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Thermoelectric response of nodal-line semimetals: Probing the Fermi surface topology
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We investigate the low-temperature thermoelectric properties of three-dimensional nodal-line semimetals
within the semiclassical Boltzmann formalism. Considering short-range interaction between electrons and
scattering agents, we calculate the anisotropic relaxation times and then obtain the charge conductivity and
thermopower along the radial and the axial directions with respect to the nodal-line plane. Increasing the carrier
concentration, a sharp change in the thermopower signals topological transition in the shape of the Fermi surface
from a torus into an ellipsoid. An adequate treatment of the energy and direction dependence of the relaxation
time is necessary for the observation of the topological transition of the Fermi surface in the thermoelectric
properties.
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I. INTRODUCTION

Topological semimetals have attracted great theoretical and
experimental interest recently [1–4]. These materials gener-
ally include Weyl [5–7] or Dirac [8–10] semimetals where
the conduction and valence bands touch each other in a set
of isolated points in the Brillouin zone, and the nodal-line
semimetals [11–13] where the touching between valence and
conduction bands form open or closed lines in the Bril-
louin zone. The band touchings are protected by topological
constraints. Several interesting phenomena, such as large
magnetoresistance, high bulk carrier mobility, and quantum
anomalous Hall effect [14–17] are explored in topological
semimetals.

As the simplest form of the topological semimetals with
closed nodal lines, one can imagine a single circular band
touching. Then the Fermi surface of an intrinsic system would
be a circle, which transforms into a torus at low carrier doping
and eventually forms an ellipsoid or more precisely a drum-
head-like surface with increasing the carrier concentration
[18].

Nodal lines have been predicted in a large family of mate-
rials [15,19–24] and their existence has been experimentally
verified in several compounds [25–27]. The quest for nodal
lines has even expanded to areas such as the ultracold atoms
trapped in optical lattices [28] and electrical circuit lattices
[29].

There has been a large body of studies on the charge
transport properties of topological semimetals [30–33], and
the thermoelectric properties of Weyl and Dirac semimetals
have been also investigated [34–37].
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Thermoelectric materials are of great interest in the im-
provement of energy efficiency, as they can be used to harvest
the waste heat [38]. The main attention in the field of thermo-
electric materials has been on heavily doped semiconductors,
as their finite band gap would result in the enhancement of
their Seebeck coefficient leading to large figures or merit
[39]. However, one of the main challenges of heavily doped
semiconductors is their limited charge mobilities due to the
impurity scatterings.

Very recently it has been proposed that, despite the
common expectation, semimetals might be also very good
candidates for thermoelectric applications [40]. A large
Seebeck coefficient in semimetals would result from the
asymmetry between their valence and conduction bands. The
main advantages of semimetals over heavily doped semicon-
ductors would be their large charge mobility in clean systems
and also their low thermal conductivities if heavy mass ele-
ments are present among their constituents [41].

In this work we investigate the electronic contribution
to the low-temperature thermoelectric properties of three-
dimensional nodal-line semimetals. Based on the density-
functional theory calculations, the Debye temperature for
ZrXY (X = Si,Ge; Y = S,Se) family of nodal-line semimet-
als, are predicted to be above the room temperature [37].
Therefore, if the temperature is well below the room tem-
perature, contributions from phonons in the thermoelectric
properties would be negligible. We employed the semiclas-
sical Boltzmann formalism and the generalized form of
the relaxation time approximation which properly treats the
asymmetry and energy dependence of the relaxation times.
We are able to obtain fully analytic results for the charge
and thermal conductivities as well as the thermopower of
nodal-line semimetals in the presence of short-range scatter-
ings. We also study the effect of approximating the relaxation
time with an isotropic energy independent quantity, as such
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an approximation is very common in the ab initio simulation
of real materials. We observe that the low-temperature ther-
moelectric behavior of nodal-line semimetals is very sensitive
to the details of the relaxation time. We also suggest that
the measurement of the thermopower is a simple yet very
powerful tool to probe the topology of the Fermi surface in
nodal-line semimetals.

