on the more general
type of Ansatz in Eq. (40). Note that the second-neighbor
terms in Eq. (40) break the IGG down to U(1) while the
inclusion of third-neighbor terms further reduces the IGG
down to Z2.

The terms in Eq. (40) are self-consistently generated for
spin models with frustrating antiferromagnetic second- and
third-neighbor spin interactions J2 and J3. Here, we con-
sider two special coupling scenarios for J2 and J3 where

enhanced quantum fluctuations are expected, increasing the
propensity for spin-liquid behavior. The first case is given by
J2/J1 = 2

3 , J3 = 0 where the corresponding classical spin sys-
tem undergoes a phase transition between the aforementioned
q = (2π, 0, 0) Néel state and a stripe ordered q = (π, π, π )
phase [29,33,50,51] (see the phase diagram in Fig. 7). In the
second case, we consider (J2/J1, J3/J1) = ( 2

3 , 1
4 ) where recent

studies have identified a magnetically disordered phase [24]
(red area in Fig. 7).

The self-consistently calculated amplitudes for
(J2/J1, J3/J1) = ( 2

3 , 0) are given by

χ1 = 0.116, χ2 = −4.7 × 10−4, �2 = 0.106,

a3 = −9.1 × 10−4, ε = −0.178. (41)

The pairing term opens a gap in the spectrum as illustrated
in Fig. 8(a). As a result, the conelike signal around the �

FIG. 7. Phase diagram of the classical antiferromagnetic J1-J2-J3

Heisenberg model on the bcc lattice. Gray regions denote the clas-
sical phases with the corresponding ordering wave vector indicated.
Thick black lines are the classical phase boundaries. The red area
is the regime where Ref. [24] identifies a nonmagnetic phase. Red
points mark the sets of Heisenberg couplings considered here. On
the left and right sides of the phase diagram we depict the states
with ordering wave vectors q = (2π, 0, 0) and q = (π, π, π ). Note
that in the q = (2π, 0, 0) state the two sublattices have opposite spin
orientations. For the q = (π, π, π ) order, the B sublattice has the
same spin configuration as the A sublattice, but globally rotated by
an angle π/2.
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(a) (b)

FIG. 8. BCC 12 model with mean-field amplitudes up to second
neighbors. (a) Self-consistent spinon dispersion for the first-neighbor
terms in Eq. (38) and second-neighbor terms in Eq. (40) along a path
through the first Brillouin zone. (b) Corresponding dynamical spin
structure factor along the same path in reciprocal space.

point and the high intensities at the H point disappear in
the dynamical spin structure factor [see Fig. 8(b)]. Instead,
a characteristic pattern of three arcs appears which are located
along the lines �H , HP, and P�.

In the second case where (J2/J1, J3/J1) = ( 2
3 , 1

4 ) we find
small additional χ3 and �3 terms while the other amplitudes
remain nearly unchanged:

χ1 = 0.116, χ2 = −2.8 × 10−4, �2 = 0.105,

χ3 = −8.7 × 10−5, �3 = −0.014, a3 = −9.1 × 10−4,

ε = −0.178. (42)

As compared to Fig. 8 these modifications only marginally
modify the spinon spectrum and the spin structure factor,
indicating that this spin-liquid phase is rather insensitive with
respect to J3 interactions. Hence, the spin structure factor in
Fig. 8(b) represents the characteristic magnetic response in the
BCC 1 case.

2. BCC 2: ηP = −1 state

In the case ηP = −1, the nearest-neighbor hopping ampli-
tudes have a direction-dependent sign structure induced by a
nontrivial action of the transformations 
z, 
y, and P:

BCC 21 : u(1/2,1/2,1/2) = χ1τ
3 = u(−1/2,−1/2,−1/2)

= u(1/2,−1/2,1/2) = u(−1/2,1/2,−1/2)

= u(1/2,1/2,−1/2) = u(−1/2,−1/2,1/2)

= −u(−1/2,1/2,1/2) = −u(1/2,−1/2,−1/2), a3 
= 0 . (43)

As can be seen, one of the four nearest-neighbor directions
carries hopping amplitudes with opposite signs. The IGG of
this Ansatz remains SU(2). The self-consistent mean-field
parameters and energy per site for a nearest-neighbor coupling
J1 = 1 are given by

χ1 = 0.152, a3 = −0.0045, ε = −0.208. (44)

Most importantly, already on the nearest-neighbor level, the
energy of this state is significantly lower than for the BCC 1
case. The corresponding spinon dispersion shown in Fig. 9(a)
features a Fermi surface [Fig. 9(b)] which has an entirely dif-
ferent shape compared to the nearest-neighbor BCC 1 Ansatz.
This also reflects in the dynamical spin structure factor which,
in absence of any nesting vectors, exhibits a more evenly dis-
tributed intensity with a characteristic arc emanating from the
� point and reaching its maximum at the H point [Fig. 9(c)].
In contrast to the BCC 1 case much of the total weight appears
between � and H while the region between � and P shows a
relatively small signal.

The projective implementation of symmetries in this PSG,
characterized by the sign factors η
 = ηP = −1, dictates that
no second-neighbor mean-field terms are allowed. This also
implies that when adding second-neighbor J2 interactions,
the results from the J1-only case remain unchanged. Third-
neighbor terms can exist and similarly to the BCC 1 case
one needs to distinguish between the two representations in
Table I. For the PSG in the first line, the third-neighbor terms
include spinon hopping and pairing of the form

BCC 23 : u(1,1,0) = χ3τ
3 + �3τ

1 = u(−1,−1,0)

= u(0,1,1) = u(0,−1,−1) = u(1,0,−1) = u(−1,0,1)

= −u(1,0,1) = −u(−1,0,−1) = −u(1,−1,0)

= −u(−1,1,0) = −u(0,1,−1) = −u(0,−1,1),

(45)

while for the PSG in the second line the pairing terms are
forbidden, �3 = 0. Since we again find that a finite �3 low-
ers the energy compared to �3 = 0 we only treat the more
general case where spinon hoppings and pairings are both
present. Note that similar to the first-neighbor amplitudes in
Eq. (43) the third-neighbor terms show a direction-dependent
sign pattern.

FIG. 9. Nearest-neighbor model BCC 21. (a) Spinon dispersion of Eq. (43) along a path through the first Brillouin zone. The Fermi surface
is depicted in (b) where the green region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.
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(a) (b)

FIG. 10. BCC 23 model with mean-field amplitudes up to third
neighbors. (a) Self-consistent spinon dispersion for the first-neighbor
terms in Eq. (43) and third-neighbor terms in Eq. (45) along a path
through the first Brillouin zone. (b) Corresponding dynamical spin
structure factor along the same path in reciprocal space.

