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We examine the properties of a one-dimensional (1D) Fermi gas with attractive intrinsic (Hubbard) interac-
tions in the presence of spin-orbit coupling and Zeeman field by numerically computing the pair binding energy,
excitation gap, and susceptibility to local perturbations using the density matrix renormalization group. Such a
system can, in principle, be realized in a system of ultracold atoms confined in a 1D optical lattice. We note that,
in the presence of spatial interfaces introduced by a smooth parabolic potential, the pair binding and excitation
energy of the system decays exponentially with the system size, pointing to the existence of an exponential
ground state degeneracy, and is consistent with recent works. However, the susceptibility of the ground state
degeneracy of this number-conserving system to local impurities indicates that the energy gap vanishes as a
power law with the system size in the presence of local perturbations. We compare this system with the more
familiar system of an Ising antiferromagnet in the presence of a transverse field realized with Rydberg atoms and
argue that the exponential splitting in the clean number-conserving 1D Fermi system is similar to a phase with
only conventional order.
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I. INTRODUCTION

Topological quantum computation (TQC) promises the
realization of robust fault-tolerant quantum information pro-
cessing [1,2], and tremendous experimental efforts are being
made to find and fabricate systems supporting TQC [3–14].
Among the most promising candidates for realizing TQC
in condensed-matter systems are solid-state semiconductor
thin films and nanowires, which are theoretically predicted to
support a topological superconducting (TS) phase in the pres-
ence of a proximity-induced superconducting pair potential
�ind, Rashba spin-orbit coupling (SOC) α, and an exter-
nally applied Zeeman field h in the parameter space spanned
by the weak-coupling mean-field equation h2 > (�2

ind + μ2)
[15–21]. The TS phase is defined by the emergence of
mid-gap non-Abelian topological quasiparticles known as
Majorana zero modes (MZMs) localized at the topological
defects [1,2,22–24]. Alongside the solid-state systems, it has
also been proposed that the system of ultracold fermions
confined in optical lattice [25,26] in the presence of SOC,
Zeeman field, and a mean-field s-wave superfluid pair po-
tential supports a TS phase with MZMs as edge modes
[27–32]. Although effective SOC and Zeeman field can be
experimentally generated in a one-dimensional (1D) system
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of ultracold atoms [33–37], the study of 1D fermions with in-
trinsic attractive interactions induced by Feshbach resonance
[38] in the framework of mean-field theory is problematic.
This is because the reduced dimensionality results in strong
pair phase fluctuations, and true superfluid long-range order
in one dimension is destroyed. It was shown by Sau et al.
[39] and Fidkowski et al. [40] that in the presence of phase
fluctuations, the ground state would differ from the conven-
tional phase by the presence of an exponential ground state
degeneracy in the absence of phase slips. Phase slips, however,
reduce ground state degeneracy from exponential to power
law. Later on it was clarified that such phase slips are likely
to be rare in systems of ultracold atoms [41]. Regardless of
the degeneracy, it was argued [42] that number-conserving
systems are characterized by long-range order in a transverse-
field Ising degree of freedom that is related to the original
fermions by a Jordan-Wigner transformation [43]. However,
the nonlocal order parameter in the relevant transverse-field
Ising model relies on a decomposition of the system into
fermions and bosons and as such is not obviously related to
a nonlocal observable in the original fermion model. TQC,
however, relies most importantly on the exponential ground
state degeneracy, which can be used to build nonlocal qubits
and quantum gates immune to local perturbations. In this pa-
per we will focus exclusively on the existence of exponential
ground state degeneracy in a 1D Fermi gas with SOC, Zeeman
field, and intrinsic attractive interactions in the presence of a
smooth parabolic potential, as considered in Ref. [44]. The
case for topological superfluidity in such systems is made
through the degeneracy of the entanglement spectrum and Ma-
jorana correlation function, provided there is a fermionic gap
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[45–48]. The present system [Eqs. (1) and (2)], on the other
hand, is gapless to fermionic excitations because of the phase
slips [39,40]. For this reason and because we are exclusively
focused on the existence of the exponential ground state de-
generacy, which is the only property needed for TQC, we have
not attempted to explore topological properties through the
degeneracy of the entanglement spectrum or other indicators.