The rest of this paper is organized as follows. In Sec. II
we introduce our model low-energy Hamiltonian for the
three-dimensional nodal-line semimetal and investigate its
electronic dispersion and eigenstates. We have discussed the
details of the semiclassical Boltzmann formalism for obtain-
ing the thermoelectric responses and the method to calculate
the anisotropic relaxation time in Sec. III. Our analytic results
for the low-temperature thermoelectric responses obtained
from the constant and also from the anisotropic energy-
dependent relaxation time approximations are presented in
Sec. IV. Finally, we summarize our main findings in Sec. V.
We have also devoted Appendix A to the temperature depen-
dence of the chemical potential of a nodal-line semimetal and
Appendix B to the details of our analytical calculations for
obtaining the anisotropic relaxation times.

II. MODEL HAMILTONIAN FOR NODAL-LINE
SEMIMETAL

In the continuum limit, the effective low-energy Hamilto-
nian [42]

H = h̄(vkρτx + vzkzτy) (1)

gives a zero-energy nodal ring in the x-y plane for kz = 0.
Here τi with i = x, y are the Pauli matrices acting on the
pseudospin (i.e., orbital) degree of freedom, and v and vz

are the Fermi velocities in the radial and axial directions
(with respect to the plane of the nodal line), respectively. In

the cartesian coordinates we have kρ =
√

k2
x + k2

y − k0, where

k0 is the radius of the nodal ring. The eigenenergies of the
Hamiltonian (1) are given by

εk,s = sh̄v

√
k2
ρ + λ2k2

z , (2)

where s = +1 (−1) refers to the conduction (valence) band,
and λ = vz/v. Note that even for λ = 1 the system is
anisotropic, due to the toroidal form of the constant-energy
surface at low energies. The Fermi surface evolves from a
toruslike shape for εF < ε0 into a deformed ellipsoid for εF >

ε0, where εF and ε0 = h̄vk0 are the Fermi energy and the
characteristic energy of nodal ring, respectively. The energy
dispersion and schematic sketches of the Fermi surface of
Hamiltonian (1) is illustrated in Fig. 1.

With a transformation from the cartesian coordinates into
the toroidal coordinates

kx = (k0 + κ cos θ ) cos φ,

ky = (k0 + κ cos θ ) sin φ, (3)

kz = κ sin θ/λ,

the Hamiltonian (1) transforms to

H = h̄vκ (cos θτx + sin θτy). (4)

FIG. 1. Sketches of the Fermi surface of a three-dimensional
nodal-line semimetal at two different Fermi energies εF < ε0 (a) and
εF > ε0 (b). (c) The low energy dispersions of electrons in a three-
dimensional nodal-line semimetal (in units of ε0) versus kx/k0, for
ky = kz = 0.

Note that, in the toroidal coordinates, we have 0 � κ �
∞, 0 � φ � 2π , and −π + θ0 � θ � π − θ0, where θ0 =
arccos[min(1, k0/κ )] and the Jacobian determinant of this
transformation is J (κ, θ, φ) = κ (k0 + κ cos θ )/λ. The eigen-
values of Hamiltonian (4) take the simple form εk,s = sh̄vκ

and their corresponding eigenstates read

ψk,s(r) = 1√
2V

(
1

seiθ

)
eik·r, (5)

with V the sample volume.
Finally, the cartesian components of the group velocity of

electrons vk,s = ∇kεk,s/h̄ read

vx
k,s = sv cos θ cos φ,

v
y
k,s = sv cos θ sin φ,

vz
k,s = sλv sin θ. (6)