The self-consistent mean-field amplitudes for
(J2/J1, J3/J1) = ( 2

3 , 1
4 ) given by

χ1 = 0.151, χ3 = −5.8 × 10−4, �3 = 0.0283,

a3 = −0.0037, ε = −0.209 (46)

differ only slightly from the J1-only case, however, the finite
�3 term breaks the IGG down to Z2. The pairing term gaps
out parts of the Fermi surface but leaves behind a nodal Dirac
point at P = (π, π, π ) [Fig. 10(a)]. Due to the smallness of
�3, the dynamical spin structure factor, shown in Fig. 10(b),
deviates from the one in Fig. 9(c) only at low energies where
the signal is suppressed. Since the mean-field energies are sig-
nificantly smaller compared to the BCC 1 case, this analysis
suggests that Figs. 9(c) and 10(b) represent typical intensity
distributions of the spin structure factor for possible quantum
spin liquids on the bcc lattice.

An overview of the short-range mean field models and the
corresponding projective implementations of symmetries can
be found in Appendix F.

C. Face centered cubic lattice

We finally treat the fcc lattice where a classification of
PSGs on the nearest-neighbor level leads to four different
cases listed in Table III. Similar to the bcc lattice in the
previous section one can perform a gauge transformation gen-
erated by τ 2 such that the nearest-neighbor Ansätze in the first
two lines become identical (this, however, does not work for
longer-range amplitudes). Furthermore, the third and fourth
lines yield Ansätze which can be transformed into each other
by a simple permutation of the Cartesian axes. Consequently,
only two nearest-neighbor cases need to be considered, where

TABLE III. Possible PSG representations for first-neighbor An-
sätze on the fcc lattice. Note that in the second line at least one of the
matrices gI , g
xy must be given by iτ 3.

ηT gT ηPgP ηI gI η
xy g
xy

+iτ 2 +τ 0 +τ 0 +τ 0

+iτ 2 +τ 0 +τ 0/ + iτ 3 +τ 0/ + iτ 3

+iτ 2 +ei π
3 τ2 +τ 0 +iτ 3

+iτ 2 +ei 2π
3 τ2 +τ 0 +iτ 3

the projective action of P is implemented as gP = τ 0 or as
gP = ei π

3 τ 2
.

1. FCC 1: gP = τ0 state

We again start our discussion with first-neighbor Ansätze
and then add terms up to third neighbors. A Heisenberg model
on the fcc lattice with only nearest-neighbor spin interactions
J1 is already frustrated and there are, indeed, numerical stud-
ies predicting a magnetically disordered state [34,52]. The
enhanced quantum fluctuations in this model stem from the
fact that the corresponding classical spin system exhibits lines
in reciprocal space along which the ground-state energies are
degenerate [26].

The Ansatz class with gP = τ 0, represented by the first and
second lines of Table III, consists of a uniform hopping on
nearest-neighbor bonds,

FCC 11 : uδr = χ1τ
3, ∀ δr first neighbors, a3 
= 0,

(47)

where δr = (± 1
2 ,± 1

2 , 0) (and permutations of coordinates)
and the IGG is U(1). We find the following self-consistent
mean-field amplitudes and ground-state energy for J1 = 1:

χ1 = 0.109, a3 = 0.204, ε = −0.156. (48)

This Ansatz has a spinon dispersion and Fermi surface shown
in Figs. 11(a) and 11(b). The dynamical spin structure factor
in Fig. 11(c) exhibits a rather homogeneous distribution of
magnetic response where the flanks of a cone around the �

point form a region of larger signal.
When adding second- and third-neighbor mean-field am-

plitudes one needs to distinguish between the first two lines of
Table III. Similar to the BCC 1 case, the first line allows for a
more general Ansatz with spinon hopping and pairing

FCC 12 : uδr = χ2τ
3 + �2τ

1, ∀ δr second neighbors,

FCC 13 : uδr = χ3τ
3 + �3τ

1, ∀ δr third neighbors, (49)

while for the second line one finds �2 = �3 = 0. Here,
second- (third-) neighbor bonds are of the form δr =
(±1, 0, 0) [δr = (± 1

2 ,± 1
2 ,±1)], and permutations of coordi-

nates. Due to the same reason as for the bcc lattice, we treat
�2 and �3 as being finite, in which case the IGG is broken
down to Z2.

We consider two sets of longer-range spin interac-
tions: a first interesting physical scenario appears when
(J2/J1, J3/J1) = (0.5, 0). As a function of J2/J1 this point
marks the phase transition in the corresponding classical
model between magnetic phases with ordering vectors W =
(2π, π, 0) and L = (π, π, π ) (see Fig. 12 for an illustration
of these orders). Interestingly, the manifold of degenerate
ground states for these couplings is even enlarged compared to
the J1-only case, forming surfaces in momentum space [27],
thus setting the stage for a potential realization of a spi-
ral spin liquid [53]. The second set of couplings is given
by (J2/J1, J3/J1) = (0.5, 0.25) where the classical model
exhibits a triple point between magnetic phases with com-
mensurate ordering vectors X = (2π, 0, 0) and L = (π, π, π )
as well as an incommensurate spiral with q = (q, 0, 0) [54].
Hence, both sets of couplings promote quantum fluctuations
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(c)(b)(a)

FIG. 11. Nearest-neighbor model FCC 11. (a) Spinon dispersion of Eq. (47) along a path through the first Brillouin zone where X =
(0, 2π, 0), W = (π, 2π, 0), L = (π, π, π ), and K = ( 3

2 π, 3
2 π, 0) (and symmetry-related wave vectors). The Fermi surface is depicted in

(b) where the green region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.

and appear very promising for finding quantum-spin-liquid
phases [34,55].

Solving the self-consistent equations for (J2/J1, J3/J1) =
(0.5, 0) yields the amplitudes and energy

χ1 = 0.106, χ2 = −0.075, �2 = 0.059,

a3 = 0.09, ε = −0.185. (50)

The additional �2 term gaps out the spinon dispersion [see
Fig. 13(a)]. Since χ2 and �2 are both non-negligible, they
also have a significant effect on the spinon dispersion away
from the points of gap opening. As a result of the spinon
gap, the V-shaped signal in the dynamical spin structure factor
at the � point becomes less pronounced but still represents
the most salient feature [see Fig. 13(b)]. The second set
of Heisenberg interactions (J2/J1, J3/J1) = (0.5, 0.25) yields
somewhat modified mean-field amplitudes with a slightly
lower energy

χ1 = 0.106, χ2 = −0.066, �2 = 0.067, χ3 = −0.028,

�3 = −0.0132, a3 = 0.093, ε = −0.192. (51)

FIG. 12. Relevant magnetic orders of an antiferromagnetic clas-
sical J1-J2 Heisenberg model on the fcc lattice: At J2/J1 = 0.5 the
q = (2π, π, 0) magnetic order (top) shows a phase transition into
q = (π, π, π ) magnetic order (bottom).

The corresponding spinon dispersion and dynamical spin
structure factor, however, are qualitatively similar to the pre-
vious model.

