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The realization of equilibrium superradiant quantum phases (photon condensates) in a spatially uniform
quantum cavity field is forbidden by a “no-go” theorem stemming from gauge invariance. We here show that the
no-go theorem does not apply to spatially varying quantum cavity fields. We find a criterion for its occurrence
that depends solely on the static, nonlocal orbital magnetic susceptibility χorb(q), of the electronic system (ES)
evaluated at a cavity photon momentum h̄q. Only 3DESs satisfying the Condon inequality χorb(q) > 1/(4π ) can
harbor photon condensation. For the experimentally relevant case of two-dimensional (2D) ESs embedded in
quasi-2D cavities the criterion again involves χorb(q) but also the vertical size of the cavity. We use these consid-
erations to identify electronic properties that are ideal for photon condensation. Our theory is nonperturbative in
the strength of electron-electron interaction and therefore applicable to strongly correlated ESs.
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I. INTRODUCTION

The Dicke model [1], which describes a system of N qubits
coupled to a single-mode spatially uniform field confined in a
cavity of volume V , plays a central role in quantum optics and
cavity quantum electrodynamics (QED) [2–5]. In 1973, Hepp
and Lieb [6] and subsequently Wang and Hioe [7] pointed
out that for sufficiently strong light-matter coupling the Dicke
model in the thermodynamic limit (N → ∞, V → ∞, with
N/V = const) has a finite temperature second-order equilib-
rium phase transition between a normal and “superradiant”
state. In the latter, the ground state contains a macroscopically
large number of coherent photons, i.e., 〈â〉 ∝ √

N , where â
(â†) destroys (creates) a cavity photon. To avoid confusion
with the superradiant emission discussed in the original work
by Dicke we refer to the equilibrium superradiant phase as a
photon condensate. Equilibrium superradiance was shown to
be robust against the addition of counter-rotating terms [8,9]
neglected in Refs. [6,7], but not against restoration of an ad-
ditional neglected term proportional to (â + â†)2 (Ref. [10]).
This quadratic term is naturally generated by applying min-
imal coupling p̂ → p̂ + eA/c to the electron kinetic energy
p̂2/(2m). Rzażewski et al. [10] were the first to show that
the Thomas-Reiche-Kuhn (TRK) sum rule [11,12] poses an
insurmountable obstacle against equilibrium superradiance
in a spatially uniform quantum cavity field. Physically, this
sum rule originates from gauge invariance [13,14], and in
particular from the property that a system cannot respond

*These two authors contributed equally to this paper.

to a spatially uniform and time-independent vector poten-
tial. The link between gauge invariance and quadratic terms
emerges as following. The quadratic term is responsible for
the appearance of a diamagnetic contribution to the current
operator [13,14]. Only when paramagnetic and diamagnetic
contributions are considered on equal footing, does one have
a precisely gauge-invariant Hamiltonian satisfying the TRK
sum rule. Recent advances in technology have reinvigorated
interest in equilibrium superradiance [15,16], inspiring a lit-
erature thread in which the obstacle presented by quadratic
terms was periodically resurrected [17,18]. Complications due
to the presence of a superconducting condensate in circuit
QED setups were also discussed [18–22].

In the Dicke model, direct interactions between two-level
systems are neglected. Effective long-range interactions be-
tween qubits are solely mediated by the common cavity field.
Recent experimental progress has created opportunities to
study light-matter interactions in an entirely new regime. For
example, two-dimensional (2D) electron systems (ESs) can
be embedded in cavities or exposed to the radiation field of
metamaterials, making it possible to study strong light-matter
interactions in the regime where direct electron-electron in-
teractions may play a pivotal role, as in the quantum Hall
regime [23–29].

Similarly, one can imagine cavity QED in which matter
exhibits strongly correlated phenomena [30–41] such as ex-
citon condensation, superconductivity, magnetism, or Mott
insulating states. For all these exciting new possibilities,
the paradigmatic Dicke model needs of course to be tran-
scended. The degrees of freedom of microscopic many-body
Hamiltonians—such as the one of the jellium model [14] or
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the Hubbard model [42] to name two—need to be coupled to
the cavity modes. As the Dicke model story has instructed us,
theories of the equilibrium properties of these intriguing new
systems must be fully gauge invariant. This has not always
been the case in the literature. For example, the case of mate-
rials with a low-energy linear energy-momentum dispersion
relation, such as graphene and Weyl semimetals, is partic-
ularly tricky. In this case, the low-energy continuum model
Hamiltonian needs to be accompanied by an ultraviolet cutoff,
which breaks gauge invariance [43]. Using this model to study
superradiant quantum phase transitions, e.g. in graphene [44],
incorrectly implies photon condensation because a dynami-
cally generated quadratic term is missed [45,46]. We therefore
conclude that low-energy truncations of the Hilbert space
must be carried out carefully in order to preserve gauge in-
variance [43,47,48]. Another example is that of Ref. [49],
where the coupling of the matter degrees of freedom of
a two-band Hubbard model to the spatially uniform vector
potential of the cavity was carried out via a paramagnetic
current operator not satisfying the continuity equation (see
Ref. [50] for further details). A no-go theorem for superradi-
ant quantum phase transitions which is applicable to generic
interacting many-body systems in a cavity has been re-
cently demonstrated in Ref. [50], under the strong but almost
universally made assumption of a spatially uniform cavity
field.

The term “superradiance” is used to describe a plethora of
different collective phenomena, ranging from the amplifica-
tion of radiation due to coherence in the emitting medium [1]
to the Zel’dovich-Misner-Unruh [51] amplification of radi-
ation by rotating black holes. To avoid confusion, we will
therefore refer to the equilibrium superradiant phase as a pho-
ton condensate. Given the impossibility of achieving photon
condensation in a spatially uniform quantum cavity field, in
this paper, we relax this strong assumption. We lay down a
theory of photon condensation in a spatially varying quan-
tum cavity field that does not rely on the smallness of the
electron-electron-interaction coupling constant. As such, our
theory is applicable to strongly correlated ESs. For pioneering
theoretical works on the case of spatially varying quantum
cavity fields see Refs. [52–54].

We separately study three cases. (i) We first consider a
three-dimensional (3D) ES embedded in a 3D cavity field. In
this case, we reach a condition for the occurrence of photon
condensation which is universal, in that it does not depend on
the cavity material parameters. Indeed, our criterion depends
only on a nonlocal linear response function of the 3DES,
namely, the static nonlocal orbital magnetic susceptibility
χorb(q). This quantity describes the response of the electron
system to a static but spatially oscillating magnetic field:

χorb(q) ≡ −e2

c2

χT(q, 0)

q2
. (1)

Here, −e is the electron charge, c is the speed of light in vac-
uum, and χT(q, 0) is the transverse current response function
of the interacting ES [13,14]. We find that photon condensa-
tion occurs if and only if χorb(q) > 1/(4π ).

(ii) We then study the role of spin degrees of freedom, by
including in the treatment the Zeeman coupling between the

electron spin and the spatially varying cavity field. We also
discuss the combined effects of orbital and spin couplings.

(iii) Finally, we consider the case of a 2DES embedded in a
quasi-2D cavity of extension Lz in the direction perpendicular
to the plane hosting the 2DES, i.e., the x̂-ŷ plane [54]. In this
case, the criterion for photon condensation depends on Lz, and
not only on the intrinsic orbital magnetic properties of the
2DES.

Our Article is organized as following. Photon condensation
in 3D in the presence of purely orbital coupling between the
cavity electromagnetic field and matter degrees of freedom is
discussed in Sec. II. The role of spin and combined orbital-
spin effects (always in 3D) is reported in Sec. III. Finally, the
case of 2DESs embedded in quasi-2D cavities is discussed
in Sec. IV. A brief summary and our main conclusions are
finally presented in Sec. V. A number of cumbersome math-
ematical proofs and useful technical details are reported in
Appendices A–D.

II. 3D PHOTON CONDENSATION

We consider a 3DES interacting with a spatially varying
quantized electromagnetic field. For the sake of concreteness,
we assume that the 3DES is described by the jellium model
Hamiltonian [13,14]

Ĥ =
N∑

i=1

p̂2
i

2m
+ 1

2

∑
i 	= j

v(|r̂i − r̂ j |). (2)

This model describes N electrons of mass m interacting via
an arbitrary [55] central potential v(r). Charge neutrality (and
therefore stability) of the system is guaranteed by a posi-
tive background of uniform charge. Electron-background and
background-background interactions have not been explicitly
written in Ĥ. For future reference, we denote by |ψm〉 and Em

the exact eigenstates and eigenvalues [13,14] of Ĥ, with |ψ0〉
and E0 denoting the ground state and ground-state energy, re-
spectively. We also introduce the 3D Fourier transforms of the
density and paramagnetic (number) current operators [13,14]:

n̂(q) =
N∑

i=1

e−iq·r̂i , (3)

ĵp(q) = 1

2m

N∑
i=1

( p̂ie
−iq·r̂i + e−iq·r̂i p̂i ) , (4)

with n̂(−q) = n̂†(q) and ĵp(−q) = ĵ
†
p(q).

We treat the spatially varying cavity electromagnetic field
Â(r) in a quantum fashion [56,57]. We consider a cavity of
volume V = LxLyLz, impose periodic boundary conditions on
the cavity field, and represent it in terms of plane waves:

Â(r) =
∑
q,σ

Aquq,σ (âq,σ eiq·r + â†
q,σ e−iq·r) . (5)

Here, q = (2πnx/Lx, 2πny/Ly, 2πnz/Lz ) with (nx, ny, nz ) rel-
ative integers, σ = 1, 2 is the polarization index, uq,σ is
the linear polarization vector, Aq = √

2π h̄c2/(V ωqεr ), ωq =
cq/

√
εr, and εr is a relative dielectric constant. The follow-

ing properties hold [56]: ω−q = ωq, u−q,σ = uq,σ , A−q = Aq,
and uq,σ · uq,σ ′ = δσ,σ ′ . In the Coulomb gauge, we have the
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transversality condition

uq,σ · q = 0 , (6)

for every q and σ . The photonic annihilation and creation
operators in Eq. (5) satisfy bosonic commutation relations,
[âq,σ , â†

q′,σ ′ ] = δq,q′δσ,σ ′ .

Being a quantum object, the field Â(r) has its own dynam-
ics, which is determined by the photon Hamiltonian

Ĥph =
∑
q,σ

h̄ωq

(
â†

q,σ âq,σ + 1

2

)
. (7)

The full Hamiltonian, including light-matter interactions, is
therefore given by

ĤA = Ĥ + Ĥph +
N∑

i=1

e

mc
Â(ri ) · p̂i +

N∑
i=1

e2

2mc2
Â

2
(ri ) .

(8)

The third and fourth terms in Eq. (8) are often referred to re-
spectively as the paramagnetic and diamagnetic contributions
to the light-matter coupling Hamiltonian.

With the aim of studying the potential existence of a
quantum phase transition to a photon condensate and make
therefore general statements about the ground state |	〉 of
ĤA, the model (8) must be extrapolated to the thermodynamic
limit [6] N → ∞, V → ∞, with constant N/V . As shown in
Appendix. A, in this limit, |	〉 does not contain light-matter
entanglement, i.e., we can take |	〉 = |ψ〉 |
〉, where |ψ〉 and
|
〉 are matter and light states. We can therefore introduce
the effective Hamiltonian for the photonic degrees of freedom,
Ĥeff

ph [ψ] ≡ 〈ψ |ĤA|ψ〉. Explicitly,

Ĥeff
ph [ψ] = Ĥph + 〈ψ |Ĥ|ψ〉

+
∑
q,σ

e

c
Aq[âq,σ jp(−q) · uq,σ + H.c.]

