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Spin Hall conductivity in insulators with nonconserved spin

Domenico Monaco *

Dipartimento di Matematica, La Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

Lara Ulčakar †
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We study the linear response of a spin current to a small electric field in a two-dimensional crystalline insulator
with nonconserved spin. We adopt the spin current operator proposed in J. Shi et al. [Phys. Rev. Lett. 96,
076604 (2006)], which satisfies a continuity equation and fits the Onsager relations. We use the time-independent
perturbation theory to present a formula for the spin Hall conductivity, which consists of a “Chern-type” term,
reminiscent of the Kubo formula obtained for the quantum Hall systems, and a correction term that accounts for
the nonconservation of spin. We illustrate our findings on the Bernevig-Hughes-Zhang model and the Kane-Mele
model for time-reversal-symmetric topological insulators and show that the correction term scales quadratically
with the amplitude of the spin-conservation-breaking terms. In both models, the spin Hall conductivity deviates
from the quantized value when spin is not conserved.
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I. INTRODUCTION

The spin Hall effect (SHE) has proved to be one of the
essential phenomena for the manipulation of spin currents
through electric fields in spintronics [1–3]. It is present in
topological insulators with time-reversal symmetry [4,5] that
exhibit a quantized value of the spin Hall conductivity, when
spin is a conserved quantity. This phenomenon was verified
experimentally in HgTe nanostructures [6] and in inverted
InAs/GaSb quantum wells [7].

The spin transport properties of systems in which the
projection of spin is not a conserved quantity have been a
center of multiple disagreements. First, recent studies [8–10]
suggest that the quantization of the spin Hall conductivity
fails when the spin is not conserved, while Ref. [11] predicts
an almost quantized value. Second, the definition of the spin
current operator has been questioned, as the commonly used
1
2 {Ẋ, Sz} does not satisfy the continuity equation in systems
with nonconserved spin. Recently, a spin current operator,
which evades this issue, was proposed in Ref. [12] and red-
erived in Refs. [13,14] from a SU(2) gauge field description
of the spin degrees of freedom: this operator reads instead as
Jz = i[H0, XSz].

We attempt here to resolve some of the controversies
regarding the spin Hall conductivity in systems with noncon-
served spin. The focus in this paper will be on the intrinsic,
direct SHE, where a transverse spin current is measured as
a response to an induced electric field in a two-dimensional
(2D) electron gas. In order to compute the spin Hall con-
ductivity, we follow a time-independent perturbation scheme
for linear response, inspired by space-adiabatic perturbation
theory [15] and its recent development in the context of charge
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and spin transport advanced in [16–18]. This approach iden-
tifies the perturbed ground-state projection as a power series
in the strength of the induced electric field. As in [18], we
calculate the spin conductivity tensor by using the spin current
operator from Ref. [12], which leads to a formula for the spin
Hall conductivity consisting of two contributions: the first
is in a “Chern-type” form [17] reminiscent of the standard
expression for the quantum Hall conductivity, as convention-
ally derived from the Kubo formula [19,20]; the second one
accounts for the spin-nonconserving terms in the Hamiltonian
and vanishes if the spin is conserved. On the examples of the
Bernevig-Hughes-Zhang (BHZ) model [21] and Kane-Mele
(KM) model [4] we identify the quadratic scaling of this
second contribution as a function of the spin-conservation
breaking terms, and discuss how the presence of this extra
contribution breaks quantization of the spin Hall conductivity
in time-reversal-symmetric topological insulators.

The paper is structured as follows. Section II presents a
streamlined version of the arguments from [18]: in particular,
in Sec. II A we characterize the studied systems, introduce the
spin current in Sec. II B and the perturbed state in the frame-
work of time-independent perturbation theory in Sec. II C;
finally, we derive the formula for the spin Hall conductivity
in Sec. II D. In Sec. III we explain the numerical evaluation
of the formula, and present the results for the BHZ model and
the KM model in Sec. IV.

II. LINEAR RESPONSE FOR SPIN CURRENTS

A. Equilibrium state

We study a tight-binding Hamiltonian H0 acting on states
|R s σ 〉, where R is a vector in a 2D Bravais lattice, labeling
cells in a crystal consisting of N1 × N2 copies of the fun-
damental cell � with odd N1, N2, s ∈ {↑,↓} is the physical
spin- 1

2 and σ includes all other local degrees of freedom in
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the unit cell. We denote in particular by X|R s σ 〉 = (R +
rσ )|R s σ 〉 the vector of position operators (rσ is a displace-
ment vector inside the unit cell) and by Sa = sa/2, for a ∈
{x, y, z}, the spin operators acting as half of the Pauli matrices
on the spin degree of freedom. Throughout the paper we adopt
units in which h̄ = 1. The Hamiltonian H0 is assumed to be
translation invariant and gapped: the Fermi energy lies in the
spectral gap, and �0 denotes the ground-state Fermi projec-
tion onto occupied states. In the numerical results described in
Sec. IV, H0 will be specified to be the BHZ and KM Hamilto-
nian at half-filling. We stress that H0 may contain terms, which
do not conserve the spin (or rather its projection along the z
direction), like Rashba spin-orbit coupling: [H0, Sz] �= 0.