2. FCC 2: gP = ei π
3 τ2

state

The second type of Ansätze on the fcc lattice has a richer
structure, characterized by the nearest-neighbor terms

FCC 21 : u(±1/2,±1/2,0) = χ1τ
3,

u(±1/2,0,±1/2) = χ1

(√
3

2
τ 1 − 1

2
τ 3

)
,

u(0,±1/2,±1/2) = χ1

(
−

√
3

2
τ 1 − 1

2
τ 3

)
, (52)

where (± 1
2 ,± 1

2 , 0) denotes the four bonds ( 1
2 , 1

2 , 0),
( 1

2 ,− 1
2 , 0), (− 1

2 , 1
2 , 0), (− 1

2 ,− 1
2 , 0), and equivalently for the

other terms. The nontrivial matrix structure of gP induces an
interesting connection between real-space and spinor-space
transformations: While the nearest-neighbor bonds in the
three lines of Eq. (52) are related by 2π/3 rotations around
the (1,1,1) axis, the terms on the right-hand sides transform
into each other under 2π/3 rotations around the τ 2 axis in the
space of mean-field matrices. Here, we have chosen a gauge in
which the (± 1

2 ,± 1
2 , 0) bonds only carry hopping amplitudes.

Due to the special projective action of P, the other bonds then

(a) (b)

FIG. 13. FCC 12 model with mean-field amplitudes up to second
neighbors. (a) Self-consistent spinon dispersion for the first-neighbor
terms in Eq. (47) and second-neighbor terms in Eq. (49) along a path
through the first Brillouin zone. (b) Corresponding dynamical spin
structure factor along the same path in reciprocal space.
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(a) (c)(b)

FIG. 14. Nearest-neighbor model FCC 21. (a) Spinon dispersion of Eq. (52) along a path through the first Brillouin zone. Note the
symmetry-protected zero-energy modes along the line �L. (b) Fermi lines emanating from the � point and forming a cubelike pattern. The
green region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.

carry a combination of hopping and pairing such that even on
the nearest-neighbor level the gauge structure is Z2.

The projective action of P has consequences on the
spinon dispersion, independent of the range of mean-field
amplitudes. For momenta k∗ ≡ (k∗, k∗, k∗) = P(k∗) which
map back onto itself under permutation, the mean-field
Bloch Hamiltonian Hmf(k) needs to fulfill the relation
g−1

P Hmf(k∗)gP = H (k∗). On the other hand, the combination
of time reversal T and inversion I leads to an additional
condition (gI gT )−1H∗

mf(k)gI gT = −Hmf(k) where it has been
used that IT leaves any momentum k invariant. This means
that for momenta k∗ = (k∗, k∗, k∗) and real Bloch Hamil-
tonians (as considered here), Hmf(k∗) has to commute with
gP = ei π

3 τ 2
but anticommute with gI gT = iτ 2. Since this can

only be fulfilled for Hmf(k∗) = 0 the system features zero-
energy modes along the line �L running through the entire
Brillouin zone. Similar arguments can be formulated for all
momenta k = (±k,±k,±k) such that the spinon dispersion
shows a symmetry-protected starlike pattern of zero-energy
lines emanating from the � point. Additionally, by analyzing
the actions of the sublattice translations t1 and t2 one obtains
a condition according to which another network of linelike
zero modes forming a cube structure with corners at the
L points exists. This is illustrated in Figs. 14(a) and 14(b)
where a nearest-neighbor Heisenberg model with J1 = 1 is
considered leading to the self-consistent mean-field ampli-
tude χ1 = 0.121. Particularly, Fig. 14(b) shows the star and
cubelike pattern of modes at the Fermi level. Note that no
symmetry-allowed Lagrange multipliers are possible. We find
a mean-field energy per site of ε = −0.198 which is signifi-
cantly lower compared to the FCC 1 case.

The cubelike network of zero modes can be mapped onto
itself by nesting vectors of the type X = (2π, 0, 0). As a
consequence, the dynamical spin structure factor in Fig. 14(c)
shows a faint signal of low-energy response at the X point.
The weakness of this feature compared to the strong nesting
signal of the BCC 11 Ansatz in Fig. 6 can be explained by
the fact that, here, the nesting occurs along lines and not
along planes. As an additional characteristic feature of the
FCC 2 case, the dynamical spin structure factor shows a spot
of high intensity at the L point, marking the upper edge of
the excitation spectrum. No second-neighbor terms can be
included without violating the projective symmetries.

Finally, the third-neighbor terms follow a similar scheme
as the nearest-neighbor ones:

FCC 23 : u(±1/2,±1/2,±1) = χ3τ
3,

u(±1/2,±1,±1/2) = χ3

(√
3

2
τ 1 − 1

2
τ 3

)
,

u(±1,±1/2,±1/2) = χ3

(
−

√
3

2
τ 1 − 1

2
τ 3

)
. (53)

Considering again the spin interactions (J2/J1, J3/J1) =
(0.5, 0.25) we find the following mean-field parameters and
energy per site:

χ1 = 0.121, χ3 = −0.035, ε = −0.208. (54)

While the spinon dispersion and dynamical spin structure
factor are similar to the nearest-neighbor Ansatz (with the
zero modes preserved) it is worth highlighting that the energy
is again smaller than in the FCC 1 case, indicating that at
least on the mean-field level this spin-liquid phase appears
energetically preferred.

An overview of the short-range mean-field models and the
corresponding projective implementations of symmetries for
the fcc lattice can be found in Appendix F.

VI. DISCUSSION AND CONCLUSION

The three lattices considered in this work are character-
ized by large numbers of elements of their symmetry groups.
Therefore, it is not surprising that our PSG classifications
of spin-liquid phases yield a plethora of possible projective
representations which even exceed a thousand for the bcc
lattice. However, the large numbers of symmetries also im-
ply that short-range mean-field Ansätze are subject to many
constraints and, as a consequence, only two possible nearest-
neighbor models remain for each of the three lattices. Even
though the exact amount of PSGs depends on the precise
group algebra, we conclude that the systems considered here
feature a particularly marked discrepancy between the number
of algebraic PSGs and the number of short-range mean-field
Ansätze. As an example, one may compare this with the
2D kagome lattice where the symmetry group has only four
generators (two translations and two point group operations).
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There, one finds 20 PSGs which reduce to four nearest-
neighbor Ansätze [56,57].

The two nearest-neighbor models which we identify for
each of the three lattices share the common property that one
of them exhibits simple uniform spinon hopping while the
other features hopping amplitudes with special sign patterns
or a particular locking between spinon hopping and pairing
(see the FCC 2 state). These spatial modulations are caused
by nontrivial projective actions of translations Tμ or permu-
tation P. Interestingly, already on the nearest-neighbor level
these nontrivial Ansätze are the ones with the lowest mean-
field ground-state energy and the addition of longer-range
amplitudes does not qualitatively change this behavior. We
further discuss characteristic features in the spin structure
factor which allow one to distinguish these states.

