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Effective momentum-momentum coupling in a correlated electronic system
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We present a way to partly reincorporate the effects of the localized bonding electrons on the dynamics of
their itinerant counterparts in Hubbard-like Hamiltonians. This is done by relaxing the constraint that the former
should be entirely frozen in the chemical bonds between the underlying lattice sites through the employment of
a Born-Oppenheimer-like ansatz for the wave function of the whole electronic system. Accordingly, the latter
includes itinerant as well as bonding electron coordinates. Going beyond the adiabatic approximation, we show
that the net effect of virtual transitions of bonding electrons between their ground and excited states is to furnish
the itinerant electrons with an effective interelectronic momentum-momentum interaction. Although we have
applied these ideas to the specific case of rings, our assumptions can be generalized to higher-dimensional
systems sharing the required properties of which we have made use herein.
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I. INTRODUCTION

The existence of strongly interacting many-body systems is
the general rule rather than an exception. Everything we know
of is composed of many interacting parts, and the realization
that the strength of the interaction between these parts may
vary within a vast range allows the separation of length,
time, and energy scales. Such scale separation often helps to
establish criteria by which the dynamics of the systems are
greatly simplified. This does not mean that their study can be
reduced to triviality, but rather creates a hierarchy of different
levels of complexity, even having neglected a huge number of
physical effects which play a minor role with respect to our
aforementioned criteria.

There is a plethora of examples following this modeling
scheme, but let us restrict ourselves to a few of those which
deal with electronic systems. The reason behind this choice
is twofold: first, the unquestionable relevance of electrons for
the understanding of atomic and molecular structure, chemical
reactions, electric and magnetic properties of solids, or, more
generally, condensed matter systems, and the challenging
physics of nano- and mesoscopic devices; second, electrons
under some specific conditions are the entities we shall be
addressing in this work.

If we focus on the low-energy physics of a many-electron
system, we know that the Coulomb interaction is all there
is. Electron-electron, ion-ion, or electron-ion interactions can
all ultimately be described by Coulomb forces. Relativistic
corrections include spin-orbit, spin-spin (magnetic dipole),
and current-current (Breit-Darwin) interactions [1–3]. All of
them are of electromagnetic origin and have their impor-
tance dictated by the band structure, surface effects, and/or
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many other specific constraints to which the system under
investigation might be subject. So, in principle, there is no
secret about the basic interactions underlying a many-electron
system. Nevertheless, even with the advent of very fast and
powerful computers, a full understanding of these systems is
known to be absolutely out of reach. To make use of these
computational resources to get information about the system,
one still has to appeal to a set of ingenious numerical or
simulation methods.

The computational approach to the approximate descrip-
tion of many-electron systems is undeniably of fundamental
importance. Still, it becomes particularly more useful when
complemented with some input from simpler models from
which more physical insight can be extracted. These models
are the simplified versions of the realistic situations we have
mentioned above, and they are meant to capture the relevant
physics of the electronic system under consideration. It must
be emphasized that, even for these simplified models, exact
solutions are only rarely accessible.

A successful example is Landau’s Fermi liquid theory [4],
which replaces strongly interacting neutral fermions (liquid
3He, for example) with weakly coupled fermionic quasipar-
ticles with renormalized properties. Importantly, the Fermi
liquid theory was also extended to treat charged fermions [5],
and became a paradigm for the theory of interacting electrons
in metals. Although this theory was initially proposed only on
phenomenological grounds, Landau himself [6] put forward
a more microscopic justification for his own model. The
Fermi liquid theory, together with the collective description of
interactions in an electron gas, constitutes the basic approach
for the theory of many-electron systems.

Other examples involve metallic crystals, which can be
modeled in two particularly simple ways [7]: the nearly free
electron and the tight-binding models. In both cases, the elec-
trons are considered independent (except for their fermionic
statistics). This hypothesis is supported by the strong screen-
ing effects, which drastically reduce the Coulomb interaction
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between them, and is particularly important for very dense
electronic systems. In more dilute systems, the effect of the
undressed Coulomb interaction is more pronounced. Impor-
tantly, interactions in metallic crystals can be accounted for
either by the Hartree-Fock method [7,8], in the weakly bound
case, or by the Hubbard model [9] in the tight-binding case.