Since the system is translation invariant, its Hamilto-
nian and the ground-state projector �0 are of diagonal
form when written in the Fourier-transformed basis |k s σ 〉 =
(1/

√
N1 N2)

∑
R eik·(R+rσ )|R s σ 〉 . For example, �0 in the

Fourier representation is of the form

�0 =
∑

k

|k s′ σ ′〉�0(k)s′ σ ′
s σ 〈k s σ |,

�0(k) =
∑

α occupied

|ψαk〉〈ψαk|, (1)

where |ψαk〉 ∈ Cn is the Bloch function associated to the αth
occupied band at crystal momentum k, and n is the number
of degrees of freedom per cell. H0(k) and the corresponding
�0(k) act as n × n matrices on spin and orbital degrees of
freedom.

B. Spin current operator

The SHE is observed by inducing a weak electric field and
measuring the response of a spin current in the limit of small
perturbation. We therefore set

HE = H0 − E · X (2)

for the perturbed Hamiltonian, where the charge of the carriers
is assumed to be q = 1: the label E = |E| is the strength of
the inducing field, which is assumed to be small. To measure
the spin response, we adopt the following definition of the
spin current operator [12]: Jz = i[H0, Q], where Q = XSz.
This current operator is not translation invariant unless spin
is conserved since

Jz = iX [H0, Sz]︸ ︷︷ ︸
transl. inv.

+ i[H0, X]Sz︸ ︷︷ ︸
transl. inv.

. (3)

Nonetheless, the operator Jz has a well-defined expectation
〈Jz〉� in any translation-invariant state � [18], as we detail
in Appendix A, which can be expressed as a trace per unit
volume (TPUV): 〈Jz〉� = Re τ {Jz�} with

τ {A} = 1

|�|
∑
s,σ

〈0 s σ |A|0 s σ 〉, (4)

where the expectation values of A are taken only on states
localized over sites in the fundamental cell �.

C. Perturbed state

The induced electric field changes the state of the system
from the equilibrium Fermi projection �0 to a state ρE . We

adopt the time-independent Rayleigh-Schrödinger perturba-
tion scheme [18,22] and approximate the state ρE to the
first order in the strength E of the electric field as ρE =
�0 + E �1 + O(E2). The first-order term �1 is a translation-
invariant self-adjoint operator characterized by the fact that it
is off-diagonal with respect to the orthogonal decomposition
induced by �0, i.e.,

�1 = �OD
1 = �0 �1 (1 − �0) + (1 − �0) �1 �0, (5)

and that it satisfies the commutation relation

[H0,�1] = [Ê · X,�0] with Ê = E/E . (6)

By using that [X,�0](k) = i∇k�0(k), one can derive the
following expression for the matrix elements of �1(k) in the
basis of Bloch states:

〈ψαk|�1(k)|ψβk〉 = i〈ψαk | Ê · ∇k|ψβk〉
εβk − εαk

, (7)

where |ψαk〉 is an occupied Bloch state, |ψβk〉 is an unoc-
cupied Bloch state, while εαk and εβk are their respective
Bloch energies. The other matrix elements of �1(k) can be
inferred by using the fact that it is self-adjoint and that it is off-
diagonal. Notice that the numerator of the above expression is,
up to the sign, the non-Abelian Berry connection A(k)αβ =
Im 〈ψαk | ∇k|ψβk〉 dotted with the direction Ê of the electric
field. The denominator is the hallmark of the inverse Liouvil-
lian L−1

H0(k), where LH0(k)(A(k)) = [H0(k), A(k)].
For the numerical evaluation of �1(k) it is more suitable to

use a gauge-invariant equation, which for a four-band Hamil-
tonian and electric field in the y direction reads explicitly as

(ε1 k|ψ1 k〉〈ψ1 k| + ε2 k|ψ2 k〉〈ψ2 k|)�1(k)u−o

−�1(k)u−o(ε3 k|ψ3 k〉〈ψ3 k| + ε4 k|ψ4 k〉〈ψ4 k|)
= i [∂ky�0(k)]u−o. (8)

Here, �1(k)u−o = �0(k)�1(k)(1 − �0(k)) is the
unoccupied-to-occupied block. The equation is obtained
by recombining the defining equations (5) and (6).