One overall assumption of our study is that the mean-
field amplitudes are always time reversal and spin-rotation
invariant. When starting from a Heisenberg Hamiltonian as
in Eq. (1) this seems justified, however, it can generally not
be excluded that these symmetries are broken spontaneously
even in quantum spin liquids, which leads to so-called chi-
ral [58] or nematic [47,59] spin liquids, respectively. The
scenario of chiral spin liquids appears unusual in our sys-
tems as they preferably form when quantum fluctuations melt
noncoplanar classical spin orders [60,61]. For Heisenberg
models on Bravais lattices as considered here, however, all
classical ground states are coplanar or even collinear. Sim-
ilarly, while nematic spin-liquid ground states are unusual
in spin- 1

2 systems with only antiferromagnetic Heisenberg
interactions [62], recent studies in 2D indicate that frustrating
antiferromagnetic and ferromagnetic couplings may induce
such a scenario [21,63,64]. Additionally, a multitude of fur-
ther spin-liquid phases may be constructed when assuming
that spin-rotation invariance is already broken on the level
of the spin Hamiltonian, e.g., through Dzyaloshinskii-Moriya
interactions (due to the systems’ inversion symmetries such
terms would, however, not be allowed on nearest-neighbor
bonds). We leave such extensions for future studies.

Also, from a methodological perspective it is clear that our
work rather represents a first step toward more refined studies.
For example, our ground-state energies and dynamical spin
structure factors are certainly subject to a mean-field bias
and the gauge fluctuations which we neglect may modify
them in significant ways. Indeed, a smearing of the otherwise
sharp features in the magnetic response is observed when the
dynamics of the spatial components of the gauge fields are
accounted for [65], while the opposite behavior, wherein the
intensity gets concentrated at low energies around particular
points [66] or there appears an entirely new and intense
branch of states [67], has been noticed when the fluctuations
of the temporal component of the gauge field are considered.
As regards the latter case, the limitations of mean field can
be overcome when using our PSGs as an input for variational
Monte Carlo. Since the one-fermion per site constraint can be
imposed exactly within a Monte Carlo sampling, the resulting
Gutzwiller-projected fermionic parton wave functions allow
one to faithfully calculate the variational ground-state
energies [68,69]. Furthermore, they also allow us to obtain
more accurate dynamical spin structure factors [66,67,70–72]
since the timelike fluctuations of the gauge fields are taken

into account exactly, thus taking us well beyond mean field.
We note, however, that for the Z2 gauge structures considered
here, the mean-field biases are expected to be smaller
compared to U(1) or SU(2) scenarios. Indeed, on the square
lattice there is some evidence that Gutzwiller projection
of the uniform zero-flux RVB state which is a SU(2) spin
liquid, can generate a finite magnetization [73]. Finally, we
mention that an alternative extension of our work to treat
quantum fluctuations is the combination with a functional
renormalization group treatment as has recently been
demonstrated in Ref. [57]. In this scheme, the spinon hopping
and pairing amplitudes are subject to a renormalization group
flow which takes into account dressed vertex functions instead
of the bare interactions Jrr′ considered here. Each of these
extensions promise a more accurate and detailed investigation
of quantum spin liquids in three dimensions.
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APPENDIX A: PROJECTIVE IMPLEMENTATION OF
LATTICE TRANSLATIONS

Here, we derive the gauge transformations associated with
translations Tx, Ty, Tz. To realize the special gauge used in this
work where GTμ

[see Eq. (10)] is proportional to the identity
matrix, we start with a local gauge transformation which acts
on an Ansatz according to urr′ → ũrr′ = W †

r urr′Wr′ (the new
gauge is indicated by a tilde). Using Eq. (10) and inserting
the identity WS(r)W

†
S(r) twice one sees that a gauge transfor-

mation Wr also changes the projective implementations GS of
symmetry operations S:

GS (r) → G̃S (r) = W †
r GS (r)WS−1(r).

Starting at a given reference site r0 = (x0, y0, z0) one can use
this local gauge freedom to enforce G̃Tx (rx ) = τ 0 along the
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line rx = (x, y0, z0). In the first step one finds

G̃Tx (r0) = W †
r0

GTx (r0)Wr0−êx

!= τ 0,

where êx denotes the unit vector in x direction. This
fixes Wr0−êx = G−1

Tx
(r0)Wr0 and by successive applications

of gauge transformations one finds Wr0−nêx = G−1
Tx

[r0 − (n −
1)êx] . . . G−1

Tx
(r0)Wr0 for the entire line. The same procedure

can be performed for gauge transformations associated with
Ty for lines along the y direction starting from any point on
the line rx. This fixes the gauge G̃Ty (rxy) = τ 0 in the plane
rxy = (x, y, z0). Finally, one can enforce G̃Tz (r) = τ 0 on the
entire lattice by starting at any point of the plane rxy. The local
gauge freedom has thus been reduced to a global one given by
the freedom to choose Wr0 .

We continue in this gauge and determine all projective rep-
resentations GTμ

which are not yet fixed. To simplify the nota-
tion we omit the tilde in the following. Consider the sequence
of translations TyTzT −1

y T −1
z = id which requires a projective

representation such that GTy TyGTz TzT −1
y G−1

Ty
T −1

z G−1
Tz

∈ IGG.
Choosing the IGG as Z2 one obtains

GTy (r)GTz (r − êy)G−1
Ty

(r − êz )G−1
Tz

(r) = ±τ 0 = ηzyτ
0

⇒ GTy (r) = ηzy GTy (r − êz ), (A1)

where ηzy = ±1 and it was used that GTz (r) = τ 0 for all r.
This equation is solved by GTy (r) = ηz

zy
gTy where gTy is a

site-independent SU(2) matrix. On the other hand, we know
that GTy (rxy) = τ 0 and thus GTy (r) = ηz−z0

zy
τ 0. In complete

analogy one finds the projective representation for translations
in x direction GTx (r) = ηz−z0

zx
η

y−y0
yx τ 0. Since r0 is arbitrary, we

can choose it as the origin r0 = (0, 0, 0).

APPENDIX B: PROJECTIVE IMPLEMENTATION OF
PERMUTATION P

To demonstrate how the defining equations for the PSGs
on the sc lattice listed in Eq. (15) are obtained, we determine,
as an example, the projective action of P and its consequences
for the implementation of translations Tμ. In the gauge derived
in Appendix A the projective implementation of the point
group elements can be determined by inspection of group
actions which map onto the identity. Since the representations
of the translations are already fixed, it is convenient to start
with the mutual relations between point group elements and
translations. For permutation P this yields

GPPGTx TxP−1G−1
P T −1

y G−1
Ty

∈ IGG.

Similar expressions can be obtained under cyclic permutation
x → y → z → x. For an IGG given by Z2 one obtains

GP(x, y, z)GTx (y, z, x)G−1
P (x, y − 1, z)G−1

Ty
(x, y, z)

= ηyPτ
0 ⇒ GP(x, y, z) = ηz

yx
ηx

zx
ηz

zy
ηyP GP(x, y − 1, z),

and similarly

GP(x, y, z) = ηz
zx
ηy

yx
ηxP GP(x − 1, y, z),

GP(x, y, z) = ηx
zy
ηzP GP(x, y, z − 1).

To find a solution to these equations, one constructs relations
between GP(r) along elementary loops including the origin

TABLE IV. Projective representation matrices gT , gP, gI , g
xy

for the sc and fcc lattices.

