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Temperature drift rate for nuclear terms of the NV-center ground-state Hamiltonian
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The nitrogen-vacancy (NV) center in diamond has been found to be a powerful tool for various sensing
applications. In particular, in ensemble-based sensors, the main “workhorse” so far has been optically detected
electron resonance. Utilization of the nuclear spin has the potential to significantly improve sensitivity in
rotation and magnetic field sensors. Ensemble-based sensors consume a substantial amount of power, leading
to noticeable heating of the diamond and thus requiring an understanding of temperature-related shifts. In this
paper, we provide a detailed study of the temperature shift of the hyperfine components of the NV center.
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I. INTRODUCTION

The use of nitrogen-vacancy (NV) color centers in dia-
mond has a number of important applications in bioimaging,
sensing, and biosensing [1–6]. It also allows long-lasting
(more than 1 s) room-temperature, quantum memory [7].
Nuclear spin plays an important role in many of these ap-
plications. As an example, the long-lasting quantum memory
utilizes nuclear spin (since it could be robust against spin-
bath noise) and is very weakly modified in optical transitions
[8,9]. The storage properties of nuclear spin enhance sensor
sensitivity [10], and nuclear spin could be used as a direct
sensing element, for example, for rotation sensing [11,12]. Its
applications range from enhancing magnetic resonance imag-
ing sensitivity in nanodiamond-based, biocompatible sensors
via dynamical nuclear polarization [3,13,14] to nonvolatile
quantum memory [15] or room-temperature quantum registers
[7,8,16]. While the most impressive experimental results were
achieved with 13C nuclear spin in isotopically pure diamond,
nitrogen-related spin also has great potential for ensemble-
based measurements since it has a definite location within the
NV color center. In particular, rotation sensors benefit from
this advantage [11,12].

Sensing applications require a deep understanding of the
systematic shift of spin-related energy levels. In particular,
applications directly involving a narrow (kilohertz-range) nu-
clear spin-flipping transitions within one electronic state are
very sensitive to the exact splitting of the hyperfine struc-
ture. This is important in both estimating the systematics
of measurement output and the stable operation of sensor-
constituting blocks, e.g., for spin initialization, manipulation,
and readout [9,11,12,17]. Practical ensemble-based sensors

typically use high optical pumping powers [18,19] to obtain
a high signal-to-noise ratio, leading to considerable heating of
the diamond. Thus, if not compensated for, temperature shifts
may cause failure of the spin manipulation and a reduction
in the overall sensor stability. While the diamond temperature
could be monitored with the same NV center [20–22] using
the temperature dependence of the optically detected mag-
netic resonance (ODMR) [20,23,24], feedback on the nuclear
spin resonance requires an understanding of the temperature
dependence of the hyperfine interaction.

In this paper, we experimentally investigate a temperature
shift of nitrogen (14N)-related spin transitions in the NV color
center in diamond in the range from 305 to 350 K.

Measurement of the nuclear spin sensitivity to temperature
was performed via the detection of ODMR in an ensemble
of NV centers [2,25–27] [see Fig. 1(a) and Appendix A]. In
the presence of nitrogen nuclear spin, ODMR with a defined
electron-spin component ms = 0,±1 splits into three compo-
nents [Fig. 1(b)]. The splitting is nevertheless different in the
ground ms = 0 and excited ms = −1 states. This difference
in splitting allows one to address nuclear sublevels indepen-
dently in either the excited or ground state. Thus, if ODMR is
observed at the microwave (MW) field frequency, correspond-
ing to the particular hyperfine component, the strength of the
resonance may be modified if transitions between hyperfine
components are induced by the radio frequency (rf) field. The
maximum effect of the rf field on ODMR transitions occurs
when the rf field is exactly at resonance with rf transitions,
thus allowing measurement of the rf transition frequency by
the effect of the rf on ODMR [28].

To detect the positions of the nuclear and electron reso-
nances, we applied a pulsed sequence, illustrated in Fig. 1(c).
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FIG. 1. (a) Experimental setup for nuclear spin spectroscopy of the NV-center ensemble. A FPGA was used to control the pulse sequence.
(b) Energy levels of the ground state of an NV center. D stands for the zero-field splitting; Q, the hyperfine structure constant for splitting due
to 14N nuclear spin; and 2γesB, Zeeman splitting between electron spins. The blue solid arrows show the allowed dipole MW transitions to the
ms = ±1 manifold, and the red circular dashed lines are allowed rf transitions of the nuclear spin in the ms = ±1 manifold. (c) Pulse sequence
of the experiment.