It was recently proposed [44] that the exponential ground
state degeneracy of a 1D Fermi gas with SOC, Zeeman
field, and intrinsic attractive interactions could be established
through the use of a smooth parabolic potential—which spon-
taneously occurs in ultracold-atom systems confined by a
harmonic trap potential. The parabolic potential V (r) intro-
duces smooth interfaces between regions defined by h > μeff

and h < μeff, where μeff, defined by μeff = μ − V (r), repre-
sents the effective chemical potential. If the superconducting
order could be treated in mean-field theory, as in the case
of the spin-orbit coupled semiconductor-superconductor het-
erostructure with proximity-induced superconductivity and an
externally applied Zeeman field [15–21], these regions, in
the limit of a small mean-field superconducting pair potential
�ind → 0, would be the topological superconducting and or-
dinary superconducting phases, respectively, and for h > μeff

the system would have a twofold exponential degeneracy of
the ground state [15–21]. In the present system, however,
we have intrinsic attractive interaction, and superconductiv-
ity cannot be treated in mean-field theory. Despite that, the
ground state has been proposed [44] to be doubly degenerate
(up to an exponentially small splitting for finite-sized system)
because of an exponential ground state degeneracy associated
with the fermion parity of the system. Hence, an exponential
decay of the excitation gap � and pair binding energy Eb with
increasing system size N indicating the absence of a fermion
parity gap could confirm the existence of exponential ground
state degeneracy in the 1D Fermi gas with attractive interac-
tions. In this paper, we numerically study the 1D Fermi gas
system proposed in Ref. [44] to search for exponential ground
state degeneracy in the fermion parity gap and the excitation
gap. The question of exponential splitting of the ground state
degeneracy is at the heart of topological protection of qubits in
topological quantum computation [1,2]. As is clear from the
Luttinger liquid (LL) analysis of a spin-orbit coupled Fermi
gas with attractive interactions, Bosonization of a clean sys-
tem leads to an exponential degeneracy in pairs of SOC gases
[44,49,50]. Within this formalism, power-law splitting can be
generated by backscattering-induced phase slip terms shared
between pairs of wires [39]. Microscopically, the backscatter-
ing originates (at weak interactions) from scattering between
different Fermi surfaces [51] and therefore requires breaking
of momentum conservation by some impurity.

In this work, we show through numerical calculations that
in the clean 1D Fermi gas with attractive Hubbard inter-
action, the pair binding energy and the excitation gap vary
exponentially with the system size, indicating the vanishing
of the fermion parity gap and a twofold ground state de-
generacy. However, by numerically studying the expectation
values of relevant local operators and the effect of impurity
potentials on the ground state degeneracy, we conclude that
the ground state degeneracy of the number-conserving 1D
Fermi gas ceases to be exponential in the presence of local

perturbations. Thus, the main result of this work is the nu-
merical demonstration that the fermion parity gap and the
ground state degeneracy of the number-conserving 1D Fermi
gas are no longer exponential in the presence of local pertur-
bations and are thus not suitable for TQC. The proposal of
creating MZMs in a 1D spin-orbit coupled interacting Fermi
gas appeared in Ref. [44] based on theoretical calculations,
and a rigorous numerical verification needs to be made for
such novel propositions before experiments are designed on
the basis of the same. We have employed the density matrix
renormalization group (DMRG), a state-of-the-art numerical
technique for low-dimensional systems capable of calculat-
ing accurate results away from half-filling of electrons and
for systems containing complex interactions such as SOC, to
probe the important theoretical predictions in Ref. [44]. These
numerical results are thus important both in the context of
designing experiments for realizing TQC and for addressing
fundamental questions regarding the existence of exponential
ground state degeneracy in 1D Fermi gas systems with intrin-
sic attractive interactions.

This paper is organized in four sections. In Sec. II, we
introduce the model and the numerical technique and also dis-
cuss the main criteria used for identifying exponential ground
state degeneracy in the system. In Sec. III, we first analyze
the energy gaps in the clean system to find evidence of ex-
ponential ground state degeneracy, if any. Then, we examine
the system for indistinguishability in local operator measure-
ments for the two exponentially degenerate states and study
the robustness of the energy degeneracy in the presence of
local impurities. Finally, we compare these results with that
of the transverse field Ising model to argue whether the expo-
nential ground state degeneracy apparent in the clean system
truly reflects an underlying topological phase, as claimed in
Ref. [44]. We conclude with a brief discussion of the reported
results and their possible impact on the current understanding
of topological properties in 1D ultracold systems in Sec. IV.