D. Spin Hall conductivity

The spin conductivity tensor σz is defined through Ohm’s
law:

〈Jz〉ρE = 〈Jz〉�0 + σz E. (9)

In the limit of a small inducing field, only �1 contributes to
the linear response of the spin current. The spin conductivity
tensor σz can thus be evaluated via

Re τ {Jz �1} = σz Ê. (10)

Using the defining relation from Eq. (6) of �1 and ob-
serving that AOD = [[A,�0],�0] for any operator A, the
expression Jz �1 can be rewritten with straightforward al-
gebraic manipulations (see Appendix B) as Jz �1 = K + D,
where

K = i[[Q,�0], [Ê · X,�0]]�0,

D = i[H0, QD]�1 + i[H0, QOD �1]

+ i[[Q,�0],�0[�0, Ê · X]]. (11)
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In the above formula, QOD and QD = Q − QOD denote, re-
spectively, the off-diagonal and the diagonal part of the
operator Q in the orthogonal decomposition induced by �0

[compare Eq. (5)]. Correspondingly, we split the conductivity
tensor as σ = σI + σII, with the two contributions determined
by the conditions

τ {K} = σI Ê, Re τ {D} = σII Ê. (12)

Since we are interested in the SHE, we apply the inducing
electric field in the y direction and consider the response
of the orthogonal x component of the spin current. Writing
X = (X,Y ) and Q = (Qx, Qy) = (XSz,Y Sz ), the spin Hall
conductivity σ z

xy evaluates then to σ z
xy = σ I

xy + σ II
xy with

σ I
xy = τ{i [[Qx,�0], [Y,�0]]�0},

σ II
xy = Re τ {i [H0, QD

x ]�1 + i[H0, QOD
x �1]

+ i[[Qx,�0],�0[�0,Y ]]}. (13)

The first term σ I
xy in Eq. (13) is a “Chern-type” contribution

to the spin Hall conductivity, while σ II
i j accounts for extra

contributions coming from the spin-nonconserving terms in
the Hamiltonian H0, and vanishes if the spin is conserved. In-
deed, if [H0, Sz] = 0, one has that QD/OD

x = X D/ODSz because
Sz commutes with �0. Then, the operator i[H0, QD

x ]�1 =
i[H0, X ]DSz�1 is translation invariant and is a product of the
diagonal operator i[H0, X ]DSz with the off-diagonal one �1:
hence, it is off-diagonal and has no diagonal matrix elements,
so that its TPUV computed as in Eq. (4) vanishes. Similarly,
the other two contributions to D, namely,

i
[
H0, QOD

x �1
] = i[H0, X ODSz�1] (14)

and

i[[Qx,�0],�0[�0,Y ]] = i[[X,�0]Sz,�0[�0,Y ]], (15)

are translation invariant and in the form of commutators, so
they also have vanishing TPUV. We conclude that, if the spin
is conserved, then τ {D} = 0, and the expression for the spin
Hall conductivity, consisting only of the σ I

xy term that involves
translation-invariant operators, can be written in momentum
space and in the thermodynamic limit as

σ z
xy = −i

(2π )2

∫
BZ

dk TrCn (Sz�0(k)[∂kx �0(k), ∂ky�0(k)])

= 1

2
(c1(�↑

0 ) − c1(�↓
0 )), (16)

where �
↑/↓
0 are the restrictions of the Fermi projection to

the spin-up/spin-down sectors, respectively, and c1(�) is the
first Chern number associated to a family of projections �(k)
[20,23]. The above coincides with the known formula for the

spin Hall conductivity [24] and gives the spin Chern number
[25] that is half-quantized in units of 1

2π
. Under the further as-

sumption of time-reversal symmetry on H0, which implies in
particular c1(�↓

0 ) = −c1(�↑
0 ), the parity of the integer 2πσ z

xy
coincides with the Kane-Mele Z2 index [4,26].

When instead [H0, Sz] �= 0, the extra terms in σ z
xy coming

from D are still off-diagonal or in the form of commutators,
however, they are not translation invariant. It turns out that,
for non-translation-invariant operators, the TPUV may fail to
be cyclic, that is, it is not true in general that τ (AB) = τ (BA).
This means that σ II

xy may be nonzero, and we will see this to
be the case in both the BHZ and KM models when the spin is
not conserved.