+ e2

2mc2

∑
q,q′,σ

AqAq′uq,σ · uq′,σ

× [â†
q′,σ âq,σ n(q′ − q) + âq,σ â†

q′,σ n(q − q′)

+ âq,σ âq′,σ n(−q − q′) + â†
q′,σ â†

q,σ n(q + q′)] , (9)

where we have used the transversality condition in Eq. (6),
and introduced

n(q) ≡ 〈ψ |n̂(q)|ψ〉 (10)

and

jp(q) ≡ 〈ψ | ĵp(q)|ψ〉 . (11)

In the Coulomb gauge, 3D photon condensation is man-
ifested by a nonzero value of the order parameter ᾱq,σ ≡
〈
|âq,σ |
〉 emerging at a critical value of a suitable light-
matter coupling constant [6,7]. At the quantum critical point
(QCP), ᾱq,σ is small. Note also that, near the QCP, the mat-
ter state can be written as |ψ̄〉 = |ψ0〉 +∑

q,σ ᾱq,σ |δψq,σ 〉 +
O(ᾱ2

q,σ ). Since the diamagnetic term in Eq. (9) is quadratic
in ᾱq,σ , we can approximate the quantity n(q) in the last
two lines of this equation with its value in the absence

of light-matter interactions, i.e., we can safely take n(q) �
〈ψ0|n̂(q)|ψ0〉. We now assume that the ground state |	0〉
of the 3DES in the absence of light-matter interactions is
homogenous and isotropic, i.e., 〈ψ0|n̂(q)|ψ0〉 = Nδq,0. The
reason why this assumption was made is obvious from the
form of the diamagnetic term in Eq. (9): inhomogeneous
ground states with 〈ψ0|n̂(q)|ψ0〉 	= Nδq,0 would couple modes
with q 	= q′, rapidly leading to a problem that is intractable
with purely analytical methods. Under this assumption, the
effective Hamiltonian reduces to

Ĥeff
ph [ψ] = 〈ψ |Ĥ|ψ〉

+
∑
q,σ

eAq

c
[âq,σ jp(−q) · uq,σ + â†

q,σ jp(q) · uq,σ ]

+ 1

2

∑
q,σ

[h̄ω̃q + h̄ω̃q(â†
q,σ âq,σ + â†

−q,σ â−q,σ )

+ 2�q(â−q,σ âq,σ + â†
q,σ â†

−q,σ )] , (12)

where �q ≡ Ne2A2
q/(2mc2) with �q = �−q, and h̄ω̃q =

h̄ωq + 2�q. The term
∑

q,σ h̄ω̃q/2 is a vacuum contribution.
Equation (12) is a quadratic function of the photonic operators
and can be diagonalized via the following Bogoliubov trans-
formation:

â†
q,σ = cosh(xq)b̂†

q,σ − sinh(xq)b̂−q,σ , (13)

where cosh(xq) = (λq + 1)/(2
√

λq), sinh(xq) = (λq −
1)/(2

√
λq), and λq = √

1 + 4�q/h̄ωq. In terms of the
new bosonic operators b̂†

q,σ , b̂q,σ , the effective Hamiltonian
reads as follows

Ĥeff
ph [ψ] = 〈ψ |Ĥ|ψ〉 +

∑
q,σ

h̄�q

(
b̂†

q,σ b̂q,σ + 1

2

)
+
∑
q,σ

eAq

c
√

λq
[ jp(−q) · uq,σ b̂q,σ + H.c.] , (14)

where h̄�q = h̄ωqλq.
Being a sum of displaced harmonic oscillators, the ground

state |
〉 of Ĥeff
ph [ψ], for every matter state |ψ〉, is a tensor

product |B〉 ≡ ⊗q,σ |βq,σ 〉 of coherent states of the b̂q,σ oper-
ators [57,58], i.e., b̂q′,σ ′ |B〉 = βq′,σ ′ |B〉. Note that the order
parameter αq,σ introduced above is linearly dependent on βq,σ ,
i.e., αq,σ = cosh(xq)β∗

q,σ − sinh(xq)β−q,σ . Hence, a nonzero
βq,σ implies a nonzero αq,σ . From now on, we will therefore
consider βq,σ as the order parameter, which can again be
considered small at the QCP.

We now introduce the following energy functional, ob-
tained by taking the expectation value of Ĥeff

ph [ψ] over |B〉:
E [{βq,σ }, ψ] ≡ 〈	|ĤA|	〉 = 〈B|Ĥeff

ph [ψ]|B〉:

E [{βq,σ }, ψ] = 〈ψ |Ĥ|ψ〉 +
∑
q,σ

h̄�q

(
|βq,σ |2 + 1

2

)
+
∑
q,σ

eAq

c
√

λq
[ jp(−q) · uq,σ βq,σ + c.c.] .

(15)
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This needs to be minimized with respect to {βq,σ } and |ψ〉.
The minimization with respect to {βq,σ } can be done analyt-
ically by imposing the condition ∂β∗

q,σ
E [{βq,σ }, ψ] = 0. We

find that the optimal value of {βq,σ } is given by

β̄q,σ = − Aq

h̄ωqλ
3/2
q

e

c
jp(q) · uq,σ , (16)

which depends on |ψ〉 through Eq. (11). Note that this equa-
tion can be written in terms of the operator

B̂q,σ ≡ − Aq

h̄ωqλ
3/2
q

e

c
ĵp(q) · uq,σ , (17)

i.e., β̄q,σ = 〈ψ |B̂q,σ |ψ〉.
Using Eq. (16) into Eq. (15), we finally find the energy

functional that needs to be minimized with respect to |ψ〉:

E [{β̄q,σ }, ψ] = 〈ψ |Ĥ|ψ〉 −
∑
q,σ

h̄�q

(
|β̄q,σ |2 − 1

2

)
. (18)

As in the case of a spatially uniform cavity field [50], we
are therefore left with a constrained minimum problem for
the matter degrees of freedom: we need to seek the minimum
of (18) among the normalized antisymmetric states |ψ〉 which
yield (16). Such constrained minimum problems can be effec-
tively handled with the stiffness theorem [14].

For photon condensation to occur, we need the photon
condensate phase to be energetically favored with respect to
the normal phase, i.e., we need E [{β̄q,σ }, ψ] < E [0, ψ0] or,
equivalently,

〈ψ |Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉 <
∑
q,σ

h̄�q|β̄q,σ |2 . (19)

Note that the left-hand side of the previous inequality is the
energy difference E [{β̄q,σ }, ψ] − E [0, ψ0], so that the vac-
uum contribution

∑
q,σ h̄�q/2 drops out of the right-hand

side.
The dependence of 〈ψ |Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉 on β̄q,σ can

be calculated exactly up to order β̄2
q,σ by using the stiffness

theorem [14]. The expansion of the left hand side of the
inequality (19) up to order β̄2

q,σ is justified by the smallness
of β̄q,σ at the QCP. From now on, we exclude the trivial case
〈ψ0| ĵp(q)|ψ0〉 	= 0, requiring that 〈ψ0| ĵp(q)|ψ0〉 = 0 for all
values of q: for nontrivial photon condensate phases to occur,
the ground state of the 3DES described by (2) is required to
display no ground-state currents at all length scales.

Using the stiffness theorem [14], we find, up to second
order in β̄q,σ ,

〈ψ |Ĥ|ψ〉− 〈ψ0|Ĥ|ψ0〉

=−1

2

∑
q,σ

∑
q′,σ ′

χ−1
B̂q,σ ,B̂−q′ ,σ ′

(0)β̄∗
q,σ β̄q′,σ ′ , (20)

where χ−1
B̂q,σ ,B̂−q′ ,σ ′

(0) is the inverse of the static response func-

tion χB̂q,σ ,B̂−q′ ,σ ′ (0), the operator B̂q,σ has been introduced in
Eq. (17), and we have used the notation of Ref. [14]. Since the
ground state of the 3DES has been taken to be homogenous
and isotropic [14],

χB̂q,σ ,B̂−q′,σ ′ (0) = χB̂q,σ ,B̂−q,σ
(0)δq,q′δσ,σ ′ . (21)

As any other response function, χB̂q,σ ,B̂−q,σ
(0) has a Lehmann

representation [13,14] in terms of the exact eigenstates of the
Hamiltonian (2),

χB̂q,σ ,B̂−q,σ
(0) =− 2A2

q

h̄2ω2
qλ

3
q

e2

c2

∑
n 	=0

|〈ψn| ĵp(q) · uq,σ |ψ0〉|2
En − E0

< 0 .

(22)
We readily recognize χB̂q,σ ,B̂−q,σ

(0) to be intimately linked to
the static, paramagnetic current-current response tensor [14]

χ ĵp,i (q), ĵp,k (−q)(0)

= − 1

V

∑
n 	=0

〈ψn| ĵp,i(q)|ψ0〉 〈ψ0| ĵp,k (−q)|ψn〉
En − E0

− 1

V

∑
n 	=0

〈ψ0| ĵp,i(q)|ψn〉 〈ψn| ĵp,k (−q)|ψ0〉
En − E0

, (23)

where ĵp,i(q), with i = x, y, z, denotes the i-th Cartesian com-
ponent of ĵp(q). Indeed, it is easy to show that

χB̂q,σ ,B̂−q,σ
(0) = A2

qN

h̄2ω2
qλ

3
qn

e2

c2

∑
i,k

u(i)
q,σ u(k)

q,σ χ ĵp,i (q), ĵp,k (−q)(0) ,

(24)
where u(i)

q,σ denotes the i-th Cartesian component of the vector
uq,σ and we have introduced the electron density n = N/V .
The previous result can be written in a more transparent
manner by introducing the physical current-current response
tensor [14], which contains a diamagnetic as well as a param-
agnetic contribution:

χ J
i,k (q, 0) = n

m
δi,k + χ ĵp,i (q), ĵp,k (−q)(0) . (25)

In a homogeneous and isotropic system, the rank-2 tensor
χ J

i,k (q, 0) can be decomposed in terms of the longitudinal and
transverse current-current response functions [14], χ J

L(q, 0)
and χ J

T(q, 0), respectively:

χ J
i,k (q, 0) = χ J

L(q, 0)
qiqk

q2
+ χ J

T(q, 0)

(
δi,k − qiqk

q2

)
. (26)

Note that, as a consequence of gauge invariance, χ J
L(q, 0) = 0

for every q [14]. Using Eqs. (25) and (26) in Eq. (24), we
finally find

χB̂q,σ ,B̂−q,σ
(0) = A2

qN

h̄2ω2
qλ

3
qn

e2

c2

[
χ J

T(q, 0) − n

m

]
. (27)

As a natural consequence of the transversality of the elec-
tromagnetic field, imposed by the Coulomb gauge, only the
transverse current-current response function χ J

T(q, 0) enters
Eq. (27).

We now return to the result of the stiffness theorem. In-
serting Eq. (20) inside Eq. (19), we finally find the condition
for photon condensation in a 3DES embedded in a spatially
varying electromagnetic field:

−
∑
q,σ

[
1

2χB̂q,σ ,B̂−q,σ
(0)

+ h̄�q

]
|β̄q,σ |2 < 0 . (28)
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Since we want to minimize the energy difference
E [{β̄q,σ }, ψ] − E [0, ψ0], the optimal choice of β̄qσ is con-
structed as follows: (i) modes with momentum q and
polarization σ such that Eq. (28) is satisfied acquire a finite
displacement β̄qσ 	= 0, since this choice lowers the energy dif-
ference; and (ii) on the other hand, modes for which Eq. (28)
is not satisfied, are forced to be unpopulated, i.e., to have
β̄q,σ = 0. A finite occupation of these modes would indeed
increase the energy difference. Hence, we can analyze the
inequality (28) for a fixed q:

−χB̂q,σ ,B̂−q,σ
(0) >

1

2h̄�q
. (29)

Using Eq. (27) and the microscopic expression of Aq, we can
rewrite Eq. (29) as follows:

−4π
c2

ω2
qεr

e2

c2

[
χ J

T(q, 0) − n

m

]
> 1 + 4

�q

h̄ωq
. (30)

Before further simplifying Eq. (30), we wish to make a few
observations on the special case of a single-mode spatially
uniform field.

(i) No-go theorem in the presence of the diamagnetic term.
Let us consider the standard situation in the literature, in
which matter degrees of freedom are minimally coupled to
a quantum field, which is assumed to be single mode and
spatially uniform, with angular frequency ω0 and amplitude
Aq = A0 =

√
2π h̄c2/(V ω0εr ). Consistently, if the assumption

of spatial uniformity is done from the very beginning, by
setting q = 0 in Eq. (5), one has to replace χ J

T(q, 0) with
limq→0 χ J

T(q, 0) inside the square bracket in Eq. (30). In
systems with no long-range order (i.e., in systems that do
not become superconducting), it is well known [14] that the
“diamagnetic sum rule” holds true: limq→0 χ J

T(q, 0) = 0. In
this case, Eq. (30) reduces to

4π
c2

ω2
0εr

e2

c2

n

m
> 1 + 4

�0

h̄ω0
, (31)

with �0 = e2NA2
0/(2mc2). The left-hand side of Eq. (31) can

be easily seen to be equal to 4�0/(h̄ω0) and this inequality
therefore reduces to 0 > 1, which is clearly absurd. This is the
no-go theorem [50] for photon condensation in a single-mode
spatially uniform quantum field.