In both the nearly free electron model and the tight-
binding model, the lattice potential is considered static, which
is enough to have a good approximate description of the
electronic band structure of the system. However, to study
transport phenomena [10,11], imperfections in the periodic
lattice and/or its own dynamics matter for the calculation of
response functions such as the electric conductivity. Besides,
lattice dynamical fluctuations are known to mediate an effec-
tive interelectronic attractive interaction, which might result
in the formation of Cooper pairs [12], the leading charge
carriers in the theory of superconductivity [13]. Effective
interelectronic interactions are quite common in condensed
matter systems and may be mediated by different excitations
or components of the medium [14].

In this work, we shall discuss the appearance of an effective
interelectronic interaction mediated by the electrons them-
selves. We argue that there is a natural separation between
the energy scales of the bonding and the itinerant electrons.
Relaxing the often assumed condition that the bonding elec-
trons are frozen in the bonds, we explicitly show that their
virtual excitations induce a momentum-momentum coupling
between the itinerant electrons. Although we develop our
model for some specific systems, namely small rings, we
argue that the physical reasoning that led us to the finding
reported here can be extended to many other systems.

This paper is organized as follows: In Sec. II, to set the
notation we use throughout the paper, as well as to make it
self-contained, we briefly discuss the essential features of the
standard single-band Hubbard model accounting solely for
the degrees of freedom of the itinerant electrons. In Sec. III,
we relax the constraint that the bonding electrons must be
frozen in the chemical bonds, and argue that an appropriate
way to cope with the resulting physics involves going beyond
the well-known Born-Oppenheimer approximation to treat the
coupling between itinerant and bonding electrons. This proce-
dure is shown to generate an effective momentum-momentum
coupling between the itinerant electrons. The derivation of
such effective interaction in first and second quantization is
shown in Appendix A and Sec. III B, respectively. Interme-
diate steps crucial for the derivation of the expressions of
the main text are presented in Appendices B and C. We
summarize our results in Sec. IV.

II. ONE-DIMENSIONAL HUBBARD RINGS

We study electrons in small discrete rings, i.e., electrons in
1D lattices with periodic boundary conditions when they have
a finite and small number of sites. We denote by N the number
of sites of the ring and a its lattice spacing so that the ring
length is L = Na. These discrete rings are sometimes called
Hubbard rings [15] if their electronic degrees of freedom are
modeled by the Hubbard model [9] or some extension thereof,
as is the case in this work. In the limit N → ∞, a → 0,
but finite L, there are many different approaches to describe

(a)

(b)

FIG. 1. Orbital structure of the rings we consider in this work.
Here, we illustrate a ring with six sites, which consists of a pro-
totype of the benzene molecule. (a) Single-band model considered
in Sec. II A, with one pz orbital per site. In this case, only the
degrees of freedom of the π electrons are taken into account. The
bonding σ electrons are frozen and incorporated into the ring’s sites,
as illustrated in the inset, and they only contribute by generating the
static crystal potential. (b) Three-band model, with one pz orbital
and two sp2 orbitals, which we denominate the left sp2 orbital (L)
and right sp2 orbital (R) according to the right-hand rule. As shown
in the inset of panel (b), the degrees of freedom of the third sp2

orbital of each site, as well as those of the valence orbitals of
another atom that might bind to it (hydrogen atom, in the case of a
benzene molecule), are frozen and incorporated to the ring’s sites.
The ring’s sites are always enumerated in ascending order in the
counterclockwise direction.

either approximate [16] or even exact solutions [17] for the
electronic problem, whereas for finite but small N , exact diag-
onalization is always an accessible way out of this problem.