The main cycle of the sequence is similar to the nuclear
recursive polarization sequence [9,17,28]. The NV center was
first optically polarized with a green optical laser in an ms = 0
manifold in the ground state and then transferred into an ms =
±1 manifold using the selective MW π pulse [see Fig. 1(c)].
Then, the selective rf pulse was applied (see Appendix B),
which, if resonant, mixes hyperfine levels of the selected mag-
netic manifold. The rf pulse was followed by an optical pulse
that returned most of the population to the ms = 0 manifold.
This resulted in the hyperpolarization of 14N nuclear spin.
Another selective microwave π -pulse and optical detection
resulted in the observation of the nuclear spin population at
a state corresponding to the MW pulse frequency. Thus, when
the rf field was resonant with the nuclear spin transition, the
contrast was suppressed, indicating that the population was
transferred out of that state.

To scan all nuclear transitions in the ms = ±1 manifolds,
the MW frequency was scanned within two bands near fre-
quencies of 2837 and 2902 MHz, and the rf was swept in two
bands near 2.8 and 7.1 MHz. To allow nuclear populations to
thermalize, the MW frequency scan loop was nested in the
rf scan loop (for more details, see Appendix C). The fluores-
cence of the NV center, detected in all four combinations of
MW frequencies and rfs, is depicted in Fig. 2(a).

The electron transition frequencies were found by fitting
the fluorescence spectrum along the MW axis with the sum
of three Lorentzian curves [Fig 2(c)]. For this purpose, each
spectrum was averaged over 100 realizations of fluorescence
spectra along the MW frequency axis taken at an rf far from
the nuclear transition frequency (>15-kHz detuning). Once
the positions of the resonances in the MW spectra were

determined, the spectra obtained at all other rfs were fitted
with only amplitudes of the resonances being free param-
eters. Thus, the hyperfine peak amplitude was determined.
Figure 2(c) illustrates the amplitude of the peak, correspond-
ing to mi = 0 against the rf (for details, see Appendix D). The
resulting curve, representing hyperfine transition resonance,
was fitted with a single Lorentzian curve, the center of which
was used as the position of the nuclear resonance for a given
temperature.

To understand the contributions to the temperature-
dependent shift of the observed nuclear resonance from
different types of interactions, we consider the optical ground-
state interaction Hamiltonian H for the nuclear spin in the NV
center [29]:

H = h
(
QI2

z + SzA‖Iz + γnBzIz
)
. (1)

Here, Q is quadrupolar zero-field splitting for nuclear spin,
Iz is nuclear spin projection on the z axis, Sz is electron spin
projection on the z axis, A‖ is longitudinal tensor component
of the electron-nucleus spin-spin interaction, γn is nuclear
spin gyromagnetic ratio, and Bz is external magnetic field.
Here, we excluded off-diagonal terms in the Hamiltonian
and calculated the second-order corrections separately (see
Appendix E). Since the electronic spin in the ground state
is 0, the nuclear state splitting in the ground state is inde-
pendent of A‖. By contrast, in the excited state, both A‖ and
Q contribute to the transition. For magnetic sublevels, ms =
−1,+1 allowed nuclear transitions from mi = 0 (�mi = ±1)
are at the frequencies f n±

e− = |Q ± γnBz ∓ A‖| and f n±
e+ =

|Q ± γnBz ± A‖| [Fig. 3(a)]. Here, the upper index describes
the magnetic manifold, and the lower index ± corresponds
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FIG. 2. (a) Two-dimensional (2D) scan of the rf and MW resonances. The light-blue rectangles show the data slice for panel (b), and the
green rectangle shows the area discussed in (b) and (c). (b) Average of the cross sections in the 2D plot in panel (a), corresponding to the MW
resonances not affected by the rf. The solid line corresponds to the fit with three Lorentzian curves. (c) Hyperfine component amplitude vs
RF. The microwave frequency for this plot was fixed at the value indicated by the green dot in (b) (see text for more details). The solid line
corresponds to the Lorentzian fit.

to nuclear transitions |mi = 0〉 → |mi = ±1〉. Knowing that
Q < A‖ < 0 [29] for low Bz, we can expand the equations for
f n±
e− , f n±

e+ t:

f n±
e− = |Q| ∓ |A‖| ∓ γnBz f n±

e+ = |Q| ± |A‖| ∓ γnBz. (2)