(ii) Spurious “go theorem” in the absence of the diamag-
netic term. Neglecting artificially the diamagnetic contribution
to Eq. (8) is equivalent to setting �0 = 0 in the right-hand side
of Eq. (31). In this case, a photon condensate occurs provided
that the Drude weight D = πe2n/m of the 3DES satisfies the
following inequality:

D >
ω2

0εr

4
. (32)

Returning to Eq. (30) and using in it the microscopic
expressions for ωq and �q given above [right after Eqs. (5)
and (12), respectively], we finally conclude that a photon
condensate phase occurs if and only if the following inequality
is satisfied:

−e2

c2

χ J
T(q, 0)

q2
>

1

4π
. (33)

The left-hand side of Eq. (33) has a very clear physical inter-
pretation. It is the nonlocal orbital magnetic susceptibility [14]

χorb(q) ≡ −e2

c2

χ J
T(q, 0)

q2
, (34)

which, in the long-wavelength q → 0 limit, reduces to the
thermodynamic (i.e., macroscopic) orbital magnetic suscep-
tibility (OMS)

χOMS ≡ lim
q→0

χorb(q) = ∂MO

∂B

∣∣∣
B=0

. (35)

Here, MO is the orbital contribution to the magnetization.
This limit exists in systems with no long-range order: indeed,
χ J

T(q, 0) vanishes like q2 in the long-wavelength q → 0 limit,
in agreement with the diamagnetic sum rule [14].

In summary, introducing χorb(q), we can write Eq. (33) as

χorb(q) >
1

4π
. (36)

Equation (36) is the most important result of this Section,
representing a rigorous criterion for the occurrence of photon
condensation in a 3DES.

A. Discussion

A few comments are now in order. (i) In 3D, as clear
from Eq. (36), χorb(q) is dimensionless. It therefore naturally
plays the role of a coupling constant determining the strength
of light-matter interactions. Only when it exceeds the value
1/(4π ) ∼ 0.08 can photon condensation take place.

(ii) The criterion (36) does not depend explicitly on εr but
only implicitly, through the εr dependence of the e-e inter-
action potential [55] v(r). The latter, in turn, has an impact
on χorb(q).

(iii) Note that, while χB̂q,σ ,B̂−q,σ
(0) in Eq. (22) and (27)

is negative definite, the transverse contribution χT(q, 0) to
the current-current response function satisfies the inequality
χT(q, 0) < n/m and can therefore be both positive or negative.
In turn, this implies that, for a given 3DES, χOMS can be
positive or negative (and perhaps change sign with micro-
scopic parameters such as the electron density n). Broadly
speaking, materials can be divided intro two groups, from the
point of view of their orbital response: (a) orbital diamagnets,
those which have χOMS < 0, are most common. They will not
display photon condensation, according to our criterion (36);
(b) orbital paramagnets, those for which χOMS > 0, are much
more rare in nature but, as discussed below, do exist. Only
orbital paramagnets with χOMS > 1/(4π ) can display photon
condensation.

Just as an example, we remind the reader that for free (i.e.,
noninteracting) parabolic-band fermions in 3D [14],

χ
(0)
OMS = −α2

rs

( 1

768π5

)1/3

< 0 , (37)

where rs = [3/(4πna3
B)]1/3 is the so-called Wigner-Seitz or

gas parameter, aB = h̄2/(me2) is the Bohr radius, and α =
e2/(h̄c) is the fine structure constant.

(iv) The result in Eq. (36) can be understood as the condi-
tion for the occurrence of a static magnetic instability [54].
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Indeed, let us consider the energy functional of a material
subject to a magnetic field H (r):

E [B(r)] = 1

2

∫
d3r H (r) · B(r) , (38)

where B(r) is the magnetic induction. The latter is related to
the magnetic field via the orbital magnetization M(r), i.e.,
B(r) = H (r) + 4πM(r). The difference between H and B
stems from the flow of charges in response to H , which creates
an orbital magnetization M. In the realm of linear response
theory, we can relate the orbital magnetization to the magnetic
induction, M(r) = ∫

d3r′χorb(|r − r′|)B(r′). We can therefore
write the energy as a quadratic function of B(r):

E [B(r)] = 1

2

∫
d3r

∫
d3r′[δ(r − r′)

− 4πχorb(|r − r′|)]B(r′) · B(r) . (39)

An instability occurs if E [B(r)] < 0, i.e., if and only if B(r) <

4π
∫

dr′χorb(|r − r′|)B(r′). Fourier transforming with respect
to r yields Eq. (36).

Magnetostatic instabilities and the criterion (36) have been
discussed long ago [59–64]. In a 3D metal, the de Haas-van
Alphen effect (oscillations of the magnetization in response to
an applied magnetic field) can lead to a thermodynamic insta-
bility of the electron gas. The magnetization is a function of
the magnetic induction and when the orbital magnetic suscep-
tibility χOMS obeys the inequality (36), the magnetic induction
is a multivalued function of the field. Condon first pointed out
that Maxwell’s construction yields phase coexistence and the
formation of (paramagnetic and diamagnetic) domains. These
“Condon domains,” although first predicted for Be [59], were
first unambiguously observed in Ag [65]. Since then, Condon
domains have been observed also in Be [66], Sn [67], and
also Al, Pb, and In (for a recent review see, for example,
Ref. [63]). They have also been observed in Br2-intercalated
graphite [68], which is a layered compound with quasi-2D
character.

The derivation in Sec. II shows that 3D photon con-
densation and Condon domain formation are the same
phenomenon [54]. In essence, the proof reported in Sec. II is
a fully quantum mechanical derivation of the condition for the
occurrence of Condon domains, which transcends the usual
semiclassical approximations [61] used to derive (36).

(v) For the remainder of this paper (particularly for
Sec. IV), it is useful to derive Eq. (12) in an alternative way.

Instead of determining the exact photonic state, as we did
above, we now follow a much more humble approach. We
evaluate the expectation value of the Hamiltonian (12) on a
trial photonic wavefunction of the form |A 〉 ≡ ⊗q,σ |αq,σ 〉,
namely a tensor product of coherent states of the âq,σ op-
erators, i.e., âq′,σ ′ |A 〉 = αq′,σ ′ |A 〉. (We know that the exact
eigenstate is not of this form, i.e., it is a tensor product |B〉 ≡
⊗q,σ |βq,σ 〉 of coherent states of the b̂q,σ operators. Momen-
tarily, we will understand what error is made in using |A 〉
rather than |B〉.) Such expectation value is easily obtained by
replacing the photonic operators in Eq. (12) with c-numbers,

i.e., by replacing âq,σ → αq,σ . Up to a constant factor, we find

Ẽ [{αq,σ }, ψ]

≡ 〈A |Ĥeff
ph [ψ]|A 〉 = 〈ψ |Ĥ|ψ〉

+
∑
q,σ

eAq

c
[αq,σ jp(−q) · uq,σ + α∗

q,σ jp(q) · uq,σ ]

+ 1

2

∑
q,σ

[h̄ω̃q(α∗
q,σ αq,σ + α∗

−q,σ α−q,σ + 1)

+ 2�q(α−q,σ αq,σ + α∗
q,σ α∗

−q,σ )] . (40)

Performing in Eq. (40) the linear transformation α∗
q,σ =

cosh(xq)β∗
q,σ − sinh(xq)β−q,σ , analogous to Eq. (13), we get

Ẽ [{βq,σ }, ψ] = 〈ψ |Ĥ|ψ〉 +
∑
q,σ

( h̄ω̃q

2
+ h̄�q|βq,σ |2

)
+
∑
q,σ

eAq

c
√

λq
[ jp(−q) · uq,σ βq,σ + c.c.] .

(41)

The quantity Ẽ [{βq,σ }, ψ] differs from the exact result
in Eq. (15) only for the vacuum contribution, which is∑

q,σ h̄ω̃q/2 instead of the correct one
∑

q,σ h̄�q/2. However,
since we are interested only in energy differences, the vacuum
contribution drops out of the problem and the two procedures
yield the same energy difference: E [{β̄q,σ }, ψ] − E [0, ψ0] =
Ẽ [{β̄q,σ }, ψ] − E [0, ψ0].

In conclusion, if one is solely interested in energy differ-
ences, it is not necessary to determine the eigenstates exactly
but it is sufficient to assume the photonic wave-function to be
a tensor product of coherent states of the âq,σ operators.

III. THE ROLE OF ZEEMAN COUPLING AND COMBINED
ORBITAL-SPIN EFFECTS

In this section, we investigate the role of the Zeeman
coupling. To begin with, we consider (Sec. III A) the case in
which the 3DES couples to the radiation field only via the
Zeeman term. In the second part of this section (Sec. III B),
we consider the combined role of orbital and Zeeman cou-
plings. The derivation of the corresponding criteria for photon
condensation closely follows the case of pure orbital coupling
discussed in Sec. II.

A. Light-matter interactions via the Zeeman term

If the 3DES couples to the spatially varying cavity electro-
magnetic field only via the Zeeman term, the full Hamiltonian
is

ĤB = Ĥ + Ĥph + gμB

2

N∑
i=1

σ̂ i · B̂(ri ) , (42)

where g is the Landé g factor, μB is the Bohr magneton, σ̂ i

is the spin operator of the ith electron, and B̂(r) = ∇ × Â(r)
is the magnetic component of the cavity electromagnetic field,
Â(r) being given in Eq. (5). Explicitly, the magnetic field reads
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as follows:

B̂(r) =
∑
q,σ

iqAquT,q,σ (âqeiq·r − â†
qe−iq·r) , (43)

where uT,q,σ ≡ (q/q) × uq,σ . (Note that {q, uq,σ , uT,q,σ } is a
set of orthogonal vectors.)

As shown in Appendix B, the ground state |	〉 of ĤB does
not contain light-matter entanglement in the thermodynamic
limit, i.e., we can take |	〉 = |ψ〉 |
〉, where |ψ〉 and |
〉 are
matter and light states. As in Sec. II, we are therefore led to
introduce an effective Hamiltonian for the photonic degrees of
freedom, Ĥeff

ph [ψ] ≡ 〈ψ |ĤB|ψ〉:
Ĥeff

ph [ψ] = 〈ψ |Ĥ|ψ〉 + Ĥph

+
∑
q,σ

gμBAq

2
[S(−q)âq,σ − S(q)â†

q,σ ] · iquT,q,σ ,

(44)

where [14]

Ŝ(q) =
N∑

i=1

e−iq·ri σ̂ i (45)

is the 3D Fourier transform of the spin density Ŝ(q) =∑N
i=1 σ̂ iδ(r − ri ) and S(q) = 〈ψ |Ŝ(q)|ψ〉.
Since Eq. (44) is a sum of displaced harmonic oscillators,

we can assume without loss of generality that the ground
state |
〉 of Ĥeff

ph [ψ] is a tensor product |A 〉 ≡ ⊗q,σ |αq,σ 〉 of
coherent states of the âq,σ operators [57,58], i.e., âq′,σ ′ |A 〉 =
αq′,σ ′ |A 〉.