III. SEMICLASSICAL THEORY OF THE
THERMOELECTRIC RESPONSE

To investigate the thermoelectric properties of a nodal-line
semimetal, we assume that the temperature is low enough,
such that only the electronic degrees of freedom contribute to
the thermoelectric coefficients. In the linear response regime,
the charge j and thermal jQ current densities in response to an
external electric field E and temperature gradient ∇T can be
written as [43]

jα = L11
αβEβ + L12

αβ (−∇T )β,

jQ
α = L21

αβEβ + L22
αβ (−∇T )β,

(7)

where α and β refer to three spatial directions x, y, and z, the
set of Li j tensors are the thermoelectric coefficients, and the
summation over repeated indices is implied. Theses thermo-
electric coefficients at temperature T are given by L11

αβ = L0
αβ ,

L21
αβ = T L12

αβ = −L1
αβ/e, and L22

αβ = L2
αβ/(e2T ), where −e is
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the charge of electron and

Ln
αβ =

∫
dε(ε − μ)nσαβ (ε)

[
−∂ f (ε)

∂ε

]
. (8)

Here μ is the chemical potential, f (ε) = 1/[e(ε−μ)/(kBT ) + 1]
is the equilibrium Fermi distribution function, and the gener-
alized transport distribution function is defined as [44]

σαβ (ε) = e2g
∑

s

∫
d3k

(2π )3
δ(ε − εk,s)vα

k,sv
β

k,sτ
β

k,s, (9)

where g is the degeneracy factor and τ
β

k,s is the momentum
relaxation time of electrons along the β direction, which will
be discussed in detail later in this section.

In the absence of an external magnetic field, the off-
diagonal components of the thermoelectric responses vanish.
Furthermore, the toroidal symmetry of the Hamiltonian
implies Li j

xx = Li j
yy. Therefore, in the following we only inves-

tigate the diagonal thermoelectric responses along the axial
(i.e., z) and radial (i.e., x) directions.

To obtain the thermoelectric coefficients, one needs to ob-
tain the generalized transport distribution function σαα (ε), and
then use Eq. (8) to find all other thermoelectric coefficients. In
the following, without loss of the generality, we will consider
only electron-doped systems, i.e., εF > 0. In this case, only
the conduction band will contribute to the thermoelectric re-
sponse at low temperatures kBT � εF and we will drop the
band index in the following for the notational brevity.

If the transport distribution function σαα (ε) is a smooth and
differentiable function of energy, which is valid away from
the nodal ring energy ε0, with the help of the Sommerfeld
expansion to the leading-orders in temperature, we obtain [44]

L0
αα ≈ σαα (εF),

L1
αα ≈ π2

3
(kBT )2σ ′

αα (εF),

L2
αα ≈ π2

3
(kBT )2σαα (εF),

(10)

where σ ′ is the derivative of the generalized transport dis-
tribution function with respect to energy. Note that σαα (εF)
is indeed the zero temperature charge conductivity. From
Eqs. (10) we immediately recover the Mott formula for the
Seebeck coefficient (thermopower)

Sαα = L21
αα

T L11
αα

= −π2k2
BT

3e

σ ′
αα

σαα

, (11)

and the Wiedemann-Franz law for the electronic thermal con-
ductivity

κe
αα = L22

αα − L21
ααL12

αα

L11
αα

= LT σαα, (12)

with L = π2k2
B/(3e2) the Lorentz number. Here, for brevity,

we have omitted all the arguments which are the Fermi energy.
One of the characteristics of thermoelectric materials is their
potential for energy conversion, and thus these materials could
be used as thermoelectric generators. The key parameter that
defines the efficiency of a thermoelectric generator is char-
acterized by the dimensionless thermoelectric figure of merit

zT ≡ S2σT/κ , where κ is the total, i.e., the sum of electronic
and lattice contributions to the thermal conductivity. As we are
investigating only the electronic degrees of freedom here, we
can only estimate the upper bound for the figure of merit. Note
that these relations are valid at low temperatures kBT � εF,
and for Fermi energies away form the nodal ring energy,
i.e., kBT � |εF − ε0|. Deviations from the Mott formula are
expected when the Fermi energy approaches the nodal ring
energy [45].