To deduce Q, A‖ from the rf resonance positions
and neglect the Zeeman term, we use the following
equations:

Q = − f n−
e− + f n+

e− + f n−
e+ + f n+

e+
4

(3)

A‖ = −
(

f n−
e− − f n+

e−
) − (

f n−
e+ − f n+

e+
)

4
(4)

(b)(a)
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FIG. 3. (a) Schematic representation of the level structure shift due to temperature. (b) Shift of the NV hyperfine transition lines, with the
color coding matching that in (a).
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(a) (b)

FIG. 4. (a) Dependence of electronic change in zero-field splitting (ZFS) on the temperature (with respect to 2800 MHz). (b) Dependence
of the Q, A‖ change on the temperature of the diamond. Clearly, a linear dependence is observed. Changes are depicted with respect to the
−4946.0-kHz and −2159.6-kHz rfs.

To vary the temperature, a Peltier element is used with PI
feedback from a digital thermometer (DS18B20) installed in
the proximity of the diamond. The temperature is gradually
changed in the range from 305 to 350 K. To exclude tempera-
ture measurement biasing due to the thermal junction between
the diamond and thermometer, optical power dissipation and
rf heating, we use the same ensemble of NV centers as that
of the temperature sensor using the positions of ODMR lines
from the MW scan. It is well known that zero-field splitting of
the electron spin D changes with temperature [20,21], provid-
ing a means to implement a NV-based thermometer. However,
because the temperature dependence of D varies between dia-
mond samples, we also calibrate D against temperature for the
sample used in the experiment [see Fig. 4(a) and Appendix F
for more details].

Figure 3(b) presents the temperature dependence of the
nuclear resonance position, determined as discussed above.
With the help of Eqs. (3) and (4), the values of Q(T )
and A‖(T ) are extracted for each temperature, as shown in
Fig. 4(b). The relative temperature shift can be found by
a linear fit of each curve, thus allowing us to find dQ

dT =
40(2) Hz/K and dA‖

dT = 198(11) Hz/K. For error analysis, see
Appendix E. We note that one can also deduce the temperature
calibration independent values in our range of temperatures,
dA‖
dD = −2.555(7) × 10−3 and dQ

dD = −5.03(5) × 10−4, which
relate the shift of the electron and nuclear spin with the tem-
perature.

The hyperfine term A‖ can be expressed as follows [29]:

A‖ = fA + 2aA1 ,

where fA is the Fermi contact term and aA is a dipole-dipole
nuclear-electron interaction, which were estimated as −h ·
2.5 MHz and h · 187 kHz, respectively [29], with h standing
for the Plank constant. Thus, fA is the dominant term in
hyperfine coupling. The expression for fA is

fA = γelγn
μ0

4π h̄2

∣∣ψel
@n

∣∣2
,

where γel and γn are the nuclear and electron gyromag-
netic ratios, respectively, and |ψel

@n| = 〈e|δ(r − rN )|e〉 is the
electron-spin density at the 14N nuclear site. We note that it
was speculated that the dependence of spin density on dis-
tance is exponential [30,31] Hence, the dependence of A‖ on

temperature is as follows:

dA‖
dT

= dA‖
dr

dR

dT
= A‖

r0

dR

dT
,

where R is the distance between nitrogen and the nearest
carbon atom and is equal to 0.252 nm, r0 is the decay con-
stant of the electron spin density, and dR/dT is equal to
−2.52(2) × 10−5K−1 [20]. Taking r0 as 0.3 nm (character-
istic length of the diamond lattice), we obtained dA‖

dT � −
211 Hz/K, which is within 10% of our experimental result.
The remaining discrepancy could be due to the dipole-dipole
interaction and thus requires further investigation.

We note that the quadrupole shift is an order of magnitude
lower than the hyperfine interaction term. The quadrupole
shift is likely due to the change in the electric-field gradient
seen by the nuclear spin with expansion of the sample [32].
However, to our knowledge, the fraction of p orbitals into the
nuclear spin site is low [32], which might be the reason for the
low sensitivity to temperature.