The total energy, defined as E [{αq,σ }, ψ] ≡ 〈	|ĤB|	〉 =
〈A |Ĥeff

ph [ψ]|A 〉, is given by

E [{αq,σ }, ψ]

= 〈ψ |Ĥ|ψ〉 +
∑
q,σ

h̄ωq

(
|αq,σ |2 + 1

2

)
+
∑
q,σ

gμBAq

2
[S(−q)αq,σ − S(q)α∗

q,σ ] · iquT,q,σ . (46)

Minimization can be performed with respect to {αq,σ } ana-
lytically by imposing the condition ∂α∗

q,σ
E [{αq,σ }, ψ] = 0. We

find that the optimal value of {αq,σ } is given by

ᾱq,σ = gμBAq

2h̄ωc
〈ψ |Ŝ(q)|ψ〉 · iquT,q,σ . (47)

Note that this equation can be written in terms of the operator

Ĉq,σ ≡ gμBAq

2h̄ωq
Ŝ(q) · iquT,q,σ , (48)

i.e., 〈ψ |Ĉq,σ |ψ〉 = ᾱq,σ . Using Eq. (47) into Eq. (46) we fi-
nally find the energy functional that needs to be minimized
with respect to |ψ〉

E [{ᾱq,σ }, ψ] = 〈ψ |Ĥ|ψ〉 −
∑
q,σ

h̄ωq

(
|ᾱq,σ |2 − 1

2

)
. (49)

Once again, for photon condensation to occur we need
E [{ᾱq,σ }, ψ] < E [0, ψ0] or, equivalently,

〈ψ |Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉 <
∑
q,σ

h̄ωq|ᾱq,σ |2 . (50)

As in Sec. II, the dependence of 〈ψ |Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉 on
ᾱq,σ can be calculated exactly up to order ᾱ2

q,σ by using the
stiffness theorem [14]:

〈ψ |Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉

= −1

2

∑
q,σ

∑
q′,σ ′

χ−1
Ĉq,σ ,Ĉ−q′,σ ′

(0)ᾱ∗
q,σ ᾱq′,σ ′ , (51)

where χ−1
Ĉq,σ ,Ĉ−q′ ,σ ′

(0) is the inverse of the static response func-

tion χĈq,σ ,Ĉ−q′ ,σ ′ (0) and the operator Ĉq,σ has been introduced
in Eq. (48). Inserting Eq. (51) inside Eq. (50) we find:

−
∑
q,σ

[
1

2χĈq,σ ,Ĉ−q,σ
(0)

+ h̄ωq

]
|ᾱq,σ |2 < 0 . (52)

Following the same logical steps discussed in Sec. II, we can
consider the previous inequality for a fixed q:

−χĈq,σ ,Ĉ−q,σ
(0) >

1

2h̄ωq
. (53)

We now observe that the homogenous and isotropic nature of
the ground state of the 3DES implies [14] χĈq,σ ,Ĉ−q′ ,σ ′ (0) =
χĈq,σ ,Ĉ−q,σ

(0)δq,q′δσ,σ ′ . We readily recognize χĈq,σ ,Ĉ−q,σ
(0) to

be intimately linked to the static, spin-spin response tensor
χS

i,k (q, 0). Indeed, it is easy to show that

χĈq,σ ,Ĉ−q,σ
(0) = q2g2μ2

BA2
qV

4h̄2ω2
q

∑
i,k

u(i)
T,q,σ u(k)

T,q,σ χS
i,k (q, 0) ,

(54)
where

χS
i,k (q, 0) = − 1

V

∑
n 	=0

〈ψ0|Ŝi(−q)|ψn〉 〈ψn|Ŝk (q)|ψ0〉
En − E0

− 1

V

∑
n 	=0

〈ψ0|Ŝi(q)|ψn〉 〈ψn|Ŝk (−q)|ψ0〉
En − E0

, (55)

and Ŝi(q), with i = x, y, z, denotes the ith Cartesian compo-
nent of Ŝ(q).

Isotropy, translational-, and spin-rotational invariance im-
ply that the rank-2 tensor χS

i,k (q, 0) can be decomposed in
terms of the longitudinal, χS

L (q, 0), and transverse, χS
T (q, 0),

spin-spin response functions:

χS
i,k (q, 0) = χS

L (q, 0)
qiqk

q2
+ χS

T (q, 0)

(
δi,k − qiqk

q2

)
. (56)

Replacing Eq. (56) into Eq. (54), we finally find

χĈq,σ ,Ĉ−q,σ
(0) = q2g2μBA2

qV

4h̄2ω2
q

χS
T (q, 0) . (57)

Using Eqs. (54) and (56) and the microscopic expressions
of ωq = cq/

√
εr and Aq = √

2π h̄c2/(V ωqεr ) given above,
Eq. (53) can be written as follows:

−g2μ2
B

4
χS

T (q, 0) >
1

4π
, (58)
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Again, the left-hand side of Eq. (58) has a very clear
physical interpretation. It is the nonlocal transverse spin sus-
ceptibility [14]

χspin(q) ≡ −g2μ2
B

4
χS

T (q, 0) , (59)

which, in the long-wavelength q → 0 limit, reduces to the
thermodynamic (i.e., macroscopic) spin magnetic susceptibil-
ity (SMS)

χSMS ≡ lim
q→0

χspin(q) = ∂MS

∂B

∣∣∣
B=0

. (60)

Here, MS is the spin contribution to the magnetization. For
free (i.e., noninteracting) parabolic-band fermions in 3D,
χSMS reduces to the well-known Pauli spin susceptibility [14],
i.e.,

χ
(0)
SMS = α2

rs

( 9

256π5

)1/3

> 0 , (61)

where we have used a Landé g-factor g = 2. Comparing
Eq. (61) with Eq. (37), we find the very well-known result,

χ
(0)
SMS = −3χ

(0)
OMS . (62)

In summary, the condition for the occurrence of photon
condensation in a 3DES, when the cavity electromagnetic
field couples to matter degrees of freedom via the Zeeman
coupling only, is

χspin(q) >
1

4π
. (63)

B. Combined orbital and Zeeman couplings

In general, when both orbital and spin light-matter interac-
tions are taken into account the total Hamiltonian is

ĤA+B = Ĥ + Ĥph + gμB

2

N∑
i=1

σ̂ i · B̂(ri )

+
N∑

i=1

e

mc
Â(ri ) · p̂i +

N∑
i=1

e2

2mc2
Â

2
(ri ) . (64)

Following the same steps discussed in Secs. II and III A, one
reaches the following condition for the occurrence of photon
condensation in a 3DES:

−χB̂q,σ +Ĉq,σ ,B̂−q,σ +Ĉ−q,σ
(0) >

1

2h̄�q
. (65)

Now, the key point is that, in the absence of spin-orbit cou-
pling, cross response functions vanish:

χĈq,σ ,B̂−q,σ
(0) = χB̂q,σ ,Ĉ−q,σ

(0) = 0 . (66)

This is due to the following facts. Consider for example
χĈq,σ ,B̂−q,σ

(0). We have [14]

χĈq,σ ,B̂−q,σ
(ω) = − i

h̄V
lim
η→0

∫ ∞

0
dτ [Ĉq,σ (τ ), B̂−q,σ ]ei(ω+iη)τ .

(67)

Since the operators Ĉq,σ (t ) and B̂−q,σ have disjoint sup-
ports, the former acting on the spin degrees of freedom
while the latter on the charge degrees of freedom, we have
[Ĉq,σ (t ), B̂−q,σ ] = 0. We therefore conclude that

χB̂q,σ +Ĉq,σ ,B̂−q,σ +Ĉ−q,σ
(0) = χB̂q,σ ,B̂−q,σ

(0) + χĈq,σ ,Ĉ−q,σ
(0) .

(68)

Using Eqs. (68), (27), and (57) inside Eq. (65), we find that
the condition for occurrence of photon condensation is:

2A2
qV [χorb(q) + χspin(q)]q2 > h̄ωq , (69)

which, upon substitution of ωq = cq/
√

εr and Aq =√
2π h̄c2/(V ωqεr ), becomes

χorb(q) + χspin(q) >
1

4π
. (70)

This is the most important result for 3DESs: in the absence
of spin-orbit coupling in the matter degrees of freedom—
or other microscopic mechanisms that are responsible for
nonzero cross response function such as χB̂q,σ ,Ĉ−q,σ ,(0) and
χĈq,σ ,B̂−q,σ

(0)—the condition for the occurrence of photon con-
densation involves the sum of the orbital and spin transverse
static response functions.

When electron-electron interactions are negligible (i.e.,
rs � 1), the condition (70) for the occurrence of 3D photon
condensation (i.e., formation of Condon domains) can be
made more explicit. Indeed, consider for example the case
of a noninteracting parabolic-band 3D Fermi gas. Using the
long-wavelength expression (37) and (61) inside Eq. (70), we
immediately see that photon condensation can occur in the
absence of electron-electron interactions provided that

rs <
( 2

3π2

)1/3

α2 , (71)

or, equivalently, provided that the electron density is suffi-
ciently high,

n > nc = 9π

8α6

1

a3
B

. (72)

Unscreened current-current interactions at low temperatures
under strong magnetic fields, which may result in non-Fermi-
liquid behavior [69], lead to the occurrence of long-range
magnetic orbital order even at low densities [62].

IV. 2D PHOTON CONDENSATION

In this section, we consider the problem of a 2DES located
in the middle of a quasi-2D cavity.

Similarly to the 3D case discussed above in Sec. II, we
describe the 2DES with the jellium model Hamiltonian

Ĥ2D =
N∑

i=1

p̂2
‖,i

2m
+ 1

2

∑
i 	= j

v(|r̂‖,i − r̂‖, j |) , (73)

where r̂‖,i and p̂‖,i denote respectively the position and mo-
mentum operators of the ith electron moving in the x̂-ŷ plane.
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For future use, we introduce the 2D Fourier transforms of the
density and paramagnetic (number) current operators:

n̂(q‖) =
N∑

i=1

e−iq‖·r̂‖ ,i , (74)

ĵp(q‖) = 1

2m

N∑
i=1

( p̂‖,ie
−iq‖·r̂‖,i + e−iq‖·r̂‖,i p̂‖,i ) , (75)

with the usual properties n̂(−q‖) = n̂†(q‖) and ĵp(−q‖) =
ĵ
†
p(q‖).

We consider a cavity with length Lz in the ẑ direction, sat-
isfying the quasi-2D condition Lz � Lx, Ly. The walls of the
cavity in the ẑ direction are assumed to perfectly conducting.
Accordingly, the tangential component of the electric field and
the normal component of the magnetic field must vanish at
the cavity boundaries [70] z = ±Lz/2. In addition, we impose
periodic boundary conditions along the x̂ and ŷ directions. In
the Coulomb gauge, the vector potential fulfilling the cavity
boundary conditions can be expressed as follows [70]:

Â(r) =
∑

q‖,σ,nz

A(2D)
q‖,nz

eq‖,σ,nz (z)(âq‖,σ,nz e
iq‖·r‖ + â†

q‖,σ,nz
e−iq‖·r‖ ) ,

(76)

where

eq‖,1,nz (z) = uq‖,1 sin

[
πnz

Lz

(
z + Lz

2

)]
, (77)

eq‖,2,nz (z) = q‖
q‖

sin

[
πnz

Lz

(
z + Lz

2

)] πnz

Lz

√
q2

‖ + (
πnz

Lz

)2

+ ẑ cos

[
πnz

Lz

(
z + Lz

2

)] iq‖√
q2

‖ + (
πnz

Lz

)2
. (78)

Here, nz is an integer index, q‖ = (2πnx/Lx, 2πny/Ly) with
(nx, ny) relative integers, σ = 1, 2 is the polarization in-
dex, uq‖,1 is the linear polarization vector lying in the
x̂-ŷ plane and transverse to q‖, i.e., uq‖,1 · q‖ = 0, A(2D)

q‖,n
=√

4π h̄c2/(LzSωq‖,nzεr ), S = LxLy, εr is the cavity relative di-

electric constant, and ωq‖,nz = (c/εr )
√

q2
‖ + (πnz/Lz )2. In the

x̂-ŷ plane (z = 0), where the 2DES lays, modes labeled by the
polarization index σ = 1 are transverse waves, i.e., eq‖,1,nz (0) ·
q‖ = 0. The second mode labeled by σ = 2 can be dropped
for arbitrarily large wave vector if the 2DES is located exactly
in the middle of the cavity since (1) for odd values of nz, the
vector eq‖,2, odd nz (z = 0) is longitudinal, i.e., it is parallel to
q‖. Since, as a consequence of gauge invariance, the static
longitudinal current-current response function is zero [14] for
arbitrary q‖, light-matter interactions with longitudinal pho-
tonic modes cannot induce photon condensation.

(2) For even values of nz, the vector eq‖,2, even nz (z = 0) is
along the ẑ direction. Therefore electronic degrees of freedom
cannot couple to modes with σ = 2 and even nz.

From now on, we will take into account only modes with
σ = 1. In particular, since the 2DES is placed in the middle of
the photonic cavity, at z = 0, only photonic modes with odd nz

couple to the matter degrees of freedom [71]. Similarly to the
3D case, the following properties hold true: ω−q‖,nz = ωq‖,nz ,

u−q‖,1 = uq‖,1, A(2D)
−q‖,nz

= A(2D)
q‖,nz

.
The Hamiltonian of the 2DES coupled to the cavity field is

expressed as

ĤA = Ĥ2D + Ĥph +
N∑

i=1

e

mc
Â(r‖,i, z = 0) · p̂‖,i

+
N∑

i=1

e2

2mc2
Â

2
(r‖,i, z = 0) , (79)

where the cavity Hamiltonian Ĥph reads as following:

Ĥph =
∑

q‖,σ,nz

h̄ωq‖,nz â
†
q‖,σ,nz

âq‖,σ,nz . (80)

This needs to be compared with the 3D one in Eq. (8).
Once again, the third and the fourth term in Eq. (79) are the
paramagnetic and diamagnetic contributions, respectively. A
constant term in Eq. (80) has been dropped, since below we
will be only interested in energy differences. From now on,
we will follows steps similar to those described in Sec. II.
We will therefore mainly highlight differences between the
3D case discussed there and the 2D case discussed in this
Section and cut short on the algebraic steps that are identical
in the two cases. On purpose, and with notational abuse, we
will denote by the same symbols quantities that in both cases
have an identical physical meaning.