Relaxation times

The momentum relaxation time of electrons which ap-
peared in the definition of the generalized transport distribu-
tion function Eq. (9), in general, depends on the scattering
mechanism, details of the electronic band structure, and also
the wave function of electrons. In principle, each of these three
factors can make transport in a medium anisotropic [46–48].
The simplest approximation, however, is to take the relaxation
time τ a constant parameter. This approximation is usually
adopted in many numerical packages, such as the BoltzTraP
[49], therefore only the contributions from the band structure,
as obtained for example from the ab initio calculations, are
accounted for in the thermoelectric properties.

For an anisotropic system, the relaxation time depends
on both the magnitude and the direction of k, and could be
obtained from the integral equation [50]

1 =
∫

d3k′

(2π )3
Wkk′

(
τα

k − vα
k′

vα
k

τα
k′

)
, (13)

where Wkk′ is the transition rate between two eigenstates k
and k′ of the system. Within the first Born approximation, for
elastic scatterings and uncorrelated disorders, we find Fermi’s
golden rule

Wkk′ = 2π

h̄
nimp|Vkk′ |2δ(εk − εk′ ). (14)

Here nimp is the density of impurities in the sample, and Vkk′ is
the impurity potential describing a scattering of electron from
k to k′. Note that, in an isotropic system, the relaxation time
depends only on the magnitude of k, and can be taken out
of the integral. Moreover, the group velocity is parallel to the
wave vector vk = vkk̂, and we can write (E being the electric
field)

1

τk
=

∫
d3k′

(2π )3
Wkk′

(
1 − vk′ · E

vk · E

)

=
∫

d3k′

(2π )3
Wkk′ (1 − cos θk′,k ), (15)

which is the familiar textbook expression for relaxation time
in isotropic systems.

In this work we obtain analytic results for the anisotropic
relaxation time and then the thermoelectric coefficients of
a three-dimensional nodal-line semimetal in the presence of
isotopic short-range impurity scatterings. For the sake of com-
pleteness, we compare our results with the ones obtained
within the constant relaxation time approximation.
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FIG. 2. The zero temperature static charge conductivities versus
the Fermi energy εF along the axial (solid blue) and axial (dashed red)
directions (in units of σ0 and 2λ2σ0, respectively), obtained within the
constant relaxation time approximation.

IV. ANALYTIC RESULTS FOR THE
THERMOELECTRIC RESPONSES

In this section we present our results for the low-
temperature thermoelectric responses of a three-dimensional
nodal-line semimetal. Before discussing our main results ob-
tained from the anisotropic relaxation time given by Eq. (13),
we show what one would get from the constant relaxation time
approximation.

A. Thermoelectric responses with constant relaxation time

We start with replacing the relaxation time τ
β

k in Eq. (9)
with a momentum and direction independent parameter τ0. the
integral over k is analytically solvable for both radial and axial
directions, resulting in

σxx(ε) = σ0ε̃[1 + �(ε̃ − 1) fx(ε̃)],

σzz(ε) = σ02λ2ε̃[1 + �(ε̃ − 1) fz(ε̃)],
(16)

for the generalized transport distribution function, with σ0 =
(ge2τ0k2

0v)/(8π h̄λ), ε̃ = ε/ε0, and

fx(x) = 1

π

[(
4x2 − 1

3x2

)√
x2 − 1 − arcsec(x)

]
,

(17)

fz(x) = 1

π

[(
2x2 + 1

3x2

)√
x2 − 1 − arcsec(x)

]
.