The Hubbard model considers, on top of the on-site re-
pulsion between itinerant electrons, their interaction with
the effective lattice potential composed by the lattice ionic
potential together with the one created by the assumed frozen
cloud of bonding electrons. Our goal here is to analyze the role
played by some of the latter in this specific electronic problem.
We revisit some of the essential steps taken when obtaining
the Hubbard model and establish the conditions under which
they will dynamically affect the model, and modify its original
form.

Although we can try to make our arguments as general
as possible, it is more instructive to work with a specific
case where our ideas can be more clearly stated. Therefore,
we consider our ring as a closed chain of atoms that are
held together by electrons in covalent bonds, as illustrated
in Fig. 1. For example, if we think of each site as a carbon
atom, we can interpret them as prototypes of real aromatic
molecules such as benzene if one hydrogen atom is attached
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to each carbon atom—see insets of Figs. 1(a) and 1(b)—or the
recently synthesized cyclo[18]carbon [18]. In doing so, we
are automatically pointing to a family of systems where our
results can be tested. However, contrary to real-life molecules,
we impose that the sites are always static. That is because, in
this work, we focus solely on the orbital electronic properties
and, thus, we do not investigate effects related to the ionic
degrees of freedom, such as the molecular vibrational levels.
Another remark is that our strategy can be equally applied to
infinite chains of carbon atoms, which, if properly modified
by the inclusion of hydrogen atoms, mimics, for example, the
behavior of conducting polymers [19]. Let us start by briefly
reviewing some properties of the carbon orbitals.

A neutral carbon atom has a total of six electrons, two of
which are in the 1s shell, strongly bound to the nucleus, while
the remaining four electrons are in the outermost 2s and 2p
orbitals [20]. In the ring configuration (the benzene molecule,
in particular), the 2s, 2px, and 2py states of each carbon atom
hybridize, defining three orthonormal sp2 orbitals, whereas
the pz orbital remains unchanged [21]. The sp2 orbitals are
oriented along with directions in the ring’s plane that make
an angle of 2π/3 between each other. The pz orbitals, on the
other hand, are oriented perpendicularly to the ring’s plane.
The overlap between the sp2 orbitals of two adjacent carbon
atoms, as well as the overlap between an sp2 orbital of a
carbon atom and the s orbital of a hydrogen atom in the
specific case of the benzene molecule, form covalent bonds
known as σ bonds. Moreover, the overlap between neighbor-
ing pz orbitals form the so-called π bonds, a weaker type of
covalent bond. Briefly speaking, the π bonds are weaker than
the σ bonds because the overlap between adjacent pz orbitals
is much smaller than that of neighboring sp2 orbitals [22].
Following the usual nomenclature, we hereafter denominate
the electrons at the sp2 orbitals as σ electrons, while those
occupying the pz orbitals are called π electrons.

Hereafter, we focus on microscopic rings with a small
number of sites, 3 � N � 6, mostly because, in these cases,
we are able to perform exact diagonalization of the Hamil-
tonians we study in the subsequent sections. However, the
extended Hubbard model we derive in Sec. III, which is one
of the central results of this paper, holds for any number of
sites N and can also be extended to 2D carbon lattices, such
as graphene. Such a generalization, however, is left for future
work, since we are here mainly interested in 1D systems.

We choose the ring’s plane coinciding with the xy plane,
adopt its center as the origin of the coordinate system, and
align the site 1 with the x axis. In this configuration, the
position of the jth site of the ring is given by

R j = a√
2[1 − cos(2π/N )]

(cos α j x̂ + sin α j ŷ), (1)

with j = 1, 2, . . . , N . Here, α j = 2( j − 1)π/N denotes the
angular position of site j, and a is the lattice spacing. In
analogy with the real aromatic molecules, we consider three
orbitals per site: one pz orbital, and two sp2 orbitals. The third
sp2 orbital at each site, which binds it to another atom (such
as the hydrogen atom in the case of the benzene molecule),
is considered frozen, and therefore incorporated in the ring’s
sites, as illustrated in the insets of Figs. 1(a) and 1(b). The
geometric bond configuration suggests that, whatever effect

there might be of the σ electrons on the dynamics of the π

electrons, it is much more likely that the σ electrons contribute
only with an effective local potential to the π electrons.