PSG gT gP gI g
xy

1 τ 0 τ 0 τ 0 τ 0

2 τ 0 τ 0 iτ 2 τ 0

3 τ 0 τ 0 τ 0 iτ 2

4 τ 0 τ 0 iτ 2 iτ 2

5 τ 0 τ 0 iτ 2 iτ 3

6 τ 0 ei π
3 τ2

τ 0 iτ 3

7 τ 0 ei π
3 τ2

iτ 2 iτ 3

8 τ 0 ei 2π
3 τ2

τ 0 iτ 3

9 τ 0 ei 2π
3 τ2

iτ 2 iτ 3

10 iτ 2 τ 0 τ 0 τ 0

11 iτ 2 τ 0 iτ 2 τ 0

12 iτ 2 τ 0 iτ 3 τ 0

13 iτ 2 τ 0 τ 0 iτ 2

14 iτ 2 τ 0 τ 0 iτ 3

15 iτ 2 τ 0 iτ 2 iτ 2

16 iτ 2 τ 0 iτ 3 iτ 2

17 iτ 2 τ 0 iτ 3 iτ 3

18 iτ 2 ei π
3 τ2

τ 0 iτ 3

19 iτ 2 ei π
3 τ2

iτ 2 iτ 3

20 iτ 2 ei 2π
3 τ2

τ 0 iτ 3

21 iτ 2 ei 2π
3 τ2

iτ 2 iτ 3

using the known action of the translations. These loop op-
erations serve as consistency conditions as they are equal to
an identity operation. As an example, we consider GP(x, y, z)
along a loop in the x-y plane:

GP(0, 0, 0) = ηxP GP(1, 0, 0),

GP(1, 0, 0) = ηzx ηyP GP(1, 1, 0) = ηxP GP(0, 0, 0),

GP(1, 1, 0) = ηyx ηxP GP(0, 1, 0) = ηzx ηyPηxP GP(0, 0, 0),

GP(0, 1, 0) = ηyP GP(0, 0, 0) = ηyx ηzx ηyP GP(0, 0, 0).

The last equation shows that the symmetry P requires
ηyx = ηzx . Repeating this process in the other planes re-
veals that there is only one sign parameter for translations
ηyx = ηzx = ηzy ≡ ηX . Relations of this type also allow one to
determine the spatial dependence of GP(r). Fixing the projec-
tive representation at the origin, GP(0, 0, 0) ≡ gP, yields the
unique solution

GP(r) = η
x(y+z)
X ηx

xP
ηy

yP
ηz

zP
gP.

The projective representations of the other point group gen-
erators can be similarly decomposed into site-dependent sign
factors η and site-independent SU(2) matrices g. These ma-
trices are further specified by exploiting the mutual relations
between different point group generators. This leads to the full
set of algebraic conditions listed in Eq. (15). The correspond-
ing gauge-inequivalent solutions are presented in Appendix C.

APPENDIX C: GAUGE-INEQUIVALENT PSG
REPRESENTATIONS FOR THE SC, BCC, AND FCC

LATTICES

In Table IV we list all sets of gauge-inequivalent represen-
tation matrices gO for the point group generators O of the sc
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TABLE V. Projective representation matrices gT , gP, gI , g
xy , gt

for the bcc lattice. The notation τ 0/iτ 2 indicates that gT can either
be represented by τ 0 or iτ 2.

PSG gT gP gI g
xy gt

1 τ 0/iτ 2 τ 0 τ 0 τ 0 τ 0

2 τ 0/iτ 2 τ 0 iτ 2 τ 0 τ 0

3 τ 0/iτ 2 τ 0 τ 0 iτ 2 τ 0

4 τ 0/iτ 2 τ 0 τ 0 τ 0 iτ 2

5 τ 0/iτ 2 τ 0 τ 0 iτ 2 iτ 2

6 τ 0/iτ 2 τ 0 iτ 2 iτ 2 τ 0

7 τ 0/iτ 2 τ 0 iτ 2 τ 0 iτ 2

8 τ 0/iτ 2 τ 0 iτ 2 iτ 2 iτ 2

9 τ 0/iτ 2 τ 0 iτ 2 iτ 3 τ 0

10 τ 0/iτ 2 τ 0 iτ 2 τ 0 iτ 3

11 τ 0/iτ 2 τ 0 τ 0 iτ 2 iτ 3

12 τ 0/iτ 2 τ 0 iτ 2 iτ 3 iτ 3

13 τ 0/iτ 2 τ 0 iτ 2 iτ 2 iτ 3

14 τ 0/iτ 2 τ 0 iτ 2 iτ 3 iτ 2

15 τ 0/iτ 2 τ 0 iτ 2 iτ 3 iτ 1

16 iτ 2 τ 0 iτ 3 τ 0 τ 0

17 iτ 2 τ 0 τ 0 iτ 3 τ 0

18 iτ 2 τ 0 τ 0 τ 0 iτ 3

19 iτ 2 τ 0 τ 0 iτ 3 iτ 3

20 iτ 2 τ 0 τ 0 iτ 3 iτ 1

21 iτ 2 τ 0 iτ 3 iτ 2 τ 0

22 iτ 2 τ 0 iτ 3 τ 0 iτ 2

23 iτ 2 τ 0 iτ 3 iτ 2 iτ 2

24 iτ 2 τ 0 iτ 3 iτ 3 τ 0

25 iτ 2 τ 0 iτ 3 τ 0 iτ 3

26 iτ 2 τ 0 iτ 3 iτ 3 iτ 3

27 iτ 2 τ 0 iτ 3 iτ 3 iτ 1

28 iτ 2 τ 0 iτ 3 iτ 1 iτ 1

29 τ 0/iτ 2 ei π
3 τ2

τ 0 iτ 3 τ 0

30 τ 0/iτ 2 ei π
3 τ2

τ 0 iτ 3 iτ 2

31 τ 0/iτ 2 ei π
3 τ2

iτ 2 iτ 3 τ 0

32 τ 0/iτ 2 ei π
3 τ2

iτ 2 iτ 3 iτ 2

33 τ 0/iτ 2 ei 2π
3 τ2

τ 0 iτ 3 τ 0

34 τ 0/iτ 2 ei 2π
3 τ2

τ 0 iτ 3 iτ 2

35 τ 0/iτ 2 ei 2π
3 τ2

iτ 2 iτ 3 τ 0

36 τ 0/iτ 2 ei 2π
3 τ2

iτ 2 iτ 3 iτ 2

lattice. The matrices corresponding to 
z and 
y can only be
represented trivially, g
z = g
y = τ 0. There are 21 different
solutions for the remaining matrices gT , gP, gI , g
xy . For each
solution the sign factors ηO = ±1 complete the PSG repre-
sentation. Note, however, that the case gT = τ 0 and ηT = 1
does not lead to finite mean-field Ansätze. For the fcc lattice
the additional translations t1 and t2 can only have a trivial
matrix structure gt1 = gt2 = τ 0. The representation matrices
are, therefore, the same as for the sc lattice (see Table IV). For
the bcc lattice all 59 gauge-inequivalent solutions are shown
in Table V where, in addition to gT , gP, gI , g
xy the possible
solutions for gt are specified.