For the charge conductivity at zero temperature one only
needs to replace the energy ε on the right-hand side of Eq. (16)
with the Fermi energy εF. In Fig. 2 we have illustrated the
Fermi energy dependance of conductivities within the con-
stant relaxation time approximation. Constant relaxation time
approximation predicts linear dependance of both components
of the charge conductivity on the Fermi energy at low car-
rier concentrations. The conductivity vanishes at the charge
neutrality point, i.e., εF = 0. Finally, the axial and radial com-
ponents of the charge conductivity are different, even for the
most symmetric case, i.e., λ = 1, where the axial conductiv-
ity is twice the radial one at low Fermi energies. The finite
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FIG. 3. The Fermi energy dependance of the radial (solid blue)
and axial (dashed red) thermopowers (in units of S0) obtained using
the constant relaxation time. Inset: The ratio between radial and axial
thermopowers Sxx/Szz versus the Fermi energy.

temperature thermoelectric coefficients could be readily ob-
tained with the help of Eq. (10). In particular, for the
thermopower we find

Sαα (εF) = −S0

ε̃F

[
1 + �(ε̃F − 1)

gα (ε̃F)

1 + fα (ε̃F)

]
, (18)

where S0 = π2k2
BT/(3eε0), ε̃F = εF/ε0, and

gx(x) = 2(2x2 + 1)
√

x2 − 1

3πx2
,

(19)

gz(x) = 2
√

(x2 − 1)3

3πx2
.

Note that, for εF < ε0, we find Sαα = −π2k2
BT/(3eεF) which

is direction independent. The behavior of thermopower in dif-
ferent directions versus the Fermi energy, as well as the ratio
between the radial and axial thermopowers within the constant
relaxation time approximation, is illustrated in Fig. 3. The
thermopower is isotropic for εF < ε0 and becomes anisotropic
at higher energies. It is interesting to notice that the results do
not depend directly on the ratio between two Fermi veloci-
ties in different directions λ, and the maximum anisotropy is
observed for εF ≈ 1.5 ε0.

B. Thermoelectric responses with anisotropic relaxation times

As the electronic structure of a three-dimensional nodal-
line semimetal is anisotropic, one should employ the
anisotropic relaxation time obtained from Eq. (13) to in-
vestigate the thermoelectric properties. Here we consider
scatterings from short-range impurities, i.e., Vk,k′ = V0, there-
fore the transition rate between two states reads

Wkk′ = u0[1 + cos (θ − θ ′)]δ(κ − κ ′), (20)

where u0 = πnimpV 2
0 /(h̄2v). Inserting Wkk′ into Eq. (13), after

some lengthly algebra (see Appendix B for details), we obtain

τ x
k = τ0

(b0 + bc cos θ )κ̃
+ · · · ,

τ z
k = τ0

(b0 + bc cos θ )κ̃

1

1 − γs
+ · · · , (21)
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FIG. 4. The dependence of radial (solid blue) and axial (dashed
red) conductivities (in units of σ0 and 2λ2σ0, respectively) on the
Fermi energy εF at zero temperature obtained from the anisotropic
relaxation time.

where κ̃ = κ/k0, τ0 = 4πλ/(u0k2
0 ), and the parameters bi and

γi are defined in Appendix B. The omitted terms on the right-
hand side of Eq. (21) do not survive the angular integrations
in Eq. (9) (see Appendix B for details) and therefore do not
contribute to the thermoelectric coefficients. The generalized
transport distribution functions read

σxx(ε) = σ0γc(ε̃),
(22)

σzz(ε) = σ02λ2 γs(ε̃)

1 − γs(ε̃)
,

with σ0 = (ge2τ0k2
0v)/(8π h̄λ) = (ge2v)/(2h̄u0), which is de-

fined in a similar fashion to the constant relaxation time
approximation case but the explicit expression for τ0, given
right after Eq. (21), needs to be replaced therein. For ε < ε0,
these expressions simplify to

σxx(ε < ε0) = σ0

[
1 + 4

ε̃2

(
1 − 2√

4 − ε̃2

)]
,

(23)
σzz(ε < ε0) = σ0λ

2
√

4 − ε̃2.

We recall that the zero-temperature conductivities are ob-
tained after replacing ε with Fermi energy on the right-hand
side of Eq. (22).