As in the 3D case, we are interested in the possible occur-
rence of a quantum phase transition to a photon condensate,
and we therefore wish to make general statements about the
ground state |	〉 of ĤA, in the 2D thermodynamic limit
N → ∞, S → ∞, with constant n2D = N/S. In this limit,
we can safely assume that |	〉 does not contain light-matter
entanglement, i.e., we can take |	〉 = |ψ〉 |
〉, where |ψ〉 and
|
〉 are matter and light states. The effective Hamiltonian
for the photonic degrees of freedom is Ĥeff

ph [ψ] ≡ 〈ψ |ĤA|ψ〉.
The order parameter for 2D photon condensation is ᾱq‖,1,nz ≡
〈
|âq‖,1,nz |
〉, which, at the putative QCP, is small. Since
the diamagnetic term in Eq. (79) is quadratic in ᾱq‖,1,nz ,
close to the QCP we can approximate the matter content in
the diamagnetic term with its value in the absence of light-
matter interactions. By further assuming, as in the 3D case,
that the ground state of the 2DES in the absence of light-
matter interactions is homogenous and isotropic, i.e., that
〈ψ0|n̂(q‖)|ψ0〉 = Nδq‖,0, the effective photon Hamiltonian can
be written as

Ĥeff
ph [ψ] = 〈ψ |Ĥ2D|ψ〉 + Ĥph + Ĥp + Ĥd , (81)

where the paramagnetic contribution is given by

Ĥp =
∑

odd nz

∑
q‖

(−1)
nz−1

2
e

c
A(2D)

q‖,nz
[âq‖,1,nz uq‖,1 · jp(−q‖)

+ â†
q‖,1,nz

uq‖,1 · jp(q‖)] (82)
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and the diamagnetic one by

Ĥd =
∑

odd nz,n′
z

∑
q‖

(−1)
nz+n′

z−2
2

e2

2mc2
A(2D)

q‖,nz
A(2D)

q‖,n′
z

× (âq‖,1,nz + â†
−q‖,1,nz

)(â†
q‖,1,n′

z
+ â−q‖,1,n′

z
) . (83)

In Eq. (82), we have introduced
jp(q‖) ≡ 〈ψ | ĵp(q‖)|ψ〉 . (84)

For future use, we also introduce Jq‖,1 = uq‖,1 · jp(q‖).

As we have seen in Sec. II A, point (v), in order to cal-
culate the energy functional, it is sufficient to evaluate the
expectation value of the effective Hamiltonian Ĥeff

ph [ψ] on a
trial photonic wave function of the form |A 〉 ≡ ⊗q,nz |αq,1,nz 〉,
namely, on a tensor product of coherent states of the âq,1,nz

operators, i.e., âq′,1,nz |A 〉 = αq′,1,nz |A 〉. This procedure cor-
responds to replacing the photonic operators in Eq. (12) with
c numbers, âq‖,1,nz → αq‖,1,nz . Carrying out this procedure, we
find

E [{αq‖,1,nz }, ψ] = 〈ψ |Ĥ2D|ψ〉 +
∑

odd nz

∑
q‖

(−1)
nz−1

2

√
2D

√
ωq‖,nz

[αq‖,1,nzJ−q‖,1 + c.c.]

+
∑

odd nz

∑
odd n′

z

∑
q‖

(−1)
nz+n′

z−2
2 DN

m√
ωq‖,nzωq‖,n′

z

(αq‖,1,nz + α∗
−q‖,1,nz

)(α∗
q‖,1,n′

z
+ α−q‖,1,n′

z
) +

∑
q‖,1,nz

h̄ωq‖,nzα
∗
q‖,1,nz

αq‖,1,nz ,

(85)

where D ≡ 2π h̄e2/(LzSεr ). [As discussed in Sec. II, if one is interested in finding the exact photonic eigenstate, a different and
much more cumbersome root needs to be followed. This is described at length in Appendix C and related Appendix D. The end
result, from the point of view of energy differences, is identical to the one that one obtains using Eq. (85).] Note that all the
modes with even nz are completely decoupled from matter degrees of freedom. For these modes, the minimum of the energy
functional is trivially obtained at αq‖,1,nz = 0. Hence, we can completely disregard even values of nz: from now on, the index nz

will take only odd values.
It turns out to be useful to express the energy functional E [{αq‖,1,nz }, ψ] in terms of {zq‖,1,nz } = {(xq‖,1,nz , yq‖,1,nz )�} where

xq‖,1,nz = (αq‖,1,nz + α∗
−q‖,1,nz

)/2 and yq‖,1,nz = (αq‖,1,nz − α∗
−q‖,1,nz

)/(2i). Introducing g j (q‖) = (−1) j√2D/ωq‖,2 j+1, we find

E [{zq‖,1,nz }, ψ] = 〈ψ |Ĥ2D|ψ〉 +
∑
q‖,1

∑
odd nz

[
h̄ωq‖,nz (xq‖,1,nz x−q‖,1,nz + yq‖,1,nz y−q‖,1,nz )

+ 2N

m

∑
odd n′

z

g(nz−1)/2(q‖)g(n′
z−1)/2(q‖)xq‖,1,nz x−q‖,1,n′

z
+ 2J−q‖,1g(nz−1)/2(q‖)xq‖,1,nz

]
. (86)

This needs to be minimized with respect to {zq‖,1,nz } and |ψ〉.
The minimization with respect to {zq‖,1,nz } can be done an-
alytically by imposing the condition ∂z∗

q‖ ,1,nz
E [{zq‖,1,nz }, ψ] =

0. We find that the optimal value of {zq‖,1,nz } is given by:
h̄ωq‖,nz yq‖,1,nz = 0 and

h̄ωq‖,nz xq‖,1,nz + 2N

m

∑
odd n′

z

g(nz−1)/2(q‖)g(n′
z−1)/2(q‖)xq‖,1,n′

z

= −g(nz−1)/2(q‖)Jq‖,1 , (87)

where nz is odd.
The first equation is trivially solved by yq‖,1,nz = 0. From

Eq. (87), we find that the optimal value of {xq‖,1,nz } is the
solution of a linear system in terms of Jq‖,1, and it is nontrivial
(i.e., xq‖,1,nz 	= 0) only if Jq‖,1 takes a finite value. Using the
stiffness theorem [14], one has, up to second order in Jq‖,1,

〈ψ |Ĥ2D|ψ〉 − 〈ψ0|Ĥ2D|ψ0〉

= − 1

2S

∑
q‖,q′

‖

χ−1
uq‖ ,1· ĵp(q‖ ),uq′‖ ,1· ĵp(−q′

‖ )
(0)Jq‖,1J−q′

‖,1 . (88)

In writing, the previous equation we have assumed, as in the
3D case, that 〈ψ0| ĵp(q‖)|ψ0〉 = 0 for all values of q‖. Since
the ground state of the 2DES has been taken to be homoge-
nous and isotropic, the following property holds true:

χuq‖ ,1· ĵp(q‖ ),uq′‖ ,1· ĵp(−q′
‖ )(0) = χuq‖ ,1· ĵp(q‖ ),uq‖ ,1· ĵp(−q)(0)δq‖,q′

‖ .

(89)
Similarly to the 3D case, we now express the response
function χuq‖ ,1· ĵp(q‖ ),uq‖ ,1· ĵp(−q)(0) in terms of the physical

current-current response tensor [14], which contains a para-
magnetic as well as a diamagnetic contribution:

χ J
i,k (q‖, 0) = n2D

m
δi,k + χ ĵp,i (q), ĵp,k (−q‖ )(0) . (90)

Since we are considering a homogeneous and isotropic sys-
tem, the rank-2 tensor χ J

i,k (q‖, 0) can be decomposed in
terms of the longitudinal, χ J

L(q‖, 0), and transverse, χ J
T(q‖, 0),

current-current response functions [14]:

χ J
i,k (q‖, 0) = χ J

L(q‖, 0)
q‖,iq‖,k

q2
‖

+ χ J
T(q‖, 0)

(
δi,k − q‖,iq‖,k

q2
‖

)
.

(91)
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Note that, as a consequence of gauge invariance, χ J
L(q‖, 0) =

0 for every q‖ [14]. Using Eqs. (90) and (91) in Eq. (89), we
finally find

χuq‖ ,1· ĵp(q‖ ),uq‖ ,1· ĵp(−q)(0) =
[
χ J

T(q‖, 0) − n2D

m

]
. (92)

We now calculate the energy difference between a generic
phase with [zq‖,1, ψ] and the normal phase with [zq‖,1 = 0, ψ0]
(where zq‖,1 = {zq‖,1,nz }odd nz ):

E [zq‖,1, ψ] − E [zq‖,1 = 0, ψ0]

=
∑

q‖

{
1

2S

[
n2D

m
− χ J

T(q‖, 0)

]−1

Jq‖,1J−q‖,1

+
∑

odd nz

[
h̄ωq,nz (xq‖,1,nz x−q‖,1,nz + yq‖,1,nz y−q‖,1,nz )

+ 2N

m

∑
odd n′

z

g(nz−1)/2(q‖)g(n′
z−1)/2(q‖)xq‖,1,nz x−q‖,1,n′

z

+ 2J−q‖,1g(nz−1)/2(q‖)xq‖,1,nz

]}
. (93)

Minimizing this quantity with respect to Jq‖,1, we obtain the
following result:

Jq‖,1 = 2S
[
χ J

T(q‖, 0) − n2D

m

] ∑
odd nz

g(nz−1)/2(q‖)xq‖,1,nz .(94)

Replacing Eq. (94) in Eq. (93), we find that the energy
difference, minimized with respect to the matter wave func-
tion and denoted by E[zq‖,1] ≡ minψ (E [zq‖,1, ψ] − E [zq‖,1 =
0, ψ0]) takes the following quadratic form:

E[zq‖,1]

=
∑

q‖

∑
odd nz

[
h̄ωq‖,nz (xq‖,1,nz x−q‖,1,nz

+ yq‖,1,nz y−q‖,1,nz ) + 2S

m
χ J

T(q‖, 0)
∑

odd n′
z

g(nz−1)/2(q‖)

× g(n′
z−1)/2(q‖)xq‖,1,nz x−q‖,1,n′

z

]
, (95)

which can be written compactly as

E[zq‖,1] =
∑

q‖

z†
q‖,1

Mq‖zq‖,1 . (96)

Here, Mq‖ is a symmetric matrix. For photon condensation to
occur we need the photon condensate phase to be energetically
favored with respect to the normal phase. This occurs, at a
given q‖, if at least one eigenvalue λq‖,n of Mq‖ is nega-
tive. For each q‖, the determinant �q‖ = Det(Mq‖ ) of the

quadratic form in Eq. (96) can be written as (see Appendix E):

�q‖ =
[

1 + χ J
T(q‖, 0)

2πe2

c2q‖
tanh

(q‖Lz

2

)]
×
∏

odd nz

(h̄ωq‖,nz )2 . (97)

Using the relation �q‖ = ∏
n λq‖,n between eigenvalues and

determinant, and noting that the second line in Eq. (97) is
positive definite, we conclude that, in order to have at least
one negative eigenvalue, the following inequality needs to be
satisfied:

−χ J
T(q‖, 0)

2πe2

c2q‖
tanh

(q‖Lz

2

)
> 1 . (98)

This equation generalizes the criterion for photon condensa-
tion obtained in Ref. [54] for the case of a 2DES with Rashba
spin-orbit coupling, placed in an external uniform magnetic
field.

Let us consider first the case of zero photon momentum,
q‖ = 0. In this case, the condition (98) for the occurrence of
the photon condensation reduces to

−χ J
T(0, 0)

πe2Lz

c2
> 1 . (99)

As discussed in Sec. II, in systems with no long-range or-
der [14], limq‖→0 χ J

T(q‖, 0) = 0. Such diamagnetic sum-rule
then yields an absurd (0 > 1), expressing the no-go theorem
for the occurrence of photon condensation in a spatially uni-
form cavity field.