The temperature-dependent shift in the 14N nuclear spin
associated with the hyperfine splitting of the NV center
was experimentally measured. The shift of approximately
200 Hz/K turns out to be quite noticeable and must be taken
into account in sensors utilizing nuclear spin, such as gy-
roscopes or magnetic field sensors. The major part of the
shift comes from the hyperfine constant contribution dA‖

dT =
198(11) Hz/K and is well described by the Fermi contact
term drift, while the quadrupole moment contribution ∂Q

∂T =
40(2) Hz/K is an order of magnitude less sensitive to temper-
ature.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Experiment with permanent magnet

Our experimental setup allows for controlling a spin en-
semble in bulk diamond at room temperature [see Fig. 1(a)].
For a light source, we used a 520-nm laser light with 100 mW
of power, generated by a WSLD-520-001-K laser diode from
Wave Spectrum. The laser diode was driven by a diode home-
built driver, which stabilizes the output power when the laser
is on and allows 100% on-off modulation of the output power
with a <5-µs rise/fall time. Laser light was focused onto spots
with widths on the 1/e level of 6 × 11μm. As the sample
for our research, we used a diamond plate polished perpen-
dicular to the 111 crystallographic axis (Velman LLC) with
approximately 14 ppm of NV centers. The fluorescence of
the NV centers was collected with a parabolic concentrator
(Edmund Optics). A constant magnetic field was formed by a
permanent magnet on a rotation-translation mount. Alignment
of the field was checked by matching three residual orientation
frequencies. To exclude the effects of the temperature depen-
dence of the magnetic field due to permanent magnet heat-up,
an additional experiment with Helmholtz coils was performed
(see below).

The MW field was formed by an antenna composed of
two, 4 mm-diameter coaxial loops made out of 1-mm cop-
per wire and separated by 4 mm with a diamond sample in
between. These loops were terminated with parallel copper
plates that formed a capacitor. This assembly forms an LC
resonator, the resonance frequency of which can be tuned
to the desired frequency of the NV-center ODMR transition.
In our experiments, the resonator was excited by a weakly
inductively coupled feed loop. A Stanford Research signal
generator SG384 was the source of the MW signal and
was quadrature modulated by a dual-channel direct digital
synthesizer (DDS) signal and then amplified using a Minicir-
cuits ZHL-16W-43X+ amplifier. The dual-channel DDS was
implemented by a 100 megasample per second dual digital-to-
analog converter, driven by a field-programmable gate array
(FPGA). The antenna was fed through the circulator to avoid
back reflections. The same construction, i.e., a single-channel
100 megasample per second DDS, was the source for the
rf signal. The signal was amplified with a 30-W VectaWave
VBA100-30 amplifier. The amplifier was directly connected
to the antenna, which was formed by 2 × 10 loops of 0.2-mm
copper wire. The MW Rabi frequency was set such that the
pi pulse has a length of 700 ns with a 20-dBm output power.
The rf amplifier power was adjusted to set the π pulse length
at both frequencies.

Thermal contact from the Peltier element to the diamond
sample was provided by a sapphire cylinder to avoid DC
magnetic field disturbance and interference with microwave
and radio-frequency fields.

2. Experiment with Helmholtz coils

To exclude the effect of the temperature influence on the
magnetic field source, we carried out an additional experiment
with Helmholtz coils and provided the final data in Fig. 5,
showing that a change in the magnetic source type does not

FIG. 5. Temperature dependence of the hyperfine constants ob-
tained with Helmholtz coils used as the source of the magnetic field.

influence the experimental results. In this experiment, we
found that dA‖

dT = 204(11) Hz/K and dQ
dD = 39(2) Hz/K.

APPENDIX B: RABI OSCILLATIONS
FOR NUCLEAR TRANSITIONS

To adjust the radio-frequency pulse times, we measured
the nuclear Rabi oscillations on the ms = −1 manifold by
using the experimental sequence in Fig. 1(c) of the main
text for a single data point. We fixed the rf to either f n+

e−
or f n−

e− and the MW frequency to the |ms = 0, mi = 0〉 ↔
|ms = −1, mi = 0〉 transition. The rf pulse time was varied
from 0 to 2 ms, resulting in a Rabi oscillation signal. To
remove the offset due to electronic spin decay, the Rabi exper-
iment was repeated with the rf pulse disabled. The resulting
data were subtracted from the Rabi oscillation signal, provid-
ing us with the data depicted in Fig. 6. The radio-frequency
field amplitude for both nuclear transitions was adjusted to
have a Rabi frequency close to 1.9 kHz, corresponding to a
π -pulse duration of 263 µs.
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FIG. 6. Adjusted nuclear Rabi oscillations. The blue line cor-
responds to f n+

e− = 2.79 MHz, and the yellow line corresponds to
f n−
e− = 7.11 MHz (the offset of 0.0002 was added for clarity).
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FIG. 7. Loop diagram of the experiment.