In Fig. 4 we have illustrated the Fermi energy dependence
of the static charge conductivities. They are several fundamen-
tal differences in comparison with the results obtained within
the constant relaxation time approximation. First of all, the
radial conductivity is independent of the anisotropy factor λ,
as σ0 does not depend on it in the anisotropic case. Second,
the conductivities at high carrier concentration weakly depend
on the Fermi energies, and finally, in contrast to the constant
relaxation time case, the intrinsic (i.e., εF = 0) conductivi-
ties are nonzero. More explicitly, we have σxx(0) = σ0/2 and
σzz(0) = 2λ2σ0. This is due to the fact that the relaxation times
diverge at low energies. This means that other mechanisms
of scattering dominate the short-range impurity scattering and
their contributions should be taken into account in this regime.
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FIG. 5. The Fermi energy dependence of the radial (solid blue)
and axial (solid red) thermopowers (in units of S0) obtained from
the anisotropic relaxation time. Dashed lines show the same results
obtained from the numerical solution of Eq. (8) at kBT = 0.01ε0.
Inset: The ratio between radial and axial thermopowers Sxx/Szz versus
the Fermi energy.

The electronic thermal conductivity is related to the charge
conductivity through the Wiedemann-Franz law at low tem-
peratures, so its anisotropy and Fermi energy dependence are
identical to what we already discussed about σαα .

The low temperature thermopower along different direc-
tions could be obtained from the Mott formula Eq. (11). The
full analytic expression turns out to be very cumbersome, but
at low energy regime (i.e., εF < ε0) the results simplify to

Sxx(εF < ε0) = 8S0
1 − (

8 − 3ε̃2
F

)/(
4 − ε̃2

F

)3/2

ε̃3
F + 4ε̃F

(
1 − 2

/√
4 − ε̃2

F

) ,

(24)

Szz(εF < ε0) = S0
ε̃F

4 − ε̃2
F

,

with S0 = π2k2
BT/(3eε0) defined similarly to constant relax-

ation time case. The full Fermi energy dependence of the
thermopower along the radial and axial directions as well as
the ratio between them is shown in Fig. 5. It is interesting to
notice that the sign of thermopower at low doping is reversed
with respect to the results obtained from the constant relax-
ation time approximation. Moreover, it becomes anisotropic
also at low carrier concentration, even so, the results do not
depend explicitly on the ratio between two Fermi velocities
λ. Another interesting observation is the sharp variation of
thermopower in both directions across the nodal ring energy
εF ∼ ε0. The radial thermopower vanishes and then changes
sign at εF ≈ 1.5 ε0.

To verify the validity of our analytic results, in Fig. 5 we
also present results for the Seebeck coefficient obtained from
the numerical solution of Eq. (8) at very low temperature. As
expected, a small deviation from the Mott formula is notice-
able at εF ≈ ε0, where the density of states is singular.

V. SUMMARY AND DISCUSSION

Using the semiclassical Boltzmann transport theory and
the relaxation time approximation we have studied the
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low-temperature thermoelectric properties of a three-
dimensional nodal-line semimetal. As the low energy
electronic structure of this system is strongly anisotropic,
even isotropic impurity potential would make the scattering
and therefore the relaxation times anisotropic. With proper
treatment of this anisotropy for short-range scattering, we
obtain fully analytic results for the relaxation times, electrical
conductivities, and thermopower. Thermoelectric responses
have strong energy and directional dependence. In particular
in the transition from low to high carrier concentration
regimes, where the Fermi surface undergoes a topological
transition from a toruslike shape into an ellipsoid, a very sharp
change in the thermopower is noticeable. This suggests the
measurement of thermoelectric properties at low temperatures
as a simple probe of the topology of the Fermi surface in
nodal-line semimetals.

We have also investigated the thermoelectric responses
obtained within the constant relaxation time approximation,
a widely adopted scheme for studying real materials. It is
evident that such a simple approximation completely fails in
capturing the true behavior of the system at low temperatures.