II. MODEL AND METHOD

We consider a 1D spin-orbit coupled Fermi gas with
an attractive s-wave interaction with strength g driven by
a Feshbach resonance. The SOC together with Zeeman
coupling was experimentally realized [33] in gases of ul-
tracold atoms through the application of a pair of Raman
lasers with recoil wave vector kr . The lasers couple to
two hyperfine atomic states represented by the pseudospins
σ = |↑〉, |↓〉 (e.g., |↑〉 = | f = 9/2, mF = −7/2〉 and |↓〉 =
| f = 9/2, mF = −9/2〉), as has been observed in experiments
on K40 gases [52], through a third state. The Raman coupling
together with the incident Feshbach resonance [52] leads to
an effective Hamiltonian [33] for the Fermi gas of atoms that
is written as

H =
∫

dx

{∑
α,β

ψ†
α (x)

[
− 1

2m
∂2

x δαβ + iζ∂xσ
(x)
αβ +
σ

(z)
αβ

]
ψβ (x)

− gψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x)

}
, (1)
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where ζ = kr/m is the strength of the SOC and 
 is the
strength of the Raman coupling. Here ψ†

σ (x) is the creation
operator for atoms of mass m with pseudospin σ at position
x, and we have chosen units so that h̄ = 1. σ

(a)
α,β represent the

standard Pauli matrices with a = x, y, z, and α, β are the spin
indices.

For the purposes of numerical calculation, it is necessary
to discretize this Hamiltonian with a lattice parameter a that
is much smaller than the inverse density ν−1, where ν =
n/2N represents the filling fraction of the system of size N ,
containing n electrons. Within this approximation, the above
continuum Hamiltonian can be written as the sum of three
contributions, i.e., an on-site interaction HU, uniform Zeeman
field HZ, and Rashba spin-orbit interaction HSOC. In addition,
a parabolic potential with tunable parameter k′ controls the
electron density profile Hpara. The model Hamiltonian for the
system can be written as

H = Ht + HU + HSOC + HZ + Hpara, (2)

where

Ht = −t
∑
i,σ

(C†
i,σCi+1,σ + H.c.), HU = U

∑
i

ni,↑ni,↓,

HSOC = +iα
∑

i

(C†
i,↑Ci+1,↓ + C†

i,↓Ci+1,↑ − H.c.),

HZ = h
∑

i

Sz
i , Hpara =

∑
i

(
1

2
k′r2

)
(ni,↑ + ni,↓).

To match the continuum Hamiltonian in Eq. (1), in Eq. (2)
we set the nearest-neighbor hopping to be t = 1

2ma2 , the SOC
strength to be α = ζ/2a, the Zeeman coupling as h = 
,
and the on-site Hubbard potential as U = −g/a. To simplify
the presentation of results, we choose energy units for our
calculation so that the hopping amplitude t is set to unity.
The parabolic potential tuning parameters are k′ = k/N2 and
r = (N + 1)/2 − i, where i and N are site indices and sys-
tem size, respectively. We study a low filling fraction of the
electrons (ν = 0.10 and 0.20) and focus on the attractive
interaction regime U ∈ [−1.00,−4.00]. A given linear den-
sity ρ of fermions in the continuum corresponds to a filling
fraction ν = ρa, which becomes vanishingly small in the true
continuum limit a → 0 relevant to experiments on Fermi gas
[33]. We expect the low filling fraction ν = 0.10 to be small
enough to match the continuum limit. It should be noted that
in order to obtain a large enough superconducting gap we
chose |U/t | � 1 in our calculations, which corresponds to a
1D scattering length asc = 2

mg = 4ta
|U | � 4a. Therefore, while

|U/t | ∝ a → 0 in the continuum limit, the value U/t = −1
corresponds to a scattering length of ∼4a that significantly
exceeds the discretization spacing a so that we can still expect
continuum behavior in this limit. Ideally, verification of con-
vergence in the continuum limit requires us to choose different
values of a while keeping the physical variables ρ, g, m, ζ ,
and 
 in Eq. (1) fixed. Unfortunately, this calculation would
require going to much larger values of system size N , which
is beyond the scope of this work. Thus, while the goal is
to study the continuum Hamiltonian, it is difficult to get to
the true continuum limit (a → 0) because of the complicated
Hamiltonian, and |U/t | � 1 is chosen because for smaller |U |

it would be difficult to observe anything of substance for large
system size N .