A. Single-band Hubbard model

Let us take a step back and start by describing only the
degrees of freedom of the itinerant π electrons. The simplest
model for Ne itinerant and interacting electrons in a single-
orbital N-site lattice is the standard single-band Hubbard
model [9],

Ĥ0 = −t
N∑

j=1

∑
σ

(c†
jσ c j+1σ + H.c.) + U

N∑
j=1

n̂ j↑n̂ j↓, (2)

where the operator c†
jσ (c j,σ ) creates (annihilates) an electron

with spin σ at the pz orbital of the jth site of the ring, and
n̂ jσ = c†

jσ c jσ is the number operator. The parameter t is the
first-neighbor hopping [9], which is given by

t = −
∫

dr ϕ∗
i+1(r)

[
− h̄2

2m
∇2 + Vc(r)

]
ϕi(r). (3)

Here ϕi(r) is the Wannier wave function of an electron at the
pz orbital of site i, and Vc(r) is a periodic potential generated
by the ions together with the core and bonding σ electrons (see
Fig. 1). In terms of these localized wave functions, the on-site
Coulomb repulsion takes the form

U = e2
∫

dr
∫

dr′ |ϕi(r)|2|ϕi(r′)|2
|r − r ′| , (4)

where e is the elementary electronic charge. If we set U = 0,
Eq. (2) reduces to a purely tight-binding Hamiltonian, also
known as the Hückel Hamiltonian [23].

We do not specify the functional forms of ϕ j (r) and Vc(r).
The specific angular and radial dependencies of ϕ j (r) are
important to calculate the numerical values for the parameters
t and U . Here, it is enough to keep in mind that the deeper
Vc(r) is at the ionic positions, the larger is the tendency of
the electrons to localize around those sites and, therefore,
the smaller is the hopping amplitude. Besides, except when
explicitly mentioned otherwise, all physical quantities cal-
culated in this work are given in units of t . An estimate of
hopping and on-site repulsion parameters for the specific case
of the prototype of benzene is provided in Ref. [24].

B. Energy spectrum

In the case of the Hückel Hamiltonian [Eq. (2) with U =
0], we can readily determine the energy levels and corre-
sponding eigenstates of a generic ring with N sites and Ne

independent electrons. The transformation from site basis to
Bloch basis,

c†
jσ = 1√

N

N∑
j=1

e−i2πk j/N c†
kσ

, (5)

c jσ = 1√
N

N∑
j=1

ei2πk j/N ckσ , (6)
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FIG. 2. Energy spectrum of the Hubbard Hamiltonian [Eq. (2)]. The panels show the energy levels, as a function of U/t for rings with (a)
N = 3 sites, (b) N = 4 sites, (c) N = 5 sites, and (d) N = 6 sites at the half-filling regime (N = Ne). In panels (b) to (d), only a few of the
low-lying energy levels are shown.

where c†
kσ

(ckσ ) creates (annihilates) an electron with spin σ

and quasimomentum k (with k = 0, 1, . . . , N − 1), diagonal-
izes the Hückel Hamiltonian:

ĤHückel = −2t
N−1∑
k=1

∑
σ=↑,↓

cos

(
2πk

N

)
c†

kσ
ckσ . (7)

Therefore, to build the many-body energy eigenstates we
only need to fill up the single-particle levels obeying the Pauli
exclusion principle. Unfortunately, such a simple picture does
not hold for U 
= 0, and numerical diagonalization is required.
This procedure is not a trivial task, since the dimension
d = 2N!/[(2N − Ne)!Ne!] of the Fock space where Ĥ0 is
defined grows faster than exponentially with the factorial of
the number of sites and electrons of the ring.

Figure 2 shows some of the energy levels, as a function
of U/t , obtained through numerical diagonalization of Eq. (2)
for rings with (a) N = 3, (b) N = 4, (c) N = 5, and (d) N = 6
sites. These energy spectra were calculated for the rings in the
half-filling regime, where N = Ne. This choice is motivated by
the electronic configuration of the benzene molecule, where
we have a total of six π electrons occupying the six pz orbitals
of the aromatic ring. Panels (b)–(d) show just a few of the
low-lying energy levels of the systems. That is because their
complete energy spectrum contains a large number of levels,
and including all of their representative curves in the same
panel results in quite cumbersome figures.