First-principle calculations suggest [51] k0 ≈ 0.2 Å−1 and
ε0 ≈ 0.1 eV for the hexagonal polymorph of Ca3P2 [20],
which hosts nodal lines very similar to the simple model we
have conspired in this work. From these parameters one easily
obtains S0 ≈ 73 μV/K at room temperature.

The real thermoelectric potential of nodal-line semimetals
requires a more thorough investigation of their thermoelec-
tric behavior in higher temperatures and with the inclusion
of different scattering mechanisms, as well as the phononic
contribution to their thermal conductivity. However, if one
is interested in probing the topology of the Fermi surface
rather than their thermoelectric applications, the measure-
ments can be done at low temperatures, where the contribution
of phonons in the thermoelectric properties would be negligi-
ble. Note that the Debye temperature for ZrXY (X = Si,Ge;
Y = S,Se) family of nodal-line semimetals is predicted to be
well above the room temperature [37].

Finally, we should note that, although a smooth variation of
the chemical potential in bulk materials is not experimentally
feasible, indications of pressure-induced Lifshitz transition
have been observed in different nodal-line semimetals [52,53].
We would expect that pressure-induced sharp variation of
the thermoelectric performance would be easily observable in
such systems.
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APPENDIX A: THE DENSITY OF STATES, CARRIER
CONCENTRATION, AND CHEMICAL POTENTIAL

The density-of-states per unit volume of our nodal-line
semimetal is given by

ρ(ε) = g

V

∑
k,s

δ(ε − εk,s)

= ρ0|ε̃|
{

1 +�(|ε̃|−1)

π

[√
ε̃2− 1 − arcsec(|ε̃|)]}, (A1)

with ρ0 = gk2
0/(2πλh̄v) and ε̃ = ε/ε0. If we consider an elec-

tron doped system (i.e., εF > 0), the carrier concentration in
the conduction band could be readily obtained as

nc =
∫ εF

0
dε ρ(ε)

= n0ε̃
2
F

{
1 + �(ε̃F − 1)

π

[
1 + 2ε̃2

F

3ε̃2
F

√
ε̃2

F − 1 − arcsec(ε̃F)

]}
,

(A2)

where ε̃F = εF/ε0, and n0 = ε0ρ0/2 is the density of electrons
in the conduction band corresponding to εF = ε0.

The chemical potential μ generally depends on the temper-
ature. At low temperatures we have [44]

dμ

dT
= −π2

3
k2

BT
ρ ′(μ)

ρ(μ)
, (A3)

where ρ ′(ε) is the derivative of the density-of-states given by
Eq. (A1). Now, using the fact that μ(T = 0) = εF, we find

μ(T ) ≈ εF

[
1 − α(ε̃F)

π2

6

(kBT

εF

)2]
, (A4)

with

α(x) = 1 + �(x − 1)

√
x2 − 1

π + √
x2 − 1 − arcsec(x)

. (A5)

APPENDIX B: CALCULATION OF THE ANISOTROPIC
RELAXATION TIMES

In this Appendix we provide the details of obtaining the
anisotropic relaxation times τα

k . As we have explained in the
main text, the relaxation times of an anisotropic system could
be obtained from the solution of the integral equation (13)

1 =
∫

d3k′

(2π )3
Wkk′

(
τα

k − vα
k′

vα
k

τα
k′

)
. (B1)

Using the explicit form of the transition rate from Eq. (20), we
obtain

τα
k

∫
d3k′

(2π )3
Wkk′ = τ̃ α

k (b0 + bc cos θ ), (B2)

where τ̃ α
k = κ̃τ α

k /τ0 with τ0 = 4πλ/(u0k2
0 ) and κ̃ = κ/k0.