APPENDIX C: CYCLOGRAM OF THE MEASUREMENTS

To scan the temperature shifts of hyperfine constants, the
algorithm described in Fig. 7 was utilized. There are four
nested loops (see Fig. 7). The outermost loop (labeled “T,”
Fig. 7) represents the temperature sweep. The repeat loop
(labeled “N times,” Fig. 7) is nested inside the temperature
sweep to repeat the resonance scan at a certain temperature.
Typically, the number of repetitions is ten. To implement
the resonance scan (as shown in Fig. 2), we scan the MW
frequency (loop labeled “FMW,” Fig. 7) for each rf (loop la-
beled “Frf ”, Fig. 7) and run the measurement (labeled “single
measurement,” Fig. 7) according to the sequence depicted in
Fig. 1(c).

APPENDIX D: FITTING PROCEDURE FOR THE RESULTS
OF A SINGLE MW/RF SCAN

The ODMR signal depicted in Figure 2 contains three res-
onances, corresponding to three hyperfine components. The
amplitude of each resonance is linearly linked to the corre-
sponding nuclear sublevel population. The shape was fitted
with a function L( f ):

L( f ) =
3∑

i=1

Ai
� f

2

( f − fi )
2 + � f

2
, (D1)

where Ai, fi, and � f are fitting parameters (the amplitude,
central frequency, and half width, respectively). The am-
plitude coefficient Ai thus provides information on nuclear
populations, and fi, on the electronic transition, correspond-
ing to a specific nuclear state frequency. For ODMR slices
with near-resonant nuclear rf π pulses, the independent fitting
procedure is not stable due to the small amplitudes of some
of the peaks. Therefore, the procedure described in the main
text was implemented. The electronic resonant frequency was

recovered by averaging the stable fitting parameters of ODMR
lines far from the rf resonance, 100 points at the beginning and
end of the rf range [marked in blue in Fig. 2(a)].

APPENDIX E: ERROR ESTIMATION

We split all error sources into four groups, as discussed
below.

1. Error estimation from fitting the A vs D and Q vs D

The error of the fitted data is taken from the fit estimated
covariance matrix, obtained from the function curve_fit of the
SCIPY.OPTIMIZE package (Virtanen et al., 2020) with source
data errors from the fit residuals.

The uncertainty of the electron resonance frequency for a
single point has a mean error across all datasets of δF±1 ≈
0.8 kHz, leading to an error of D estimation δD = δF+1+δF−1

2 =
δF±1. However, because a single measurement is long last-
ing, the temperature change will induce an additional error
of approximately δDT

m = 8 kHz , which was estimated as the
difference in the D value between the start and end of a single
measurement. We assume the latter to be the dominant source
of error in the D estimation, thus leading to δD = 8 kHz. Be-
cause the least-squares fitting procedure uses the error of the
dependent data, we transform δD into δA‖ = δD dA‖

dD ≈ 20 Hz

and δQ = δD dQ
dD ≈ 4 Hz. The values for dA‖

dD and dQ
dD are taken

from the fit.
The uncertainty for nuclear resonance frequencies f n±

e± is
on the order of δ f n±

e± = 100 Hz (ranging from 63 to 300 Hz)
for all datasets, dominating the error induced by the δD un-
certainty. According to formulas (3) and (4), the random error
for dependent variables is δA‖ = δQ = δ f n±

e± .

We note that the fit residuals for dA‖
dD and dQ

dD give estimation
errors for A‖ and Q of approximately 50 Hz (ranging from 30
to 80 Hz), being less than a lesser error of the fit to a complex
shape of the rf resonance that cannot be fitted well with a
single Lorentzian.