III. NUMERICAL IMPLEMENTATION

Let a1 and a2 be the primitive vectors of the Bravais lattice
with which we can describe the position of an arbitrary unit
cell as R = R1a1 + R2a2 with integer R1, R2. On the finite
lattice, each Rj ranges from −(Nj − 1)/2 to (Nj − 1)/2, for
j ∈ {1, 2}. The reciprocal lattice is spanned by reciprocal vec-
tors b1 and b2 defined by ai · b j = 2πδi j . The momentum k =
k1b1 + k2b2 is an element of the discrete 2D Brillouin zone,
with coordinates k j ∈ BZj where BZ j = {−Nj−1

2Nj
, . . . ,

Nj−1
2Nj

}
for j = 1, 2.

In order to compute the spin Hall conductivity σ z
xy, we

turn on the electric field in the y direction, which will also
be aligned with the vector a2. As seen from Eq. (13), the
expression for σ z

xy involves operators which are not translation
invariant in the x direction. Therefore, we introduce the partial
Fourier transform relating the |k s σ 〉 basis to the |(R1, k2) s σ 〉
basis as follows:

|k s σ 〉 = 1√
N1

∑
R1

cσ (k1) ei2πk1R1 |(R1, k2) s σ 〉. (17)

The coefficient cσ (k1) = eik1b1·rσ accounts for the displace-
ment rσ of the local degrees of freedom in the unit cell: we
will specify it later in the concrete models. Conveniently, the
position operator X is diagonal in this basis:

X =
∑

R1,k2,s,σ

xσ (R1)|(R1, k2) s σ 〉〈(R1, k2) s σ |, (18)

where the value of xσ (R1) = (R1a1 + rσ ) · êx will again be
specified later in the BHZ and KM models.

To calculate σ z
xy, we express all operators [e.g., H0(k),

�0(k), �1(k)] as matrices in the new basis [correspondingly
H0(k2), �0(k2), �1(k2)]: they act now also on the position x
degree of freedom. The formula for the two contributions to
the spin Hall conductivity appearing in Eq. (13) is expressed
in the |(R1, k2) s σ 〉 basis as

σ I
xy = − 1

|�| N2

∑
k2∈BZ2

∑
s∈{↑,↓}

∑
σ

〈(0, k2) s σ |[[Qx,�0(k2)], ∂ky�0(k2)]�0(k2)|(0, k2) s σ 〉,

σ II
xy = − 1

|�| N2

∑
k2∈BZ2

∑
s∈{↑,↓}

∑
σ

Im〈(0, k2) s σ |{[H0(k2), QD
x

]
�1(k2) + [

H0(k2), QOD
x �1(k2)

]

+ [
[Qx,�0(k2)],�0(k2)

[−i∂ky�0(k2)
]]}|(0, k2) s σ 〉. (19)
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FIG. 1. Spin Hall conductivity σ z
xy, the “Chern-type” contribution σ I

xy, and the “extra” contribution σ II
xy in the BHZ model, computed on a

31 × 31 finite lattice. Dependence on c for the system in (a) the topological phase at u = −1 and in (b) the trivial phase at u = −3 and (c) the
scaling of σ II

xy with c on a log-log scale. Dots show numerical results while full lines denote fitted c2 curve.

Notice that in the above expressions the derivative with re-
spect to ky appears, due to the fact that the electric field is
applied in the y direction.

IV. RESULTS FOR REFERENCE MODELS

A. Bernevig-Hughes-Zhang model

1. Model

The BHZ Hamiltonian was introduced in [21] to model the
low-energy physics of HgTe/CdTe quantum wells that realize
time-reversal-symmetric topological insulators, in which the
quantum spin Hall effect can take place [6]. In systems with
band inversion asymmetry and structural inversion asymme-
try, such as InAs/GaSb/AlSb type-II semiconductor quantum
wells, terms that couple states with opposite spin projections
and preserve the time-reversal symmetry arise. The tight-
binding model takes place on a square crystalline lattice with
two orbitals per lattice site. We set the lattice constant to 1.
The k-space expression for the BHZ Hamiltonian reads as

H0(k) = s0 ⊗ {[u + cos(kx ) + cos(ky)] σ z + sin(ky) σ y}
+ sz ⊗ sin(kx ) σ x + c sx ⊗ σ y, (20)

where (kx, ky ) = (2πk1, 2πk2) are the Cartesian coordinates
of momentum, sa and σ a for a ∈ {x, y, z} are Pauli matrices in
spin space and local orbital space, respectively, and s0 is the
identity operator in spin space. The Hamiltonian above is
expressed in units of the intercell hopping amplitude, which is
equal in both directions. The parameter u ∈ R is the staggered
orbital binding energy, while c ∈ R is the coupling constant
between spin and orbital degrees of freedom: the latter de-
termines the magnitude of the spin-conservation breaking as
[H0(k), Sz] ∝ c. When c = 0, the original BHZ model is re-
covered. The topological phase diagram, characterized by the
Z2 index, is discussed in Ref. [9]. In the topological phase the
system exhibits the SHE.