The dimensionless coefficients bi are given by

b0(κ̃ ) ≡
∫

dθ

π
(1 + κ̃ cos θ )

= 2
{

1 + �(κ̃ − 1)

π

[√
κ̃2 − 1 − arcsec(κ̃ )

]}
(B3)

and

bc(κ̃ ) ≡
∫

dθ

π
(1 + κ̃ cos θ ) cos θ

= κ̃

{
1 + �(κ̃ − 1)

π

[√
κ̃2 − 1

κ̃2
− arcsec(κ̃ )

]}
. (B4)

As the the relaxation time τα
k′ is not known yet, it is not possi-

ble to perform the integral over k′ in the last term of Eq. (B1),
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but as Wkk′ is only part of the integrand which depends on k,
one can easily deduce that∫

d3k′

(2π )3
Wkk′ ṽα

k′ τ̃
α
k′ = aα

0 + aα
c cos θ + aα

s sin θ, (B5)

where ṽα
k = vα

k /v, and the dimensionless coefficients aα
i are

defined in terms of the relaxation times

aα
0 (κ̃ ) ≡

∫
dθ ′dφ′

2π2
(1 + κ̃ cos θ ′)τ̃ α

κ ′ ṽ
α
κ ′ ,

aα
c (κ̃ ) ≡

∫
dθ ′dφ′

2π2
(1 + κ̃ cos θ ′) cos θ ′τ̃ α

κ ′ ṽ
α
κ ′ , (B6)

aα
s (κ̃ ) ≡

∫
dθ ′dφ′

2π2
(1 + κ̃ cos θ ′) sin θ ′τ̃ α

κ ′ ṽ
α
κ ′ .

Now, upon the substitution of Eqs. (B2) and (B5) into
Eq. (B1), and using the explicit form of the group velocities
from Eq. (6), it is easy to realize

τ̃ x
k (b0 + bc cos θ ) = 1 + ax

0 + ax
c cos θ + ax

s sin θ

cos θ cos φ
,

(B7)

τ̃ z
k(b0 + bc cos θ ) = 1 + az

s + az
0 + az

c cos θ

sin θ
,

where the κ̃ dependance of the coefficients have been dropped
for convenience. The coefficients aα

i could be obtained af-
ter replacing the expressions for the relaxation times from
Eq. (B7) back into Eq. (B6). However, with a simple inspec-
tion, it becomes clear that the last terms on the right-hand
sides of Eqs. (B7) do not survive the angular integrations
in Eq. (9) and therefore do not have any contribution to the
thermoelectric responses. The only coefficient which needs to
be determined is az

s, which reads

az
s(κ̃ ) = γs(κ̃ )

1 − γs(κ̃ )
, (B8)

with

γs(κ̃ ) ≡
∫

dθ

π

1 + κ̃ cos θ

b0 + bc cos θ
sin2 θ

= κ̃

πbc
(π − θ0 + sin θ0 cos θ0)

+ 2(b0κ̃ − bc)

πb3
c

[
bc sin θ0 − b0(π − θ0)

+ 2
√

b2
0 − b2

c arctan

(√
b0 − bc

b0 + bc
cot

θ0

2

)]
. (B9)

Furthermore, in a similar fashion we can define

γc(κ̃ ) ≡
∫

dθ

π

1 + κ̃ cos θ

b0 + bc cos θ
cos2 θ

= −γs(κ̃ ) + 2κ̃

πbc
(π − θ0)

− 4(b0κ̃ − bc)

πbc

√
b2

0 − b2
c

arctan

(√
b0 − bc

b0 + bc
cot

θ0

2

)
, (B10)

which is used in the main text to express σxx. Now we define
the modified relaxation times

δτ̃ x
k = 1

b0(κ̃ ) + bc(κ̃ ) cos θ
,

(B11)

δτ̃ z
k = 1

b0(κ̃ ) + bc(κ̃ ) cos θ

1

1 − γs(κ̃ )
.

which are simply the parts of τα
k , contributing to the thermo-

electric responses.
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