APPENDIX D: ALGEBRAIC PSGs OF THE BCC LATTICE

Here, we present further details about our procedure to
determine the algebraic PSGs for the bcc lattice. The fcc case

may be treated similarly. As explained in the main text, we use
two distinct sc lattices and merge them into a bcc lattice. The
two cubic sublattices are denoted A = {(x, y, z)|x, y, z ∈ Z}
and B = {(x + 1

2 , y + 1
2 , z + 1

2 )|x, y, z ∈ Z}. On each sub-
lattice we have a complete description of the symmetry
representations given by Eq. (15). To distinguish between the
two sublattices we add an extra label in the projective rep-
resentations GA

S (r ∈ A) and GB
S (r ∈ B). The implementations

of symmetries on sublattice A are done in complete analogy
to the sc lattice while on sublattice B one needs to define a
reference site rB

0 = ( 1
2 , 1

2 , 1
2 ) which remains invariant under

point group operations. The symmetry operation t connects
both sublattices.

To determine the projective action of t we consider the
operation T −1

x tTxt−1 = id which moves a given site r along
a closed path. Including the associated gauge transformations
this relation reads as T −1

x (GTx )−1Gtt (GTx )Txt−1(Gt )−1 ∈ IGG
which results in a condition for the projective representation
of t on sublattice A:(

GA
Tx

)−1
(x + 1, y, z)GA

t (x + 1, y, z)

× GB
Tx

(x + 1/2, y − 1/2, z − 1/2)
(
GA

t

)−1
(x, y, z) = ηA

tx τ
0

⇒ GA
t (x, y, z) = (

ηA
X ηB

X

)y+z
ηA

tx G
A
t (x + 1, y, z).

Note that with the above definition of sublattices x, y, z ∈ Z
the exponents of the η parameters always take integer values.
Similarly, one finds conditions involving translations Tμ along
the other Cartesian directions

GA
t (x, y, z) = (

ηA
X ηB

X

)z
ηA

ty G
A
t (x, y + 1, z),

GA
t (x, y, z) = ηA

tz G
A
t (x, y, z + 1).

Equivalently, on sublattice B one finds

GB
t (x + 1/2, y + 1/2, z + 1/2)

= (
ηA

X ηB
X

)y+z
ηB

tx G
B
t (x + 3/2, y + 1/2, z + 1/2),

GB
t (x + 1/2, y + 1/2, z + 1/2)

= (
ηA

X ηB
X

)z
ηB

ty G
B
t (x + 1/2, y + 3/2, z + 1/2),

GB
t (x + 1/2, y + 1/2, z + 1/2)

= ηB
tz G

B
t (x + 1/2, y + 1/2, z + 3/2).

Following the line of arguments of Appendix B, closed
loops of symmetry operations provide consistency conditions
which reveal that a solution can only exist for ηA

X = ηB
X ≡ ηX .

It further follows

GA
t (r) = (

ηA
tx

)x(
ηA

ty

)y(
ηA

tz

)z
gA

t ,

GB
t (r) = (

ηB
tx

)x(
ηB

ty

)y(
ηB

tz

)z
gB

t .

Relations between the two sublattices can be found using
t2 = TzTyTx which yields ηA

tx = ηB
tx ≡ ηtx , ηA

ty = ηX ηB
ty ≡ ηty ,

and ηA
tz = ηB

tz ≡ ηtz . Furthermore, the site-independent matri-
ces gA

t , gB
t need to fulfill gA

t gB
t = gB

t gA
t = ±τ 0 such that we can

define gA
t = ±gB

t ≡ gt with g2
t = ±τ 0.

In the next step we include lattice inversion I . We again
note that in the initial implementation of point group symme-
tries, inversion on sublattice B, referred to as IB, leaves the
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TABLE VI. Possible short-range PSG representations on the sc lattice and their corresponding mean-field ansätze. The overlined terms
indicate which term is responsible for breaking the IGG down to U (1)/Z2. Note that in the second line at least one of the matrices gI , g
xy

must be given by iτ 3.

ηT gT ηP gP ηI gI ηX gX η
xy g
xy uδr1 uδr2 uδr3 aμ IGG

+iτ 2 +τ 0 +τ 0 +τ 0 +τ 0 χ1τ
3 χ2τ 3 + �2τ 1 χ3τ 3 + �3τ 1 a3(a1) SU(2)/U(1)/Z2

+iτ 2 +τ 0 +τ 0/ + iτ 3 +τ 0 +τ 0/ + iτ 3 χ1τ
3 χ2τ 3 χ3τ

3 a3 SU(2)/U(1)
−iτ 3 +τ 0 +τ 0/ − iτ 2 +τ 0 +τ 0 χ1τ

3 �2τ 2 χ3τ
3 a2 SU(2)/U(1)

−iτ 3 −τ 0 +τ 0/ − iτ 2 +τ 0 −iτ 2 χ1τ
3 �2τ 2 χ3τ

3 a2 SU(2)/U(1)
SC 1 −τ 0 +τ 0 +τ 0 +τ 0 +τ 0 χ1τ

3 - χ3τ 3 + �3τ 1 + �′
3τ

2 - SU(2)/U(1)
−τ 0 +τ 0 −iτ 2 +τ 0 +τ 0 χ1τ

3 - χ3τ 3 + �3τ 1 - SU(2)/U(1)
−τ 0/ + iτ 2 −τ 0 +τ 0/ − iτ 2 +τ 0 −iτ 2 χ1τ

3 - χ3τ 3 + �3τ 1 - SU(2)/U(1)
+iτ 2 +τ 0 −iτ 2 +τ 0 +τ 0 χ1τ

3 - χ3τ 3 + �3τ 1 - SU(2)/U(1)
−τ 0 +τ 0 −iτ 2 +τ 0 +iτ 3 χ1τ

3 - χ3τ
3 - SU(2)

+iτ 2 −τ 0 +iτ 3 +τ 0 −iτ 2 χ1τ
3 - χ3τ

3 - SU(2)

+iτ 2 −τ 0 +τ 0 −τ 0 −iτ 2 χ1τ
3 χ2τ 3 + �2τ 1 - − SU(2)/U(1)

SC 2 +iτ 2 −τ 0 +iτ 3 −τ 0 −iτ 2 χ1τ
3 χ2τ 3 - − SU(2)/U(1)

−iτ 3 +τ 0 +τ 0/ − iτ 2 −τ 0 +iτ 3 χ1τ
3 �2τ 2 - - SU(2)/U(1)

reference site rB
0 = ( 1

2 , 1
2 , 1

2 ) invariant:

IB(x + 1/2, y + 1/2, z + 1/2)

= (−x + 1/2,−y + 1/2,−z + 1/2).

It is still convenient to define an inversion I for the entire
bcc lattice in the usual way where one site r0 = (0, 0, 0) is
globally left invariant. This can be achieved via the relation
between I and IB on sublattice B,

IB(r ∈ B) = TxTyTzI (r ∈ B),

which implies

GIB IB(r ∈ B) = GTx TxGTy TyGTz TzGI I (r ∈ B).