We have used the DMRG [53–56] method, a state-of-
the-art numerical technique for calculating the eigenvalues
and eigenvectors of low-dimensional systems, for solving the
Hamiltonian in Eq. (2). In the fermionic system under study,
the spin degrees of freedom are not conserved, and hence, the
Hamiltonian dimension is significantly large. The eigenvec-
tors of the density matrix corresponding to m 
 700 largest
eigenvalues have been retained to maintain reliable accuracy.
More than ten finite DMRG sweeps have been performed for
each calculation so that the error in calculated energies is less
than 1%.

We study two spectral characteristics of the system: the
vanishing pair binding energy Eb or the parity gap and an
exponential decay of the excitation energy gap �, defined as

Eb(n, N ) = 1
2 [E0(n + 1, N ) + E0(n − 1, N )

− 2E0(n, N )], (3a)

�(n, N ) = E1(n, N ) − E0(n, N ). (3b)

E0(n, N ) and E1(n, N ) are the ground state energy and the
first excited state energy with n electrons in a system of size
N . In the absence of U and α, the spin-up and spin-down
electronic bands split in the presence of h. But to create
intraband pairing correlations, an attractive U is needed. Now
the SOC interactions applied along the x direction generate a
momentum-dependent magnetic field along the x axis.

III. RESULTS

In this section we present the numerical studies investigat-
ing the existence of a robust exponential degeneracy of the
ground state in 1D ultracold atoms in the presence of intrinsic
interactions, SOC, and Zeeman field and only a parabolic
potential. We first study the scaling of the binding energy
Eb and the lowest excitation gap � with system size N , the
exponential decay of which is considered a hallmark of edge
modes and a resulting utility in TQC. Next, we examine the
local indistinguishability criteria for this system correspond-
ing to a local charge density operator and also check the
robustness of energy gap degeneracy against local impurities
in wire. Finally, we compare the observed results with that
of the transverse field Ising model and discuss whether our
system is truly topological notwithstanding the exponentially
decaying energy gaps in the clean system.

A. Energy gaps

The nontopological conventional phase is expected to be
adiabatically connected to the conventional s-wave supercon-
ductor with Cooper pairs as the only low-energy degrees of
freedom. The phase with exponential ground state degeneracy,
on the other hand, is expected to harbor low-energy fermionic
edge modes, so that the fermion parity of the system is no
longer gapped. We start by numerically searching for expo-
nential ground state degeneracy in the system by studying the
size dependence of the parity gap Eb. We have shown the vari-
ation of Eb with N for different attractive Hubbard potentials
U at electron fillings ν = 0.10 in Fig. 1(a) and at ν = 0.20
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FIG. 1. Variation of the pair binding energy Eb with 1/N for
different U at α = 0.20, h = 0.40, k = 3 for (a) ν = 0.10 and
(b) ν = 0.20. The dashed curves represent power-law fitting with
parameters (C, B). In (a), (C, B) are extracted as (0.064,1.23)
and (0.57,0.58) for U = −1.80 and U = −4.00, respectively. In
(b), (C, B) are extracted as (0.059,1.88) and (0.61,1.20) for U =
−1.80 and U = −4.00, respectively. The solid black curve rep-
resents a vanishing exponential with fitting parameters (A, α, ξ )
extracted corresponding to U = −1.00 in (a) as (8.76,1.39,0.014)
and in (b) as (2.90,1.00,0.0025).

in Fig. 1(b). We find that the parity gap Eb, for the stronger
U = −4.00 and U = −1.80, saturate to a finite intercept as N
increases in both Figs. 1(a) and 1(b). This is consistent with
conventional Cooper pairing expected for the nontopological
phase. In contrast, the parity gap Eb is seen to vanish in the
thermodynamic limit for a weakly attractive potential, U =
−1.00 for both ν = 0.10 and ν = 0.20, suggesting a phase
that is qualitatively distinct from the conventional phase at
U = −4.00 and U = −1.80 in these limits. Here parabolic
potential with k = 3 has been kept fixed, and moderate Zee-
man field (h = 0.40) and SOC strength (α = 0.20) have been
used.