2. Spin Hall conductivity

To compute the spin Hall conductivity as in Eq. (19), we
need to set cσ (k1) = 1 in Eq. (17) and xσ (R1) = R1 in Eq. (18)
since all of the internal degrees of freedom are placed on the
same position in a unit cell. The numerical results for σ I

xy,
σ II

xy, and σ z
xy are plotted in Fig. 1. Both σ I

xy and σ II
xy show a

nontrivial dependence on the spin coupling c, as illustrated
by Figs. 1(a) and 1(b). As expected, at c = 0 the spin Hall
conductivity coincides with the “Chern-type” contribution σ I

xy
and equals 0 in the trivial phase and −1 in the topological
phase. For c �= 0, the spin Hall conductivity deviates from the
quantized value: the change is mostly due to the increase in
magnitude of σ II

xy, which scales quadratically in c [Fig. 1(c)],
while σ I

xy stays almost unchanged in relative size.
Interestingly, our results coincide with the results of

Ref. [9], which uses the conventional definition for the spin
current Jz

conv = 1
2 {Ẋ, Sz}. As proved in Appendix C, this is

the consequence of the lattice structure, namely, because the
orbital degrees of freedom are all positioned on the same
lattice site (see also [18]).

B. Kane-Mele model

1. Model

The KM Hamiltonian was introduced in [4] as a candidate
model for the quantum spin Hall effect in graphene. Electrons
reside on the hexagonal lattice with hopping parameter t and
are subject to spin-orbit interaction with coupling strength
λSO, Rashba interaction with coupling λR, and to a staggered
potential, equal to ±M on neighboring sites.

The honeycomb lattice is made of two interpenetrating
Bravais triangular sublattices, commonly denoted by A and
B. We set the lattice constant of a Bravais lattice to 1. Starting
from an A site as the origin, the nearest-neighbor (NN) sites
are of B type and they are reached with the three displacement
vectors

d1 = 1

2

(
1√
3
,−1

)
, d2 = 1

2

(
1√
3
, 1

)
, d3 = −d1 − d2,

(21)
where |d i| = 1/

√
3 is the NN distance. We denote the primi-

tive vectors of the Bravais lattice as

a1 =
(√

3

2
,

1

2

)
, a2 = (0, 1), a3 = a2 − a1. (22)

The unit cell is generated by a1 and a2, and contains one A
site and one NN B site, which constitute the internal degree of
freedom denoted by σ ∈ {A, B}.
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FIG. 2. Spin Hall conductivity σ z
xy, the “Chern-type” contribution σ I

xy, and the “extra” contribution σ II
xy in the KM model at t = λSO = 1

on a 101 × 101 finite lattice. Dependence on λR for the system in (a) the topological phase at M = 0 and (b) in the trivial phase at M = 10.
The gray plots correspond to the spin Hall conductivity, calculated by using the spin current operator Jz (solid line) and the conventional spin
current operator 1

2 {Ẋ, Sz} (σ̄ z
xy, dashed line), of a system with mirror-symmetry-breaking terms of the amplitude a = 0.5. (c) Scaling of σ II

xy in
λR on a log-log scale. Dots show numerical results while full lines denote fitted λ2

R curve.

The reciprocal lattice vectors b1 and b2 are constructed in
the standard way by imposing ai · b j = 2πδi j :

b1 = 4π√
3

(1, 0), b2 = 4π√
3

(
−1

2
,

√
3

2

)
. (23)

When periodic boundary conditions are imposed, the system
is translation invariant and the Hamiltonian can be expressed
in momentum space as

H0(k) = 1

2
(Ms0 + λSOγ (k)sz ) ⊗ σ z

+ [tg(k)s0 + λR(χx(k)sx − iχy(k)sy)]

× ⊗ σ x + iσ y

2
+ H.c. (24)

with

g(k) = −
3∑

i=1

eik·d i ,

γ (k) = −2
3∑

i=1

sin(k · ai ),

χx(k) = i
√

3

2
(eik·d1 − eik·d2 ),

χy(k) = −1

2
(eik·d1 + eik·d2 − 2 eik·d3 ). (25)