(Note that similar distinctions between the action on sub-
lattice B and the global action also have to be made for
the generators 
z, 
y, and 
xy). Exploiting the algebraic
relation I−1t−1IBt (r ∈ A) = I−1t−1TxTyTzIt (r ∈ A) = id be-
tween inversion I and translations Tμ, t leads to ηA

I = ηB
I

and ηA
tyη

B
tyη

A
I ηB

I = 1. In combination with the previous result
ηA

ty = ηX ηB
ty one obtains the important finding ηX = 1. This

means that all gauge transformations associated with trans-
lations Tμ are now trivially represented by τ 0 such that all GTμ

in the relations between GIB and GI drop out. Furthermore,
the conditions Pt = tP and 
xyTzt−1
xyt = id connect the
sign factors corresponding to different directions ηtx = ηty =
ηtz ≡ ηt .

Having derived the sign structure of the gauge transforma-
tions associated with translations, we now turn to the matrix
structure. Exploiting the fact that translations Tμ have a trivial
projective implementation one finds

g−1
t gA

I gt = ±gB
I , g−1

t gA
T gt = ±gB

T ,

g−1
t gA


xy
gt = ±gB


xy
, g−1

t gA
Pgt = ±gB

P, (D1)

where, initially, one would assume that each of the two
sets gA

S and gB
S can be independently given by one line of

Table IV. It is, however, easy to see that the representations
need to be identical, gA

S = ±gB
S , on the two sublattices (up

to an irrelevant sign). Otherwise, Eq. (D1) would imply that
gt transforms between two different PSGs on the sc lattice.
Since, by construction, different PSGs are gauge inequivalent,
this is not possible. Thus, we conclude that the classification
of PSGs for the sc lattice can be reused for both sublattices
of the bcc lattice where one finds ηX = 1 and an additional
generator Gt (r) = η

x+y+z
t gt needs to be considered.

APPENDIX E: DYNAMICAL SPIN STRUCTURE FACTOR

The dynamical spin structure factor investigated in the
main text,

Sμν (q, ω) =
∫ ∞

−∞

dt

2π
eiωt 1

N

∑
rr′

eiq(r−r′ )〈Sμ
r (t )Sν

r′ (0)
〉
,

(E1)

TABLE VII. Possible short-range PSG representations on the bcc lattice and their corresponding mean-field ansätze. The overlined terms
indicate which term is responsible for breaking the IGG down to U (1)/Z2. Note that in the lines with entries +τ 0/ + iτ 3 both +τ 0 and +iτ 3

are possible, but at least one of these matrices must be given by +iτ 3.

ηT gT ηP gP ηI gI η
xy g
xy ηt gt uδr1 uδr2 uδr3 aμ IGG

BCC 1 +iτ 2 +τ 0 +τ 0 +τ 0 +τ 0 χ1τ
3 χ2τ 3 + �2τ 1 χ3τ 3 + �3τ 1 a3(a1) SU(2)/U(1)/Z2

+iτ 2 +τ 0 +τ 0/ + iτ 3 +τ 0/ + iτ 3 +τ 0/ + iτ 3 χ1τ
3 χ2τ 3 χ3τ

3 a3 SU(2)/U(1)

BCC 2 +iτ 2 −τ 0 +τ 0 +τ 0 +τ 0 χ1τ
3 − χ3τ 3 + �3τ 1 a3(a1) SU(2)/Z2

+iτ 2 −τ 0 +τ 0/ + iτ 3 +τ 0/ + iτ 3 +τ 0/ + iτ 3 χ1τ
3 − χ3τ 3 a3 SU(2)/U(1)
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TABLE VIII. Possible short-range PSG representations on the fcc lattice and their corresponding mean-field ansätze. The overlined terms
indicate which term is responsible for breaking the IGG down to U (1)/Z2. The mean-field Hamiltonian in the FCC 2 case has a non-trivial
matrix structure denoted by f (δr1, τ

1, τ 3) for nearest neighbor amplitudes [see Eq. (52)] and f (δr3, τ
1, τ 3) for third neighbor amplitudes [see

Eq. (53)]. The functions g are similar but the axes are permuted according to (x, y, z) → P(x, y, z). Note that in the line with entries +τ 0/ + iτ 3

both +τ 0 and +iτ 3 are possible, but at least one of these matrices must be given by +iτ 3.

ηT gT ηPgP ηI gI η
xy g
xy uδr1 uδr2 uδr3 aμ IGG

FCC 1 +iτ 2 +τ 0 +τ 0 +τ 0 χ1τ
3 χ2τ 3 + �2τ 1 χ3τ

3 + �3τ
1 a3(a1) U (1)/Z2

+iτ 2 +τ 0 +τ 0/ + iτ 3 +τ 0/ + iτ 3 χ1τ
3 χ2τ

3 χ3τ
3 a3 U(1)

FCC 2 +iτ 2 +ei π
3 τ2 +τ 0 +iτ 3 χ1 f (δr1, τ 1, τ 3) − χ3 f (δr3, τ 1, τ 3) − Z2

+iτ 2 +ei 2π
3 τ2 +τ 0 +iτ 3 χ1g(δr1, τ 1, τ 3) − χ3g(δr3, τ 1, τ 3) − Z2

is a measure of the system’s magnetic excitation spectrum as
a function of momentum q and frequency ω and is directly
accessible via inelastic neutron scattering. Since in our sys-
tems we always assume spin-rotation invariance it suffices
to consider the longitudinal components μ = ν = z only. In
the fermionic representation applied here, the dynamical spin
structure factor can be expressed as

Szz(q, ω) =π

4

∑
a,b

∫
BZ

d3k

(2π )3
f (k, q, a, b)

× [na(k) − nb(k + q)]δ[εb(k + q) − εa(k) − ω].
(E2)

Here, εa is an eigenenergy of Eq. (4) with na the occupation
number of the energy band labeled by an index a and the

function f (k, q, a, b) describes the overlap between different
eigenstates ψa(k) defined by

f (k, q, a, b) = |ψ∗
a (k)ψb(k + q)|2. (E3)

APPENDIX F: COMPENDIUM OF SHORT-RANGED
MEAN-FIELD ANSÄTZE

In the following Tables VI, VII, and VIII we list all possible
short-range mean-field Ansätze (including mean-field terms
up to third neighbors) for the sc, bcc, and fcc lattices and also
provide the projective implementations of symmetries.
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[51] E. Jurčišinová and M. Jurčišin, Prediction of the existence of
a spin-liquid-like phase in the antiferromagnetic J1−J2 spin- 1

2
system on the body-centered cubic lattice, Phys. Rev. B 101,
214443 (2020).

[52] E. V. Kuz’min, Quantum spin liquid in the FCC lattice, J. Exp.
Theor. Phys 96, 129 (2003).

[53] Y. Iqbal, T. Müller, H. O. Jeschke, R. Thomale, and J. Reuther,
Stability of the spiral spin liquid in MnSc2S4, Phys. Rev. B 98,
064427 (2018).