Next, in Fig. 2 we show the variation of the excita-
tion gap � with N for different attractive potentials, U =
−1.00,−1.80, and −4.00 at filling ν = 0.10 and 0.20. All
the other parameters have been kept the same as in Fig. 1.
First, we note that in Fig. 2(a), the power-law decrease of the
excitation energy with system size N in the conventional non-
topological phase for U = −4.00,−1.80 is consistent with
the excitations arising from phonon modes. By contrast, the
energy gap � for U = −1.00 fits better with an exponential
dependence on the system size than a pure power law, as
indicated by the variance of the fitted curve with the data. The
variance corresponding to the exponential fitting is at least
ten times smaller than that for the pure power law fitting.
This, apart from possible finite-size errors, is qualitatively
consistent with the behavior of the pair binding energy Eb

shown in Fig. 1, demonstrating the possible existence of an
exponential ground state degeneracy for a weakly attractive
potential, U = −1.00. These results are also consistent with
the theoretical predictions of the existence of exponential
degeneracy, expected of a TS phase in a spin-orbit coupled
Fermi gas in the presence of a parabolic trap potential [44].

0 50 100 150
N

0

0.1

0.2

0.3

Δ

U = -1.00
    = -1.80
    = -4.00

0 50 100 150
N

0.1

0.2

0.3

Δ = A  N
−α

exp(-ξ N)
Δ = G N

-γ

(a) ν = 0.10 (b) ν = 0.20

FIG. 2. Variation of � with N for different U at α = 0.20, h =
0.40, k = 3 for (a) ν = 0.10 and (b) ν = 0.20. The dashed curves
represent power-law fitting with parameters (G, γ ). In (a), (G, γ )
are extracted as (1.45,0.72) and (1.78,0.85) for U = −1.80 and U =
−4.00, respectively. In (b), (G, γ ) are extracted as (0.19,0.22) and
(0.18,0.27) for U = −1.80 and U = −4.00, respectively. The solid
curve represents an exponential fitting with parameters (A, α, ξ )
extracted for U = −1.00 in (a) as (3.07,0.94,0.001) and in (b) as
(0.31,0.28,0.001).

Similar behavior of � is found at higher filling fraction ν =
0.20 as well, as � shows exponential decay as a function of N
for U = −1.00 and shows a pure power-law decrease with N
for U = −1.80 and U = −4.00, in Fig. 2(b).

B. Local indistinguishability and robustness

To be useful for topological qubits in TQC the lowest-lying
states in gapped phases should be gapped by an exponentially
small splitting which is robust to local perturbations. This
is related to another indicator of such phases, namely, the
absence of an order parameter, or equivalently, local indis-
tinguishability of the pair of exponentially degenerate states
[2]. To determine whether the two exponentially degenerate
ground states are locally distinguishable, we study a local
operator defined as �nx = 〈n1〉x − 〈n0〉x. �nx represents the
difference in local charge density between the lowest excited
state |1〉 and the ground state |0〉, at a local position x of
the system. The averaged difference in the charge density∑N

x=1 �nx taken over the entire system, which is a global
operator, vanishes for any arbitrary N since this is a charge-
conserving system. However, we find that local measurements
at, say, x = 0.2N and 0.5N show a power-law dependence of
�nx on N (Fig. 3) for system sizes studied up to N = 120.
Power-law variation of �nx with N is observed for any other
x on the 1D wire too. This is in contrast to an exponential
decay of �nx as expected from a system with topological
order and exponential ground state degeneracy. This obser-
vation suggests that the apparent exponential degeneracy of
the number-conserving spin-orbit coupled 1D Fermi gas is
possibly different from what is expected in a topological
phase.
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FIG. 3. Log-log plot showing variation of �nx with N ; �nx

represents the difference in local charge density between the lowest
excited state |1〉 and the ground state |0〉 at a local position (x) for
U = −1.00, ν = 0.10, α = 0.20, h = 0.40, and k = 3. The power-
law fitting parameters (G, γ ) for x = 0.2N and 0.5N are (0.33,0.73)
and (0.94,0.91), respectively.