2. Spin Hall conductivity

To compute the spin Hall conductivity as in Eq. (19),
we need to set cA(k1) = 1, cB(k1) = ei2π/3k1 in Eq. (17) and
xA(R1) =

√
3

2 R1, xB(R1) =
√

3
2 R1 + 1

2
√

3
in Eq. (18). The nu-

merical results are illustrated in Fig. 2. For λR = 0, the spin
is conserved and the spin Hall conductivity is exactly 0 in
the trivial phase at M = 10 and 1 in the topological phase at
M = 0. As in the BHZ model, σ II

xy grows quadratically with
λR, while σ I

xy stays approximately unchanged. We compare
these results with the ones given by the conventional definition
of the spin current Jz

conv = 1
2 {Ẋ, Sz}, and observe that the

two different definitions give the same value of the spin Hall
conductivity. As shown in Appendix C, this equivalence is a

manifestation of the mirror symmetry (x, y) �→ (−x, y),

H0(kx, ky)∗ = H0(−kx, ky), (26)

which transforms the lattice into a new hexagonal lattice,
shifted by d2 with respect to the original one. In order to test
this hypothesis, we add to the Hamiltonian terms that break
the mirror symmetry, while still preserving the time-reversal
symmetry, namely,

a sin

(√
3kx

2

)
cos

(
ky

2

)
[sx ⊗ σ z + (sx − sy) ⊗ σ 0]

+ a cos

(√
3kx

2

)
sin

(
ky

2

)
sy ⊗ σ z. (27)

The corresponding results, shown in Fig. 2, clearly show that
in the case of broken mirror symmetry the two definitions of
the spin current yield different results, the difference becom-
ing larger for larger values of λR. A different argument for
this equivalence, relying instead on the hexagonal symmetry
of the KM model, is presented in [18].

V. CONCLUSIONS

In this paper, we presented a formula for the spin Hall
conductivity in 2D band insulators, following the strategy
employed in Ref. [18] (which, even though we chose to work
with lattice Hamiltonians, applies also to systems in the con-
tinuum). The spin current operator is modeled according to
Ref. [12]; it satisfies a continuity equation and the Onsager
relations even when the spin is not conserved. The spin Hall
conductivity was shown to consist of a “Chern-type” contri-
bution, which was also studied in Ref. [17], and an extra term,
which is nonzero in the presence of spin-nonconserving terms
in the Hamiltonian. This splitting of the spin conductivity into
two contributions differs slightly from the one performed in
Ref. [18], where instead the two terms arise from writing the
spin current operator Jz as the sum of the operator i[H0, X]Sz,
which appears also in the conventional definition of the spin
current, plus the rest, as in Eq. (3). Our “Chern-type” term, in-
stead, identifies the perturbing potential −E Y and the current
operator Jz

x = i[H0, Qx], respectively, by the appearance of the
operators [Y,�0] and [Qx,�0] in the definition (13) of σ I

xy.
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DOMENICO MONACO AND LARA ULČAKAR PHYSICAL REVIEW B 102, 125138 (2020)

Moreover, σ I
xy was also investigated in Ref. [17] in relation

with the spin Hall conductance.
We illustrated the formula for the spin Hall conductivity

by implementing it numerically in the BHZ model and the
KM model for time-reversal-symmetric topological insula-
tors. Interestingly, the “Chern-type” contribution to the spin
Hall conductivity stays close to the quantized value for both
models. At any rate, the total spin Hall conductivity deviates
from the quantized value as soon as the conservation of spin
is broken.

The same results for the BHZ model were obtained in
Ref. [9], where the electric field is turned on through an adia-
batic time modulation and the spin response is calculated via
the conventional spin current operator 1

2 {Ẋ, Sz}. We showed
that the resulting conductivities agree due to additional spatial
symmetries that are present in the analyzed models.

Complementary to the presentation of this paper, expres-
sions for the spin Hall conductivity were also derived in
the form of a Středa formula in Ref. [8] starting from the
conventional spin current operator, and in Ref. [11] from the
one that satisfies the continuity equation. In the insulating
regime, Ref. [8] identifies the contributions in the conduc-
tivity associated to spin-conservation-breaking terms in the
Hamiltonian [the same role played in our formulas by σ II

xy,
see Eq. (13)]; in contrast, the use of the spin current operator
i[H0, XSz] allows the author of Ref. [11] to express the spin
Hall conductivity in a more compact form, and to claim that
its value is almost quantized in the KM model also in presence
of Rashba interactions. Our findings resolved the deviation of
the spin Hall conductivity from the quantized value, which
in the KM scales quadratically in the strength of the Rashba
spin-orbit coupling.
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APPENDIX A: TRACE PER UNIT VOLUME

The finite Bravais lattice �N1,N2 is generated by
the basis {a1, a2} as R = R1a1 + R2a2, with Rj ∈
{−(Nj − 1)/2, . . . , (Nj − 1)/2} for j ∈ {1, 2}. Both
translation-invariant operators and operators of the form
XB with translation invariant B have a well-defined TPUV:

τ {A} = lim
N1,N2→∞

1

|�| N1 N2

∑
R∈�N1 ,N2

∑
s,σ

〈R s σ |A|R s σ 〉.