As in the 3D case, we now introduce the 2D nonlocal
orbital susceptibility

χorb(q‖) ≡ −e2

c2

χ J
T(q‖, 0)

q2
‖

. (100)

Introducing this definition in Eq. (98), we finally obtain the
condition for the occurrence of photon condensation in a
2DES:

χorb(q‖) >
1

2πq‖ tanh(q‖Lz/2)
. (101)

This is the most important result of this section.
As in the 3D case discussed in Sec. II, the criterion in

Eq. (101) emphasizes that the route towards the discovery of
photon condensate states relies entirely on the knowledge of
the orbital magnetic response function χorb of ESs.

A. Discussion

In order to gain a deeper understanding on the possible oc-
currence of 2D photon condensation, we multiply both sides
of Eq. (101) by 2/Lz and rewrite the criterion as following:

2χorb(q‖)

Lz
>

1

2π (q‖Lz/2) tanh(q‖Lz/2)
. (102)

Note that, in this form, both sides of the inequality are dimen-
sionless. We now discuss two regimes of q‖ (short-wavelength
and long-wavelength regimes) where Eq. (102) can be satis-
fied.
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The right-hand side of Eq. (102) decreases with increasing
q‖. It therefore seems easy to satisfy Eq. (102) at short wave-
lengths, i.e., at q‖ = 1/�matter, where �matter is a characteristic
microscopic length scale of the 2DES at hand [72]. Indeed,
since �matter is expected to be � Lz/2, the right-hand side of
Eq. (102) is small at q‖ ∼ 1/�matter and the threshold condition
for 2D photon condensation reduces to

2πχorb(q‖ = 1/�matter )

�matter
� 1 , (103)

where we have used that tanh(Lz/(2�matter )) ∼ 1. It may be
however very inconvenient to hunt for 2D photon condensa-
tion at wave number scales on the order of 1/�matter, as this
would require cavities operating at very high energies, on the
order of h̄ω ∼ h̄cq‖/εr = h̄c/(εr�matter ).

From the argument above, it is advisable to investigate
whether the 2D criterion (102) can be satisfied in the long-
wavelength q‖ → 0 limit. In this respect, we invite the reader
to compare Eq. (102) with the 3D criterion in Eq. (36). The
two criteria display a dramatic qualitative difference. While
in the 3D case photon condensation can occur also in the
quasi-homogeneous q → 0 limit [provided that Eq. (36) is
satisfied in that limit], in the 2D case the right-hand side of
Eq. (102) diverges as 1/q2

‖ in the q‖ → 0 limit. On the other
hand, the left-hand side is usually finite in the same limit.
At a first, superficial glance, it therefore seems impossible to
satisfy the condition (102) in the long-wavelength limit.

However, a useful intermediate small-q‖ regime exists. In-
deed, the quantity χorb(q‖) on the left-hand side of Eq. (102)
is expected to change on a wave number scale controlled
by 1/�matter. Matter is in the quasihomogenous q‖ → 0 limit
when q‖ � 1/�matter. On the other hand, the right-hand side of
Eq. (102) changes when q‖ changes relatively to 2/Lz. In order
to mitigate the growth of the right-hand side of Eq. (102) with
decreasing q‖, it is therefore wise to work in the regime

2

Lz
� q‖ � 1

�matter
, (104)

assuming, as above, that Lz/2 � �matter.
When q‖ ∼ 2/Lz � 1/�matter, the right-hand side of

Eq. (102) is ≈ [2π tanh(1)]−1, and the criterion for 2D photon
condensation reduces to

2χOMS

Lz
� 0.21 , (105)

where, in analogy to the 3D case in Eq. (35),

χOMS ≡ lim
q‖→0

χorb(q‖) . (106)

In summary, in order to satisfy the inequality (102) in the
quasihomogeneous regime (104), we need to hunt for 2DESs
whose OMS is positive (orbital paramagnets) and larger
than ≈ Lz/10.

We now list 2DESs where the criterion (105) is most likely
to be satisfied. In 1991, Vignale demonstrated [73] that when
the Fermi energy is sufficiently close to a saddle point of the
band structure, noninteracting 2DESs in a periodic potential
display orbital paramagnetism with χOMS diverging logarith-
mically. The divergence is due to a diverging density of states
at the saddle point. The positive sign of χOMS is an exquisite

quantum effect, which is easy to understand. Near a saddle
point the semiclassical approximation breaks down, and tun-
neling from one quasiclassical trajectory to the neighboring
one occurs. Due to tunneling, electrons rotate around the
saddle point in a direction opposite to the classical direction
of rotation and the induced magnetic moment is reversed. We
emphasize that the positive sign (i.e., paramagnetic character
of the response) for noninteracting electrons is surprising, in
view of the fact that noninteracting parabolic-band ESs are
characterized by a negative OMS (Landau diamagnetism).
Recently discovered [74] high-order van Hove singularities
are expected to give stronger-than-logarithmic orbital param-
agnetic behavior.

More recently, the OMS of the 2DES in graphene has
received some attention. In the massless Dirac fermion
continuum model, the 2DES in graphene is strongly diamag-
netic [75], χOMS ∝ −δ(EF), when the Fermi energy lies at the
Dirac point and electron-electron interactions are neglected.
On the other hand, the lattice contribution [76] to the OMS
beyond the massless Dirac fermion continuum model is pos-
itive for a wide range of Fermi energies and diverges at the
saddle point, in agreement with Ref. [73]. Electron-electron
interactions display the same tendency and, in the massless
Dirac fermion continuum model, turn the 2DES in graphene
into an orbital paramagnet [77] when the Fermi energy is away
from the Dirac point.

The OMS of multiband systems with a pair of Dirac points
interpolating between honeycomb and dice lattices has been
studied by Raoux et al. [78]. Orbital paramagnetic behavior,
stemming from a topological Berry phase changing continu-
ously from π (graphene) to 0 (dice), has been found in this
work even at Dirac crossings. A novel geometric contribution
to the OMS has been shown to give rise to very strong orbital
paramagnetism in models with flat bands [79]. It is therefore
very natural to expect the same behavior also in twisted bi-
layer graphene close to the magic angle [80].

Other instances of orbital paramagnetic behavior have been
found recently in a noninteracting 2DES in the presence of
Rashba spin-orbit coupling and a perpendicular static mag-
netic field [54]. In particular, in their model, Nataf et al. [54]
showed that Eq. (101) is satisfied at q‖ ∼ 1/�B, every time that
two Landau levels with opposite helicity cross.

V. SUMMARY AND CONCLUSIONS

In summary, we have derived criterions for the occurrence
of “superradiant” (i.e., photon condensate) states in electron
systems coupled to a spatially varying electromagnetic field.

In three spatial dimensions, the criterion, reported in
Eq. (36), is identical to the Condon criterion for the oc-
currence of magnetic domains. The Zeeman coupling of the
electronic spin degrees of freedom to the cavity field leads to
the criterion in Eq. (70) and implies that in a real material
one needs to know both orbital and spin nonlocal response
functions to make quantitative predictions on the occurrence
of a photon condensate phase.

Finally, the condition for the occurrence of photon conden-
sates in 2D systems embedded in quasi-2D cavities is reported
in Eq. (101) and poses severe bounds on the observability
of this phenomenon. We have indeed shown that in order
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to satisfy this criterion in the quasi-homogeneous limit, one
needs to hunt for materials with a divergent orbital param-
agnetic character. A few possibilities have been discussed in
Sec. IV A.

While we have made no assumptions on the electromag-
netic field, we have taken the electron system at hand to
be homogeneous, i.e., we have worked with the so-called
“jellium model” [14]. Furthermore, relativistic Hamiltonian
terms, such as spin-orbit coupling, have been neglected. In
the future we plan to extend our investigations of photon con-
densate states to more general model Hamiltonians, especially
ones that transcend the assumption of homogeneity.

The prediction of the possible coexistence in strongly cor-
related materials of exotic orders and photon condensate states
requires accurate microscopic theories of the nonlocal orbital
and spin response functions that take into account the role of
electron-electron interactions.

Note added. Recently, we learned about related work by
Guerci et al. [81], where a similar criterion for the occurrence
of a superradiant phase transition in a cavity with a single
mode was obtained. It is a great pleasure to thank Daniele
Guerci, Pascal Simon, and Christophe Mora for sharing their
results with us prior to publication.
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APPENDIX A: DISENTANGLING LIGHT AND MATTER

In this Appendix, we show that, in the thermodynamic
N → ∞, V → ∞ limit (with N/V = constant), it is permis-
sible to assume a factorized ground state of the form

|	〉 = |ψ〉 |
〉 . (A1)

We begin by defining the electron-photon Hamiltonian
Ĥel-ph ≡ Ĥ(1)

el-ph + Ĥ(2)
el-ph, where

Ĥ(1)
el-ph ≡

N∑
i=1

e

mc
Â(r̂i ) · p̂i (A2)

and

Ĥ(2)
el-ph ≡

N∑
i=1

e2

2mc2
Â

2
(r̂i ) . (A3)

The photon Hamiltonian Ĥph has been defined in the main
text. Let us split the matter Hamiltonian into the sum of kinetic
and potential terms, i.e., we write Ĥ ≡ ĤK + ĤV, where

ĤK ≡
N∑

i=1

p̂2
i

2m
(A4)

and

ĤV ≡ 1

2

∑
i 	= j

v(r̂i − r̂ j ) . (A5)

In order to guarantee the correct thermodynamic limit, Ĥel-ph,
Ĥph, and Ĥ must scale extensively with N . This implies that
photonic and electronic operators must scale properly with N
in the N → ∞ limit. Let us discuss this fact explicitly.

We begin by considering the photon Hamiltonian Ĥph. We
denote by the symbol Nmodes the number of “non-negligible”
modes, i.e., modes that cannot be neglected in the thermo-
dynamic limit. The photon Hamiltonian Ĥph can have an
extensive scaling with N in two different cases.

(1) Nmodes is an intensive quantity (i.e., Nmodes does not
scale with N). In this case, the operator âq0,σ

characterized
by a given q0 acquires a macroscopic occupation âq0,σ

∼ √
N .

(2) Nmodes is an extensive quantity, while the occupation
number â†

q0,σ
âq0,σ

of each mode is not macroscopic, i.e.,
âq,σ ∼ √

N/Nmodes ∼ 1. We now show that this case is not
relevant for the occurrence of photon condensation. The para-
magnetic electron-photon interaction Ĥ(1)

el-ph scales like

Ĥ(1)
el-ph ∼

∑
q

Aqâ†
q,σ ĵp(q) . (A6)

In the case of interest, Aqâ†
q,σ ∼ 1/

√
Nmodes ∼ 1/

√
N , while∑

q ĵp(q) is extensive in N . We therefore get the following

scaling with N of the paramagnetic contribution: Ĥ(1)
el-ph ∼

N/
√

Nmodes ∼ √
N . In summary, if Nmodes is extensive, we

have Ĥ(1)
el-ph/N ∼ 1/

√
N → 0 in the limit N → ∞. Since

Ĥ(1)
el-ph is responsible for lowering the energy of the pho-

ton condensate phase, the fact that it scales to zero in the
thermodynamic limit excludes the possibility of a phase
transition.

Since we are interested in photon condensation, from now
on we will consider only the case in which a finite number
of modes acquires a macroscopic occupation number, i.e.,
we assume that Nmodes is an intensive quantity. In this case,
Hamiltonians (A2) and (A3) are extensive. Let us now focus
on electronic operators. Being a sum of N independent terms,
ĤK in Eq. (A4) is explicitly extensive. Conversely, ĤV in
Eq. (A5) contains a double sum, and is therefore expected to
scale like N2. Nevertheless, it is possible to show that, due
to the ground-state equilibrium condition (i.e., charge neutral-
ity [14]), the expectation value of ĤV over the equilibrium
ground-state |ψ〉 scales with N . Below, we will therefore work
with the rescaled operators Ĥ/N , Ĥph/N , and Ĥel-ph/N , which
are well defined in the thermodynamic N → ∞ limit.