The local indistinguishability of different ground states is
intimately connected to the robustness of the exponential de-
generacy of the ground states to local perturbations. To present
this point more concretely, we consider impurity potentials at
two sites in the bulk of the system, written as

Him = Vim(nN/2 + nN/2+1). (4)

We take the values for Vim in the range of �(N ). In the
absence of any impurity, � vanishes exponentially with N at
U = −1.00. On application of Vim = 0.02 and 0.10, � now
vanishes as a power law with N , as shown in Fig. 4. This
is clearly distinct from the behavior expected from a gapped
topological phase.

C. Comparison with transverse field Ising magnet

Let us now compare the degeneracy properties of the
present system to that of a system with conventional symmetry
breaking.

We consider a comparison to the degeneracy for a
transverse field Ising antiferromagnetic chain realized with
Rydberg atoms [57]. Assuming the ordering direction is along
the z direction, the ground state of the Ising antiferromagnet
is twofold degenerate between states that have a nonzero
on-site magnetization 〈Sz

j〉 �= 0, where Sz
j is the z component

of the magnetization at site j. The degeneracy in the Ising
model is not topological but instead associated with sponta-
neous breaking of the Ising symmetry (Sz → −Sz) generated
by Sx

tot = ∑
j Sx

j . However, the symmetry breaking is qual-
itatively different from a ferromagnet in the sense that the
magnetic order varies in space 〈Sz

j〉 = (−1) jM, where M is
the amplitude of the order parameter. The two ground states
of the Ising antiferromagnet are associated with opposite signs
of M and are split by a tunneling amplitude that goes to
zero exponentially with the length of the system. Similar

FIG. 4. Semilog plot showing variation of � with N for different
Vim at U = −1.00, ν = 0.10, α = 0.20, h = 0.40, and k = 3. The
dashed curves represent power-law fitting with the parameter G =
3.17 and 2.58 for Vim = 0.02 and 0.10, respectively. The exponential
fitting parameters (A, α, ξ ) for U = −1.00 are (3.07,0.94,0.001).

to the Fermi gas, this degeneracy is not split by a uniform
symmetry-breaking Zeeman field in the z direction as long as
the Zeeman field varies slowly in space (as long as there is
an even number of spins). This is because both states have
vanishing total magnetization in the z direction. However, this
degeneracy can be seen to be nontopological from the fact that
coupling to a magnetic impurity that creates a Zeeman field on
a specific site would split the degeneracy by a finite amount.
This is analogous to the backscattering-induced splitting in the
1D Fermi gas, although the degeneracy breaking from local
impurities is stronger in this example than in the 1D Fermi gas.
Therefore, the exponential degeneracy of the ground states in
the presence of smooth potentials in the 1D spin-orbit coupled
Fermi gas with Zeeman field and attractive interactions can-
not be taken to be an indication of a topologically protected
degeneracy that can be useful in TQC.

IV. SUMMARY AND CONCLUSION

In summary, we examined the existence and robustness
of exponential ground state degeneracy in the presence of
local perturbations in a number-conserving 1D Fermi gas with
intrinsic attractive interactions, SOC, and a Zeeman field upon
application of a confining parabolic potential in an ultracold-
atom system. We found that despite the exponential ground
state degeneracy in the clean system, shown in particular by
the behavior of the pair binding energy, strictly speaking,
the spin-orbit coupled 1D Fermi gas is not in a topological
phase because it fails the crucial test of local indistinguisha-
bility. Since the exponential ground state degeneracy is not
robust against local perturbations, the number-conserving 1D
ultracold Fermi gas with attractive interaction is not truly
topological and cannot be used for TQC. Our rigorous numer-
ical verification of the theoretical proposal in Ref. [44] and the
inferences drawn therefrom will be useful both in the context
of designing TQC experiments and for understanding basic
aspects of ground state degeneracy and topological properties
in 1D interacting Fermi gas systems.
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