[54] Péter Balla, Y. Iqbal, and K. Penc, Degenerate manifolds,
helimagnets, and multi-Q chiral phases in the classical
Heisenberg antiferromagnet on the face-centered-cubic lattice,
arXiv:2007.00376.

125140-21

https://doi.org/10.1103/PhysRevB.97.195141
https://doi.org/10.1103/PhysRevB.100.075125
https://doi.org/10.1103/PhysRevB.101.054408
https://doi.org/10.1103/PhysRevB.93.041106
https://doi.org/10.1103/PhysRevB.94.140408
https://doi.org/10.1103/PhysRevB.95.014427
https://doi.org/10.1007/s11467-018-0831-x
https://doi.org/10.1103/PhysRevB.100.014420
https://doi.org/10.1098/rsta.1962.0005
https://doi.org/10.1103/PhysRevB.100.140402
https://doi.org/10.1088/1361-648X/ab5c7b
https://doi.org/10.1103/PhysRevB.66.224406
https://doi.org/10.1103/PhysRevB.69.064416
https://doi.org/10.1088/0953-8984/21/40/406004
https://doi.org/10.1016/j.ssc.2013.12.007
https://doi.org/10.1103/PhysRevB.93.235123
https://doi.org/10.1103/PhysRevB.100.085139
https://doi.org/10.1103/PhysRevB.90.014413
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysRevB.38.745
https://doi.org/10.1103/PhysRevB.38.2926
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevB.44.2664
https://doi.org/10.1103/RevModPhys.25.344
https://doi.org/10.1098/rspa.1955.0200
https://doi.org/10.1063/1.1596582
https://doi.org/10.1007/BF01023854
https://doi.org/10.1098/rsfs.2011.0096
https://doi.org/10.1103/PhysRevB.94.224403
https://doi.org/10.1103/PhysRevB.52.10177
https://doi.org/10.1007/s10955-010-9967-y
https://doi.org/10.1143/PTP.58.44
https://doi.org/10.1103/PhysRevB.101.214443
https://doi.org/10.1134/1.1545392
https://doi.org/10.1103/PhysRevB.98.064427
http://arxiv.org/abs/arXiv:2007.00376


SONNENSCHEIN, CHAUHAN, IQBAL, AND REUTHER PHYSICAL REVIEW B 102, 125140 (2020)

[55] A. N. Ignatenko, A. A. Katanin, and V. Yu. Irkhin, Strong short-
range magnetic order in a frustrated FCC lattice and its possible
role in the iron structural transformation, JETP Lett. 87, 555
(2008).

[56] Y.-M. Lu, Y. Ran, and Patrick A. Lee, Z2 spin liquids in the
S = 1

2 Heisenberg model on the kagome lattice: A projective
symmetry-group study of Schwinger fermion mean-field states,
Phys. Rev. B 83, 224413 (2011).

[57] M. Hering, J. Sonnenschein, Y. Iqbal, and J. Reuther, Character-
ization of quantum spin liquids and their spinon band structures
via functional renormalization, Phys. Rev. B 99, 100405(R)
(2019).

[58] W.-J. Hu, W. Zhu, Y. Zhang, S. Gong, F. Becca, and D. N.
Sheng, Variational Monte Carlo study of a chiral spin liquid
in the extended Heisenberg model on the kagome lattice, Phys.
Rev. B 91, 041124(R) (2015).

[59] Y.-M. Lu, Symmetric Z2 spin liquids and their neighboring
phases on triangular lattice, Phys. Rev. B 93, 165113 (2016).

[60] L. Messio, C. Lhuillier, and G. Misguich, Lattice symmetries
and regular magnetic orders in classical frustrated antiferromag-
nets, Phys. Rev. B 83, 184401 (2011).

[61] S. Bieri, C. Lhuillier, and L. Messio, Projective symmetry group
classification of chiral spin liquids, Phys. Rev. B 93, 094437
(2016).

[62] Y. Iqbal, T. Müller, P. Ghosh, Michel J. P. Gingras, Harald O.
Jeschke, S. Rachel, J. Reuther, and R. Thomale, Quantum and
Classical Phases of the Pyrochlore Heisenberg Model with
Competing Interactions, Phys. Rev. X 9, 011005 (2019).

[63] N. Shannon, T. Momoi, and P. Sindzingre, Nematic Order in
Square Lattice Frustrated Ferromagnets, Phys. Rev. Lett. 96,
027213 (2006).

[64] T. Momoi, P. Sindzingre, and N. Shannon, Octupolar Order
in the Multiple Spin Exchange Model on a Triangular Lattice,
Phys. Rev. Lett. 97, 257204 (2006).

[65] M. Punk, D. Chowdhury, and S. Sachdev, Topological excita-
tions and the dynamic structure factor of spin liquids on the
kagome lattice, Nat. Phys. 10, 289 (2014).

[66] F. Ferrari and F. Becca, Spectral signatures of fractionalization
in the frustrated Heisenberg model on the square lattice, Phys.
Rev. B 98, 100405(R) (2018).

[67] F. Ferrari and F. Becca, Dynamical Structure Factor of
the J1 − J2 Heisenberg Model on the Triangular Lattice:
Magnons, Spinons, and Gauge Fields, Phys. Rev. X 9, 031026
(2019).

[68] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Gapless spin-
liquid phase in the kagome spin- 1

2 Heisenberg antiferromagnet,
Phys. Rev. B 87, 060405(R) (2013).

[69] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca, Spin
liquid nature in the Heisenberg J1 − J2 triangular antiferromag-
net, Phys. Rev. B 93, 144411 (2016).

[70] F. Ferrari, A. Parola, S. Sorella, and F. Becca, Dynamical struc-
ture factor of the J1 − J2 Heisenberg model in one dimension:
The variational Monte Carlo approach, Phys. Rev. B 97, 235103
(2018).

[71] F. Ferrari and F. Becca, Dynamical properties of Néel
and valence-bond phases in the J1–J2 model on the hon-
eycomb lattice, J. Phys.: Condens. Matter 32, 274003
(2020).

[72] J.-W. Mei and X.-G. Wen, Fractionalized spin-wave continuum
in spin liquid states on the kagome lattice, arXiv:1507.03007.

[73] T. Li, Antiferromagnetic long range order in the uniform res-
onating valence bond state on square lattice, arXiv:1101.0193.

125140-22

https://doi.org/10.1134/S0021364008100093
https://doi.org/10.1103/PhysRevB.83.224413
https://doi.org/10.1103/PhysRevB.99.100405
https://doi.org/10.1103/PhysRevB.91.041124
https://doi.org/10.1103/PhysRevB.93.165113
https://doi.org/10.1103/PhysRevB.83.184401
https://doi.org/10.1103/PhysRevB.93.094437
https://doi.org/10.1103/PhysRevX.9.011005
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.97.257204
https://doi.org/10.1038/nphys2887
https://doi.org/10.1103/PhysRevB.98.100405
https://doi.org/10.1103/PhysRevX.9.031026
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.97.235103
https://doi.org/10.1088/1361-648X/ab7f6e
http://arxiv.org/abs/arXiv:1507.03007
http://arxiv.org/abs/arXiv:1101.0193