2. Error estimation from grouping the data into series

For statistical error estimation, we randomly split each set
of data {D(i), A(i)

‖ , Q(i)} into four equal groups {{ik}} and fit the
data in each group to obtain

αk = dA‖
dD

|{D(ik ),A
(ik )
‖ }

βk = dQ

dD
|{D(ik ),Q(ik )}. (E1)

As the final values, we use α = αk , β = βk , with errors

δα =
√∑

k (ak−αk )2

3 and δβ =
√∑

k (βk−βk )
2

3 .
We use this estimation for four spots of the same diamond

plate:
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Spot Group, k α β

1 1 −2.544(4)×10−3 −5.04(3)×10−4

2 −2.548(5)×10−3 −5.00(3)×10−4

3 −2.548(5)×10−3 −5.03(3)×10−4

4 −2.545(4)×10−3 −5.01(3)×10−4

All −2.546(2)×10−3 −5.02(1)×10−4

All fitted −2.546(2)×10−3 −5.02(1)×10−4

2 1 −2.554(5)×10−3 −4.99(5)×10−4

2 −2.558(7)×10−3 −5.07(6)×10−4

3 −2.572(6)×10−3 −5.01(6)×10−4

4 −2.574(7)×10−3 −5.02(6)×10−4

All −2.564(9)×10−3 −5.02(3)×10−4

All fitted −2.565(3)×10−3 −5.02(3)×10−4

5 1 −2.550(4)×10−3 −5.10(3)×10−4

2 −2.551(3)×10−3 −5.09(2)×10−4

3 −2.554(3)×10−3 −5.10(2)×10−4

4 −2.555(3)×10−3 −5.13(3)×10−4

All −2.553(2)×10−3 −5.11(1)×10−4

All fitted −2.553(2)×10−3 −5.11(2)×10−4

4 1 −2.556(6)×10−3 −4.97(5)×10−4

2 −2.560(6)×10−3 −4.99(4)×10−4

3 −2.556(6)×10−3 −4.92(5)×10−4

4 −2.548(5)×10−3 −4.98(5)×10−4

All −2.555(4)×10−3 −4.97(3)×10−4

All fitted −2.555(3)×10−3 −4.97(2)×10−4

Average −2.555(7)×10−3 −5.03(5)×10−4

where “All” refers to the values obtained from averaging by
group and “All fitted” means the fit for all data, not just the
data of one group.

We note that the error of each group value (estimated as
a covariance from the least square fit for the group data) is
approximately the same as the statistical standard deviation
for all groups. The error in the value obtained from the fit
over all data groups is approximately

√
Ngroup = 2 lower than

the error of each subgroup, which is in compliance with the
standard error of the mean scaling.

After fitting all the data, we averaged the obtained values
and set the standard deviations of the values as the errors of
determination for the final α and β values.

3. Perturbation theory corrections

Consider the full Hamiltonian for the NV center:

H = DS2
z + γeBS + QI2

z + γnBI

+ A‖SzIz + A⊥(SxIx + IxSx ) . (E2)

We split the Hamiltonian into diagonal term H (0) and non-
diagonal part V according to the formulas

H (0) = DS2
z + γeBzSz + γnBzIz + A‖SzIz, (E3)

V = γeBxSx + γnBxIx + A⊥(SxIx + IxSx ). (E4)

According to second-order perturbation theory, second-
order corrections to the eigenvalues of H (0) are calculated:

δEms,mi =
∑

i �=ms, j �=mi

|i, j|V |ms, mi|2
E (0)

ms,mi − E (0)
i, j

. (E5)

For the transition frequencies mentioned in the article, the
following corrections are made:

From the equations obtained by using Eqs. (3) and (4)
of the main text, we obtain the corrections for the Q, A‖
estimations:

δQ∗ = − A2
⊥( D − Q)

(D − Q)2 − (Bzγe − Bzγn)2

+ 1

2

A2
⊥(− A‖ + D + Q)

− (Bzγe − Bzγn)2 + (− A‖ + D + Q)2

− 1

2

B2
xD γ 2

e

− B2
z γ

2
e + D2

+ 3

4

B2
xQ γ 2

n

Q2 − (A‖ + Bzγn)2

+ 3

4

B2
xQ γ 2

n

Q2 − (A‖ − Bzγn)2

+ 1

4

B2
xγ

2
e (− A‖ + D)

− B2
z γ

2
e + (− A‖ + D)2

+ 1

4

B2
xγ

2
e ( A‖ + D)