In order to prove Eq. (A1), we will show that in the limit
N → ∞ [Ĥ

N
,
Ĥel-ph

N

]
→ 0 (A7)

and [Ĥph

N
,
Ĥel-ph

N

]
→ 0 . (A8)
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The left-hand side of Eq. (A7) contains three contributions, which we now carefully examine. (a) The first contribution is[
ĤK

N
,
Ĥ(1)

el-ph

N

]
=

N∑
i=1

eh̄

2cm2N2

[
p̂i · q −

∑
q,σ

Aq(âq,σ eiq·r̂i − â†
q,σ e−iq·r̂i )uq,σ · p̂i+

∑
q,σ

Aq(âq,σ eiq·r̂i − â†
q,σ e−iq·r̂i ) p̂i · q uq,σ · p̂i

]
.

(A9)

This commutator vanishes like 1/N , since
∑N

i=1 scales like N , while terms like
∑

q Aqâq,σ ∼ √
N/V are of order unity in the

limit N,V → ∞ with N/V = constant.
(2) The second contribution is[

ĤV

N
,
Ĥ(1)

el-ph

N

]
= 1

N2

[
1

2

∑
i 	= j

v(r̂i − r̂ j ),
N∑

j=1

e

mc
Â(r̂ j ) · p̂ j

]
. (A10)

Using that [ f (r̂i ), p̂ j] = δi, j ih̄∇r̂i f (r̂i ) and introducing the Coulomb force F̂
C
i, j = −∇r̂iv(r̂i − r̂ j )/2, we get[

ĤV

N
,
Ĥ(1)

el-ph

N

]
= −

N∑
i=1

ih̄eÂ(r̂i )

mcN2
·
∑
j 	=i

F̂
C
i, j . (A11)

The quantity F̂
T
i ≡ ∑

j 	=i F̂
C
i, j is the total force acting on the ith particle. Even though the double sum in Eq. (A11) brings in a

factor scaling like N2 in the large-N limit, the expectation value of the commutator in Eq. (A11) vanishes like 1/N in the N → ∞
limit. This is due to the aforementioned charge-neutrality condition, which imposes that the expectation value of

∑N
i=1 F̂

T
i over

the matter ground state |ψ〉 scales like N in the N → ∞ limit.
(3) The third contribution is[

Ĥ
N

,
Ĥ(2)

el-ph

N

]
=
[
ĤK

N
,
Ĥ(2)

el-ph

N

]
=

N∑
i=1

e2 h̄

2m2c2N2

∑
q,σ

{
p̂i · qÂ(r̂i ) · uq,σ Aq(âq,σ eiq·r̂i − â†

q,σ e−iq·r̂i )

+
∑
q,σ

Â(r̂i ) · uq,σ Aq(âq,σ eiq·r̂i − â†
q,σ e−iq·r̂i ) p̂i · q

}
. (A12)

Again, this quantity scales to zero like 1/N , since the sum
∑N

i=1 brings in a factor N , while terms like
∑

q,σ Aqâq,σ and Â(r̂i ) are
of order unity with respect to N .

In order to prove Eq. (A8), it is convenient to rewrite the light-matter interaction Hamiltonian in terms of the real-space
paramagnetic current ĵp(r) and density n̂(r) operators:

n̂(r) =
N∑

i=1

δ(r̂i − r) , (A13)

ĵp(r) = 1

2m

N∑
i=1

[ p̂iδ(r̂i − r) + δ(r̂i − r) p̂i] . (A14)

Exploiting these definitions, we can write Eqs. (A2) and (A3) as

Ĥ(1)
el-ph = e

c

∫
d3r ĵp(r) · Â(r) , (A15)

Ĥ(2)
el-ph = e2

2mc2

∫
d3r n̂(r)Â

2
(r) . (A16)

Using the commutator [âq,σ , â†
q′,σ ′ ] = δq,q′δσ,σ ′ , we can rewrite the left-hand side of Eq. (A8) as the sum of the following two

terms: [
Ĥph

N
,
Ĥ(1)

el-ph

N

]
=
∑
q,σ

h̄ωq

N2

{
e

c

∫
d3r ĵp(r) · uq,σ Aq(âq,σ eiq·r − â†

q,σ e−iq·r)

}
(A17)
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and [
Ĥph

N
,
Ĥ(2)

el-ph

N

]
=
∑
q,σ

h̄ωq

N2

{
e

2mc

∫
d3r n̂(r)Â(r) · uq,σ Aq,σ (âq,σ eiq·r − â†

q,σ e−iq·r)

+ e

2mc

∫
d3r n̂(r)Aq,σ (âq,σ eiq·r − â†

q,σ e−iq·r)Â(r) · uq,σ

}
. (A18)

Again, both quantities scale like 1/N , since
∫

d3r n̂(r) ∼ N and
∫

d3r ĵp(r) ∼ N , while Â(r) and
∑

q,σ do not scale with N
(since, as stated at the beginning of this Appendix, we are considering the situation in which Nmodes does not scale with N).

APPENDIX B: DISENTANGLING LIGHT AND MATTER IN THE ZEEMAN COUPLING CASE

In this Appendix, we show that, in the thermodynamic N → ∞, V → ∞ limit (with N/V = constant), it is allowed to assume
a factorized ground state of the form

|	〉 = |ψ〉 |
〉 , (B1)

also when a Zeeman-type electron-photon interaction is taken into account. In this case, the electron-photon Hamiltonian is
given by

Ĥel-ph ≡ gμB

2

N∑
i=1

σ̂ i · B̂(ri ) . (B2)

The electron Hamiltonian Ĥ and the photon Hamiltonian Ĥph have been defined in the main text. We here report again the
explicit form of the cavity magnetic field: B̂(r) = ∑

q,σ AqiquT,q,σ (âqeiq·r − â†
qe−iq·r). Again, in order to assure thermodynamic

consistency, we assume that a finite number of relevant modes (i.e., a number that does not scale with N), parametrized by q0,
acquires macroscopic occupation, i.e., âq0,σ

∼ √
N . Since the electron Hamiltonian does not depend on the spin operators σ̂ i, we

have [Ĥ/N, Ĥel-ph/N] = 0.
In order to prove Eq. (B1), we only need to show that[Ĥph

N
,
Ĥel-ph

N

]
→ 0 (B3)

in the N → ∞ limit.
To this end, it is convenient to rewrite the electron-photon Hamiltonian Ĥel-ph as a function of the real-space spin density Ŝ(r),

which is defined as following:

Ŝ(r) =
N∑

i=1

σ̂ iδ(r̂i − r) . (B4)

Using this definition, we can rewrite Eq. (B2) as

Ĥel-ph = gμB

2

∫
d3r Ŝ(r) · B̂(r) . (B5)

Exploiting the bosonic commutator [âq,σ , â†
q′,σ ′] = δq,q′δσ,σ ′ , we can rewrite the left-hand side of Eq. (B3) as[Ĥph

N
,
Ĥel-ph

N

]
= −

∑
q,σ

ih̄qωqgμB

2N2

[ ∫
d3r Ŝ(r) · uT,q,σ Aq(âq,σ eiq·r + â†

q,σ e−iq·r)

]
. (B6)

This quantity scales like 1/N , since
∫

d3r Ŝ(r) ∼ N , while
∑

q,σ and Aqâq,σ are of order unity with respect to N .

APPENDIX C: PROOF OF EQ. (85)

The Hamiltonian in Eq. (81) is a quadratic form of the photonic fields. We now carry out a suitable Bogoliubov transformation,
switching from the bosonic operators âq‖,1,nz and â†

−q‖,1,nz
with odd nz to new bosonic operators b̂q‖,1, j and b̂†

−q‖,1, j with integer j.

Bosonic operators âq‖,1,nz and â†
−q‖,1,nz

with even mode index nz are decoupled from matter degrees of freedom. The Bogoliubov
transformation reads as following:

b̂q‖,1, j =
∑

�

[Xj,�(q‖)âq‖,1,2�+1 + Yj,�(q‖)â†
−q‖,1,2�+1] , (C1)

125137-15



G. M. ANDOLINA et al. PHYSICAL REVIEW B 102, 125137 (2020)

with �, j integers. Applying the Hermitian conjugation to the expression above and replacing q‖ → −q‖, one has

b̂†
−q‖,1, j =

∑
�

[Y ∗
j,�(−q‖)âq‖,1,2�+1X ∗

j,�(−q‖)â†
−q‖,1,2�+1] . (C2)

For every q‖, we can therefore write the Bogoliubov transformation in the following compact form:[ {b̂q‖,1, j}
{b̂†

−q‖,1, j}

]
=
[

X (q‖) Y (q‖)
Y ∗(−q‖) X ∗(−q‖)

][ {âq‖,1,2�+1}
{â†

−q‖,1,2�+1}
]

. (C3)

It acts only on the photon modes with odd mode index and it is independent of the direction of the polarization vector uq‖,1. For
this reason, we have omitted the polarization label σ = 1 from the Bogoliubov transformation matrices X (q‖) and Y (q‖).

We would like to find X (q‖) and Y (q‖) such that

Ĥph + Ĥd =
∑

q‖

[ ∑
even nz

h̄ωq‖,nz

(
â†

q‖,1,nz
âq‖,1,nz + 1

2

)
+
∑

j

h̄�q‖, j

(
b̂†

q‖,1, j b̂q‖,1, j + 1

2

)]
, (C4)

with a suitable choice of �q‖, j . Notice that, differently from the main text, we have restored the vacuum contribution. If (C4)
holds true, one has

[Ĥph + Ĥd , b̂q‖,1, j] = −h̄�q‖, j b̂q‖,1, j . (C5)

Using Eq. (C1), we can write Eq. (C5) as∑
�

[Ĥph + Ĥd , Xj,�(q‖)âq‖,1,2�+1 + Yj,�(q‖)â†
−q‖,1,2�+1] = −h̄�q‖, j

∑
�

Xj,�(q‖)âq‖,1,2�+1 + Yj,�(q‖)â†
−q‖,1,2�+1 , (C6)

which is equivalent to

h̄�q‖, j

∑
�

Xj,�(q‖)âq‖,1,2�+1 + Yj,�(q‖)â†
−q‖,1,2�+1

=
∑

k

Xjk (q‖)

[
h̄ωq‖,2k+1âq‖,1,2k+1 + N

m

∑
�

gk (q‖)g�(q‖)(âq‖,1,2�+1 + â†
−q‖,1,2�+1)

]

− Yjk (q‖)

[
h̄ωq‖,2�+1â†

q‖,1,2k+1 + N

m

∑
�

gk (q‖)g�(q‖)(âq‖,1,2�+1 + â†
−q‖,1,2�+1)

]
, (C7)

where gj (q‖) = (−1) j√2D/ωq‖,2 j+1. The expression above can be written compactly as

(Kq‖ − h̄�q‖, j12Nmax )v j (q‖) = 0 , (C8)

where we introduced a cutoff Nmax on the number of modes in order to deal with finite-size matrices. The vector v j (q‖) reads as
following:

v j (q‖) = [Xj,0(q‖)âq‖,1,1, · · · , Xj,Nmax−1(q‖)âq‖,1,2Nmax−1,Yj,0(q‖)â†
−q‖,1,1, · · · ,Yj,Nmax−1(q‖)â†

−q‖,1,2Nmax−1]� . (C9)

The solutions of the linear-algebra problem posed by Eq. (C8) can be found by setting to zero the determinant of the matrix
Kq‖ − h̄�q‖, j12Nmax :

Det[Kq‖ − h̄�q‖, j12Nmax ] = 0 . (C10)

The calculation of this determinant is a purely mathematical issue and is postponed to Appendix D. The final result is reported
in Eq. (D17). Using this result and taking the Nmax → ∞ limit, we find that the eigenvalues of the matrix Kq‖ are the roots of the
following transcendental equation:

1 + n2D

m

2πe2

c2

tan
(
Lz

√
εr�q‖, j

2/c2 − q2
‖/2
)√

εr�q‖, j
2/c2 − q2

‖
= 0 , (C11)

where n2D = N/S. Since Kq‖ = K−q‖ , one has �q‖, j = �−q‖, j and v j (q‖) = v j (−q‖), i.e., X (q‖) = X (−q‖) and Y (q‖) =
Y (−q‖).