(A1)
Moreover, due to the fact that any finite lattice with an odd
number of cells in each direction is symmetric under inversion
around the origin, the quantity in the above limit is exactly
independent of N1 and N2, and the TPUV of any such operator

A can be computed as

τ {A} = 1

|�|
∑
s,σ

〈0 s σ |A|0 s σ 〉. (A2)

This observation is clear for translation invariant A, so
we prove it for A = XB, following an argument presented in
[17,18]. To this end, first observe the following commutation
relation:

[X, TR] = R TR, (A3)

where TR|R′ s σ 〉 = |R′ + R s σ 〉 is the translation operator
with respect to the Bravais lattice vector R. The summands
that define the trace per unit volume in Eq. (A1) of A = XB
reduce then to

〈0 s σ |T †
R XB TR|0 s σ 〉 = 〈0 s σ |T †

R X TR B|0 s σ 〉
= 〈0 s σ |XB|0 s σ 〉 + R〈0sσ |B|0sσ 〉.

(A4)

The first equality is due to the translation invariance of
B, while the second is due to the commutation relation in
Eq. (A3) and unitarity T †

R TR = 1. When the second term on
the right-hand side of the above equality is summed over
R ∈ �N1,N2 , the sum vanishes, as for each lattice vector R also
−R is in the finite lattice.

For a translation-invariant operator A, which admits a
Fourier representation A(k), one has

〈0 s σ |A|0 s σ 〉 = 1

N1N2

∑
k∈BZ

A(k)s σ
s σ , (A5)

and therefore the TPUV in Eq. (A2) can be also computed as

τ {A} = 1

|�| N1 N2

∑
k∈BZ

∑
s,σ

A(k)s σ
s σ (A6)

which in the thermodynamic limit N1, N2 → ∞ reduces to

τ {A} = 1

(2π )2

∫
BZ

dk TrCn (A(k)). (A7)

From these expressions it can be inferred at once that τ {AB} =
τ {BA} for translation-invariant operators A, B. This cyclicity
property is in general broken if one applies it instead to
non-translation-invariant operators of the form XB of the type
considered in the main text.

APPENDIX B: LINEAR RESPONSE FOR SPIN CURRENTS

In order to calculate the spin current induced by the electric
field [see Eq. (10)], we rewrite Jz �1 by using the Leibnitz
rule for commutators [A, BC] = [A, B]C + B[A,C] and the
fact that AOD = [[A,�0],�0], as

i[H0, Q]�1 = i[H0, QD]�1 + i[H0, QOD]�1

= D1 + i[H0, QOD�1] − iQOD[Ê · X,�0]

= D1 + D2 − i[[Q,�0],�0][Ê · X,�0]

= D1 + D2 − i[[Q,�0],�0[Ê · X,�0]]

+ i�0[[Q,�0], [Ê · X,�0]]

= D1 + D2 + D3 + K. (B1)
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In the above, we have set

D1 = i[H0, QD]�1,

D2 = i[H0, QOD�1],

D3 = −i[[Q,�0],�0[Ê · X,�0]],

K = i�0[[Q,�0], [Ê · X,�0]]. (B2)

Finally, we set D = D1 + D2 + D3, so that the definitions of K
and D coincide with the ones in Eq. (11). Notice that [A, B]† =
−[A†, B†] [which implies (i[A, B])† = i[A†, B†]], and hence
K is self-adjoint:

K† = i[[Q,�0]†, [Ê · X,�0]†]�0

= i[−[Q,�0],−[Ê · X,�0]]�0

= i�0[[Q,�0], [Ê · X,�0]] = K, (B3)

where in the second-to-last equality we used that operators of
the form [A,�0] are off diagonal, and therefore the commu-
tator of [Q,�0] and [Ê · X,�0] is diagonal, thus commuting
with �0. Therefore, in particular, τ {K} is real valued.