− B2
z γ

2
e + (A‖ + D)2 , (E6)
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Frequency Frequency correction term Value

f n−
e− δE−1,0 − δE−1,−1

A2
⊥

− Bzγe+ Bzγn+ D − Q − B2
x Q γ 2

n
Q2− (− A‖+ Bzγn )2 −

− 1
2

B2
x γ 2

e
A‖− Bzγe+ D + 1

2
B2

x γ 2
e

− Bzγe+ D + 1
2

B2
x γ 2

n
− A‖+ Bzγn− Q

f n+
e− δE−1,0 − δE−1,+1

− A2
⊥

− A‖− Bzγe+ Bzγn+ D + Q + A2
⊥

− Bzγe+ Bzγn+ D − Q −
− 1

2
B2

x γ 2
e

− A‖− Bzγe+ D + 1
2

B2
x γ 2

e
− Bzγe+ D +

+ B2
x γ 2

n
A‖− Bzγn− Q + 1

2
B2

x γ 2
n

− A‖+ Bzγn− Q

f n−
e+ δE+1,0 − δE+1,−1

− A2
⊥

− A‖+ Bzγe− Bzγn+ D + Q + A2
⊥

Bzγe− Bzγn+ D − Q −
− 1

2
B2

x γ 2
e

− A‖+ Bzγe+ D + 1
2

B2
x γ 2

e
Bzγe+ D + B2

x γ 2
n

A‖+ Bzγn− Q +
+ 1

2
B2

x γ 2
n

− A‖− Bzγn− Q

f n+
e+ δE+1,0 − δE+1,+1

A2
⊥

Bzγe− Bzγn+ D − Q − B2
x Q γ 2

n
Q2− (− A‖− Bzγn )2 − 1

2
B2

x γ 2
e

A‖+ Bzγe+ D

+ 1
2

B2
x γ 2

e
Bzγe+ D + 1

2
B2

x γ 2
n

− A‖− Bzγn− Q

δA∗
‖ − 0.25 A2

⊥(− 2.0 A‖ + 2.0 D + 2.0 Q)

− (Bzγe − Bzγn)2 + (− A‖ + D + Q)2

− 0.125 B2
xγ

2
e (− 2.0 A‖ + 2.0 D)

− B2
z γ

2
e + (− A‖ + D)2

+ 0.125 B2
xγ

2
e (2.0 A‖ + 2.0 D)

− B2
z γ

2
e + (A‖ + D)2

− 0.125 B2
xγ

2
n (− 2.0 A‖ + 2.0 Q)

− B2
z γ

2
n + (A‖ − Q)2

+ 0.125 B2
xγ

2
n (2.0 A‖ + 2.0 Q)

− B2
z γ

2
n + (− A‖ − Q)2 , (E7)

δQ∗ = −1.73 × 10−10A2
⊥ − 0.0344B2

x , (E8)

δA∗
‖ = −1.74 × 10−10A2

⊥ − 1.03B2
x . (E9)

According to the data fit of the optically detected magnetic
resonance (Fig. 8) transverse to the 111 orientation magnetic
field Bx = 1.3 G, the errors of the temperature dependences
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FIG. 8. Optically detected magnetic resonance for Bx estimation.

α′ = dA‖
dT and β ′ = dQ

dT due to the temperature dependence of
dA⊥
dT , dBx

dT is∣∣δ(V )
α′

∣∣< ∣∣∣ 1.73 × 10−10 × 2A⊥
dA⊥
dT

∣∣∣+∣∣∣ 0.034 × 2 Bx
dBx

dT

∣∣∣,
(E10)

∣∣δ(V )
β ′

∣∣ <

∣∣∣ 1.74 × 10−10 × 2A⊥
dA⊥
dT

∣∣∣ +
∣∣∣ 1.03 × 2 Bx

dBx

dT

∣∣∣.
(E11)

During the experiment, Bz—the magnetic field
change—was within �Bz = 0.05 G in the temperature
range of �T = 60 K. From the ODMR fit, the transverse
Bx field was estimated to be 1.3 G (Fig. 8). Supposing that
the relative change in Bx and Bz is the same, the maximum
estimation for | dBx

dT | = Bx
Bz

�Bz

�T = 1.3
11

0.05
60 = 10−4 G

K . Supposing

that dA⊥
dT is of the same order as dA‖

dT = −200 Hz
K and using

A⊥ = −2.7 MHz finally lead to the following error:∣∣δ(V )
α

∣∣ ≈ ∣∣δ(V )
β

∣∣ ≈ 0.2
Hz

K
. (E12)

Here, the dA⊥
dT -induced term is at least 3 orders of magni-

tude higher than the Bx-induced term. Thus, the transverse
field could vary in a broader range with a negligible impact
on the error, and its absolute value of 1.3 G is not a precision-
limiting factor.