Similarly to what done above, we now calculate the following commutator:

[Ĥph + Ĥd , b̂†
−q‖,1, j] = h̄�−q‖, j b̂

†
−q‖,1, j . (C12)
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Using Eq. (C2), we find

h̄�−q‖, j

∑
�

Y ∗
j,�(−q‖)âq‖,1,2�+1 + X ∗

j,�(−q‖)â†
−q‖,1,2�+1

=
∑

k

X ∗
jk (−q‖)

[
h̄ωq‖,2k+1â†

−q‖,1,2k+1 + N

m

∑
�

gk (q‖)g�(q‖)(âq‖,1,2�+1 + â†
−q‖,1,2�+1)

]

− Y ∗
jk (−q‖)

[
h̄ωq‖,2�+1âq‖,1,2k+1 + N

m

∑
�

gk (q‖)g�(q‖)(âq‖,1,2�+1 + â†
−q‖,1,2�+1)

]
. (C13)

The expression above can be written as

[Kq‖ − h̄�−q‖, j12Nmax ]v∗
j (−q‖) = 0 , (C14)

where �−q‖, j = �q‖, j . Since this eigenvalue problem is identical to Eq. (C8), one has v∗
j (−q‖) = v j (q‖), i.e., X (q‖) = X ∗(−q‖)

and Y (q‖) = Y ∗(−q‖).
Because of the properties of the matrices X (q‖) and Y (q‖), i.e., X (q‖) = X ∗(−q‖) = X (−q‖) and Y (q‖) = Y ∗(−q‖) =

Y (−q‖), we can write [ {b̂q‖,1, j}
{b̂†

−q‖,1, j}
]

=
[

X (q‖) Y (q‖)
Y (q‖) X (q‖)

][ {âq‖,1,2�+1}
{â†

−q‖,1,2�+1}
]

. (C15)

Imposing the bosonic commutation rules, [b̂q‖,1, j, b̂†
q′

‖,1, j′ ] = δq‖,q′
‖δ j, j′ and [b̂q‖,1, j, b̂q′

‖,1, j′ ] = 0, we obtain the following proper-

ties:

X (q‖)X �(q‖) − Y (q‖)Y �(q‖) = 1 , (C16)

and

X (q‖)Y �(q‖) − Y (q‖)X �(q‖) = 0 . (C17)

By using the properties above, it is easy to obtain the inverse Bogoliubov transformation[ {âq‖,1,2�+1}
{â†

−q‖,1,2�+1}
]

=
[

X �(q‖) −Y �(q‖)
−Y �(q‖) X �(q‖)

][ {b̂q‖,1, j}
{b̂†

−q‖,1, j}
]

. (C18)

In terms of the new bosonic operators b̂†
q‖,1, j, b̂q‖,1, j , the effective Hamiltonian reads as following:

Ĥeff
ph [ψ] = 〈ψ |Ĥ2D|ψ〉 +

∑
q‖

{ ∑
even nz

h̄ωq‖,nz

(
â†

q‖,1,nz
âq‖,1,nz + 1

2

)

+
∑

j

h̄�q‖, j

(
b̂†

q‖,1, j b̂q‖,1, j + 1

2

)
+ Jq‖,1

∑
j,�

g�(q‖)(b̂†
q‖,1, j + b̂−q‖,1, j )[Xj�(q‖) − Yj�(q‖)]

}
. (C19)

The previous Hamiltonian can be written in a form that is manifestly Hermitian:

Ĥeff
ph [ψ] = 〈ψ |Ĥ2D|ψ〉 +

∑
q‖,1

{ ∑
even nz

h̄ωq‖,nz

(
â†

q‖,1,nz
âq‖,1,nz + 1

2

)

+
∑

j

h̄�q‖, j

(
b̂†

q‖,1, j b̂q‖,1, j + 1

2

)
+
[
Jq‖,1

∑
j,�

g�(q‖)b̂†
q‖,1, j[Xj�(q‖) − Yj�(q‖)] + H.c.

]}
. (C20)

In the effective Hamiltonian above, the even photon modes are independent of the light-matter interaction, while the odd photon
modes are renormalized by the diamagnetic term and expressed as a sum of displaced harmonic oscillators. For every matter state
|ψ〉, the ground state |
〉 of Ĥeff

ph [ψ] is therefore a tensor product |B〉 ≡ ⊗q‖, j |βq‖,1, j〉 of coherent states of the b̂q‖,1, j operators,

i.e., b̂q′
‖,1,� |B〉 = βq′

‖,1,� |B〉.
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We now introduce the following energy functional, obtained by taking the expectation value of Ĥeff
ph [ψ] over |B〉:

E [{βq‖,1, j}, ψ] ≡ 〈	|ĤA|	〉 = 〈B|Ĥeff
ph [ψ]|B〉:

E [{βq‖,1, j}, ψ] = 〈ψ |H2D|ψ〉 +
∑
q‖, j

[
h̄�q‖, j

(
β∗

q‖,1, jβq‖,1, j + 1

2

)

+ J (q‖, 1)(β∗
q‖,1, j + β−q‖,1, j )

∑
�

g�(q‖)(Xj�(q‖) − Yj�(q‖))

]
. (C21)

We now observe that the order parameter αq‖,1,2�+1 introduced in the main text is linearly dependent on βq‖,1, j , i.e.,[ {αq‖,1,2�+1}
{α∗

−q‖,1,2�+1}
]

=
[

X �(q‖) −Y �(q‖)
−Y �(q‖) X �(q‖)

][ {βq‖,1, j}
{β∗

−q‖,1, j}
]

. (C22)

By using the linear relation above, we can express the energy functional E [{βq‖,1, j}, ψ] in terms of {αq‖,1, j}. Carrying out such
procedure and neglecting the vacuum energy, we finally obtain Eq. (85) of the main text.

APPENDIX D: CALCULATION OF THE DETERMINANT IN EQ. (C10)

In this Appendix, we calculate the determinant in the left-hand side of Eq. (C10). To this end, it is useful to write the matrix
Kq‖ − h̄�q‖, j12Nmax defined in Eq. (C8) in the following block form:

Kq‖ − h̄�q‖, j12Nmax =
[

Q(q‖) + V (q‖) − h̄�q‖, j1Nmax −V (q‖)

V (q‖) −Q(q‖) − V (q‖) − h̄�q‖, j1Nmax

]
, (D1)

where

Qk,�(q‖) = h̄ωq‖,2�+1δk,� (D2)

and

Vk,�(q‖) = N

m
gk (q‖)g�(q‖) . (D3)

Carrying out simple algebraic manipulations, we find

Kq‖ − h̄�q‖, j12Nmax = [12Nmax + W (q‖)]

[
Q(q‖) − h̄�q‖, j1Nmax 0

0 −Q(q‖) − h̄�q‖, j1Nmax

]
, (D4)

where

W (q‖) =
[
W−(q‖) W+(q‖)
W−(q‖) W+(q‖)

]
(D5)

and

W±(q‖) = V (q‖)(±h̄�q‖, j1Nmax + Q(q‖))−1 . (D6)

Using the expressions above, we can write the determinant at hand as

Det[Kq‖ − h̄�q‖, j12Nmax ] =
∏

�

[(h̄�q‖, j )
2 − (h̄ωq‖,2�+1)2]Det[12Nmax + W (q‖)] . (D7)

We now focus on Det[12Nmax + W (q‖)] and use the following well-known algebraic property,

Det[12Nmax + W (q‖)] = exp{Tr[ln(12Nmax + W (q‖)]} . (D8)

The trace in the right-hand side of the previous equation can be written as

Tr[ln(12Nmax + W (q‖)] =
∞∑
j=1

(−1) j−1

j
Tr[W j (q‖)] . (D9)

For block matrices, the following property holds true:

Tr
{[A B

A B

][C D
C D

]}
= Tr{(A + B)(C + D)} . (D10)

We therefore have

Tr[W j (q‖)] = Tr{[W+(q‖) + W−(q‖)] j} . (D11)

125137-18



THEORY OF PHOTON CONDENSATION IN A SPATIALLY … PHYSICAL REVIEW B 102, 125137 (2020)

Furthermore, it is possible to show that

rank[W+(q‖) + W−(q‖)] = 1 . (D12)

The previous property of the matrix W+(q‖) + W−(q‖) can be proved by direct inspection, showing that all the columns of
W+(q‖) + W−(q‖) can be obtained, for example, by multiplying the first column for a suitable constant.

We therefore conclude that W+(q‖) + W−(q‖) has only one nonzero eigenvalue. As a consequence, we find that

Tr[W j (q‖)] = Tr{[W+(q‖) + W−(q‖)] j} = Tr[W+(q‖) + W−(q‖)] j = Tr[W (q‖)] j . (D13)

Replacing this result in Eq. (D9), we therefore find that

Tr{ln[12Nmax + W (q‖)]} =
∞∑
j=1

(−1) j−1

j
Tr[W (q‖)] j = ln(1 + Tr[W (q‖)]) , (D14)

where

Tr[W (q‖)] = Tr[W+(q‖) + W+(q‖)] =
Nmax−1∑

�=0

2ωq‖,2�+1Ng2
�(q‖)

mh̄
(
ω2

q‖,2�+1 − �2
) =

Nmax−1∑
�=0

4DN

mh̄
(
ω2

q‖,2�+1 − �2
q‖, j

) . (D15)

Replacing Eq. (D15) in Eq. (D8), we find

Det[12Nmax + Wq‖] = 1 +
Nmax−1∑

�=0

4DN

mh̄
(
ω2

q‖,2�+1 − �2
q‖, j

) = 1 + n2D

m

2πe2

c2

tan
(
Lz

√
εr�q‖, j

2/c2 − q2
‖/2
)√

εr�q‖, j
2/c2 − q2

‖
. (D16)

In the last equality, we have used that
∑

�[(2� + 1)2 − x2]−1 = π tan(πx/2)/(4x) and the limit Nmax → ∞ has been taken. In
summary, the final desired result is

Det[Kq‖ − h̄�q‖, j12Nmax ] =
∏

�

[(h̄�q‖, j )
2 − (h̄ωq‖,2�+1)2]

⎡⎣1 + n2D

m

2πe2

c2

tan
(
Lz

√
εr�q‖, j

2/c2 − q2
‖/2
)√

εr�q‖, j
2/c2 − q2

‖

⎤⎦ . (D17)

APPENDIX E: CALCULATION OF THE DETERMINANT IN EQ. (97)

In this Appendix, we calculate the determinant of the matrix Mq‖ defined in Eq. (96). To this end, it is useful to write Mq‖ in
the following block form:

Mq‖ =
[M(x)

q‖
0

0 M(y)
q‖

]
, (E1)

where

M(x)
q‖

= Q(q‖) + U (q‖) , (E2)

M(y)
q‖

= Q(q‖) , (E3)

Q(q‖) has been defined in Eq. (D2), and

Uk,�(q‖) = 2Sχ J
T(q‖, 0)

m
gk (q‖)g�(q‖) . (E4)

By exploiting the block decomposition, the determinant of Mq‖ can be expressed as

�q‖ = Det(Mq‖ ) = Det
(
M(x)

q‖

)
Det

(
M(y)

q‖

)
, (E5)

where

Det
(
M(y)

q‖

) =
Nmax−1∏

�=0

h̄ωq‖,2�+1 . (E6)

Carrying out simple algebraic manipulations, we find

M(x)
q‖

= [1Nmax + U (q‖)Q−1(q‖)]Q(q‖) . (E7)
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The expression of Det[Mq‖] can be further simplified as

�q‖ = Det[1Nmax + U (q‖)Q−1(q‖)]
Nmax−1∏

�=0

[h̄ωq‖,2�+1]2 . (E8)

It is easy to verify that each column of matrix U (q‖)Q−1(q‖) can be obtained by multiplying the first column for a suitable
constant: this implies that rank[U (q‖)Q−1(q‖)] = 1. Using this property, and following the same procedure discussed in
Appendix D, we have

Det[1Nmax + Wq‖] = 1 + Tr[U (q‖)Q−1(q‖)] = 1 + 2Sχ J
T(q‖, 0)

m

Nmax−1∑
�=0

g2
�(q‖)

h̄ωq‖,2�+1
= 1 + 4Sχ J

T(q‖, 0)D

mh̄

Nmax−1∑
�=0

1

ω2
q‖,2�+1

. (E9)

Taking the limit Nmax → ∞, we find

Det[1Nmax + Wq‖ ] = 1 + χ J
T(q‖, 0)

2πe2

c2q‖
tanh

(q‖Lz

2

)
. (E10)

In summary, the determinant of the matrix Mq‖ is given by

�q‖ =
[

1 + χ J
T(q‖, 0)

2πe2

c2q‖
tanh

(q‖Lz

2

)]∏
�

[h̄ωq‖,2�+1]2 , (E11)

as in Eq. (97) of the main text.
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