APPENDIX C: AGREEMENT OF “CONVENTIONAL” AND
“PROPER” SPIN HALL CONDUCTIVITIES

The conventionally used spin current operator is defined as

Jz
conv = 1

2 {Ẋ, Sz} = 1
2 {i[H0, X], Sz}. (C1)

If we split the spin current operator adopted from Ref. [12]
according to

Jz = Jz
conv + 1

2 {X, Ṡz}, (C2)

and rewrite Eq. (4) as

〈Jz〉� = 1

2|�|
∑
s,σ

〈0 s σ |{Jz,�}|0 s σ 〉, (C3)

we obtain

Re τ {Jz �1} = Re τ
{
Jz

conv �1
}

+ 1

4|�|
∑
s,σ

〈0 s σ |{{X, Ṡz},�1}|0 s σ 〉. (C4)

We notice the following operator identity:

{{X, Ṡz},�1} = {{Ṡz,�1}, X} + [Ṡz, [X,�1]]. (C5)

The commutator on the right-hand side is a translation-
invariant operator, and hence does not contribute to the TPUV
because of cyclicity, τ {AB} = τ {BA}. Instead, in the expec-
tation of the summand {Ṡz,�1} X + X {Ṡz,�1}, the position
operator X will act on the state |0 s σ 〉 (or the corresponding
〈0 s σ |). If this state is localized at R = 0, also this expectation
will vanish: this is what happens in the BHZ model.

In general, like in the hexagonal KM model, there will be
other sites in the unit cell contributing to the above TPUV. In

this case, the position operator X acts as X|0 s σ 〉 = rσ |0 s σ 〉,
where rσ is a displacement vector (rA = 0 and rB = d2 in the
KM model), and

〈0 s σ |{{Ṡz,�1}, X}|0 s σ 〉
= 2 rσ 〈0 s σ |{Ṡz,�1}|0 s σ 〉. (C6)

Using the Leibnitz rule for the commutator, the operator ap-
pearing on the right-hand side can be rewritten as

{i[H0, Sz],�1} = i[H0, {Sz, �1}] − {Sz, i[H0,�1]}
= i[H0, {Sz, �1}] − {Sz, i[Ê · X,�0]}
= i[H0, {Sz, �1}] − i Ê · [X, {Sz,�0}], (C7)

using Eq. (6) in the second equality and the fact that the
position operator and the spin operator commute in the third
equality. On the right-hand side of the above, the second sum-
mand does not have diagonal elements in the |R s σ 〉 basis: in
particular,

〈0 s σ |[X, {Sz,�0}]|0 s σ 〉 = rσ 〈0 s σ |{Sz,�0}|0 s σ 〉
− 〈0 s σ |{Sz,�0}|0 s σ 〉rσ = 0.

(C8)

Call B1 = i[H0, {Sz, �1}]: it is a translation-invariant op-
erator, and therefore [compare Eq. (A5)]

〈0 s σ |B1|0 s σ 〉 = 1

|�| N1 N2

∑
k∈BZ

B1(k)s σ
s σ . (C9)

The difference Re τ {Jz �1} − Re τ {Jz
conv �1} then equals

1

2

1

|�| N1 N2

∑
σ

rσ

∑
k∈BZ

∑
s

B1(k)s σ
s σ . (C10)

We now exploit the mirror symmetry, shown in Eq. (26),
of the KM model. Notice first of all that it is inherited by the
Fermi projection:

�0(kx, ky)∗ = �0(−kx, ky). (C11)

With this one can argue that, since the solution to Eqs. (5)
and (6) is unique, then also �1(k) satisfies the same relation.
Consequently, as Sz has real components,

B1(kx, ky)∗ = (i[H0(kx, ky), {Sz, �1(kx, ky)}])∗
= −B1(−kx, ky), (C12)

so that the expression in Eq. (C10) is odd in kx, and thus sums
to zero over the BZ.

We conclude finally that

Re τ {Jz �1} = Re τ {Jz
conv �1}, (C13)

and that the spin conductivity tensor σz is independent of the
choice of spin current operator both in the BHZ and in the KM
model.

[1] J. Schliemann, Int. J. Mod. Phys. B 20, 1015 (2006).
[2] T. Jungwirth, J. Wunderlich, and K. Olejník, Nat. Mater. 11, 382

(2012).
[3] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.

Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).

[4] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[6] C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M.

Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, Nat.
Phys. 6, 448 (2010).

125138-7

https://doi.org/10.1142/S021797920603370X
https://doi.org/10.1038/nmat3279
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/nphys1655


DOMENICO MONACO AND LARA ULČAKAR PHYSICAL REVIEW B 102, 125138 (2020)

[7] I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603
(2011).

[8] M.-F. Yang and M.-C. Chang, Phys. Rev. B 73, 073304
(2006).
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