4. Errors of temperature calibration

The error of the temperature calibration D(T ) includes the
following errors: temperature sensor error δTsensor, tempera-
ture offset error δToffset, and fitting random error. δTsensor =
0.5 K for the DS18B20 temperature sensor utilized in the
experiment. The uncertainty due to the sensor for κ = dD

dT is

δκsensor = |κ| δTsensor

Tmax − Tmin
= 77.7

0.5

330 − 305
= 1.6

kHz

K
.

(E13)
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FIG. 9. Setup for electron-spin ZFS calibration.

To estimate the temperature offset error, we note that in
the case of thermal equilibrium, the offset between the envi-
ronmental temperature and the heated spot temperature with
a constant heat source and the same thermal constant rela-
tive to the environment will be constant. Thus, although the
absolute temperature might change with the optical power
delivered to the sample, the derivative of the temperature of
the environment will be the same. To further prove this, we
record the temperature as a function of the laser power and
observe minor changes in the temperature on the order of
δToffset = 1.2◦ per 100 mW of laser power, which we consider
as a systematic error in our measurement. To account for
this, we consider the calibration of κ to be with systematic
uncertainty

δκoffset = |κ| δToffset

Tmax − Tmin
= 77.7

1.2

330 − 305
= 3.7

kHz

K
.

(E14)

δκrandom = 1.3 kHz
K is obtained from the fitting procedure.

The final uncertainty for κ is

δκ =
√

δκ2
sensor + δκ2

offset + δκ2
random = 4.2

kHz

K
. (E15)

5. Error estimation for temperature dependence

For the final temperature coefficients of α′ = dA‖
dT = dA‖

dD
dD
dT

and β ′ = dQ
dT = dQ

dD
dD
dT , we estimate the relative uncertainty:

′
U

α′
=

√√√√(
δ

(V )
α′

α′

)2

+
(

δ
(random)
α

α

)2

+
(δκ

κ

)2

, (E16)

′
U

β ′
=

√√√√(
δ

(V )
β ′

β ′

)2

+
(

δ
(random)
β

β

)2

+
(δκ

κ

)2

. (E17)

The final relative uncertainty is ′
U

α′
= 5.5%, ′

U
β ′

= 5.6%.

The final values are dA‖
dT = 200(10) Hz

K and dQ
dT = 39(2) Hz

K .

APPENDIX F: CALIBRATION OF ZERO-FIELD
SPLITTING AGAINST TEMPERATURE

A water-filled thermostat (Ultra-Thermostat Type U 10)
was used with diamond, a microwave antenna and a photo-
diode submerged in water (Fig. 9). For optical pumping, we
used a 532-nm laser (Laser Quantum Finesse Pure 12 W)
with 100 mW of power coupled to a single-mode optical fiber.
The free end of the fiber was attached to the diamond. The
temperature of the water inside the thermostat was controlled
with a PI controller and sampled by a digital thermometer
(DS18B20) placed in the proximity of the diamond. Fluores-
cence collection was performed with a compound parabolic
concentrator with a considerably reduced collection efficiency
in water due to the higher refractive index. Because no op-
tical low-pass filter was utilized, the fluorescence contrast
was greatly reduced; however, the signal-to-noise ratio was
decent. The photodetector used was PDB-C609-2, placed with
a transimpedance amplifier on an inch-diameter PCB. To
protect electronics and photodiodes from water damage, the
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FIG. 10. Pulsed ODMR scans with sweeping of the temperature.
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photodetector was sealed with UV adhesive. A bias magnetic
field was applied with a permanent magnet. A small copper
coil attached to a coaxial wire was utilized as a microwave
antenna.

The temperature was swept from 305 to 336 K with a
2.5 K step, with pauses of 20 min to wait for thermaliza-
tion at each temperature point and running of the pulsed
ODMR measurement for 15 min with simultaneous control
of the temperature. As a result, a set of ODMR data was
obtained (Fig. 10). To define D, the data were fitted with four
pairs of triplet resonance lines [see Eq. (D1)]. From the left-
most and rightmost resonance positions f−1, f+1, zero-field

splitting was calculated as

D = f−1 + f+1

2
, (F1)

resulting in Fig. 4(a). Because the permanent magnet was
in close proximity to the thermostat, the magnetic field was
reduced from 14.9 to 14.5 G while being heated up and was
defined from the NV-center Zeeman splitting between ms =
±1 levels by using the formula B = f+1− f−1

2γe
, where γe =

28 GHz/T stands for the electron-spin gyromagnetic ratio.
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