III. EXTENDED HUBBARD MODEL

The scenario we explored in Sec. II suggests a separation of
energy scales in the system, as follows. Since the σ electrons
are localized at the bonds, they can be described approxi-
mately by another Hubbard model, with a different hopping
(t̃) between the left (L) and right (R) sp2 orbitals of nearest-
neighbor sites [see Fig. 1(b)] and a different on-site Hubbard
interaction (Ũ ). Since these two orbitals are directed toward
one another, we expect t̃ to be larger than the hopping t of the
π electrons. Therefore, in each bond we have a two-electron,
two-site Hubbard model with a larger hopping describing the
interacting bonding electrons. In this picture, we consider
bonding electrons at different bonds as distinguishable. The
two lowest-lying energy eigenstates of the bond will be linear
combinations of the Slater determinants of the symmetric
and antisymmetric linear combinations of the two above-
mentioned neighboring orbitals. By this reasoning, it would

be more costly to excite the bond to its first excited state in
comparison to the characteristic energy of the π electrons. In
other words, the energy scale separating the ground state and
the first excited state of the σ electrons (let us denote it by �)
is expected to be larger than the bandwidth of the π electrons,
which is set by the hopping parameter t defined in Eq. (3).
Therefore, recalling the uncertainty principle �E�t � h̄/2,
this implies that the σ -electron excitations happen on a much
faster timescale than that associated with the motion of the π

electrons around the ring.
We can thus think of two different types of electrons in the

ring: the σ electrons, which are the fast electrons, and the π

electrons, which are the slow ones. This scenario resembles
the well-known Born-Oppenheimer approximation (see, for
instance, Ref. [21]) to decouple the nuclear and the electronic
degrees of freedom of a molecule. Briefly speaking, due to
the huge mass difference between the atomic nuclei and the
electrons, the latter move around fixed positions of the former,
which, when allowed to move, do it on a timescale much
slower than that of the electronic motion.

The application of the same arguments for the itinerant and
bonding electrons seem to be very counterintuitive because
the latter are the ones to be localized at the chemical bonds,
whereas the former are delocalized along the ring. Neverthe-
less, one should bear in mind that what must be really taken
into account are the energy scales involved in the dynamics
of each type of electron, and, indeed, the σ electrons involve
higher energy than the π electrons.

Here, guided by this energy-scale separation, we use a
perturbation approach, which we call the generalized Born-
Oppenheimer approximation, in the sense that in our case, the
degrees of freedom of the σ electrons and the π electron are
those to be decoupled. It is fundamental to note that, in our
approximation, contrary to the standard Born-Oppenheimer
approximation, the ring’s sites remain static all the time. No
ionic degrees of freedom are addressed in our calculations.
What we are aiming at is the effect of the dynamical distortion
of the periodic potential felt by the π electrons due to the
excitation of σ electrons only.

A. Generalized Born-Oppenheimer approximation

Here, it is more convenient to return to first quantization
where the complete Hamiltonian of a ring with N sites and Ne

electrons, among which N (π )
e are π electrons and N (σ )

e are σ
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electrons, is given by H = Hp + Hb. The term

Hp =
N (π )

e∑
i=1

[
P2

i

2m
+ Ṽc(Ri )

]
+ 1

2

∑
i 
= j

U (Ri − Ri ) (8)

describes the π electrons, with momenta and positions de-
noted by Ri and Pi, respectively (i = 1, 2, . . . , N (π )

e ). In this
equation, U (r, r′) = e2/|r − r′| is the standard Coulomb re-
pulsion. Moreover, the Hamiltonian

Hb =
N (σ )

e∑
α=1

[
p2

α

2m
+ Ṽc(rα )

]
+ 1

2

∑
α 
=β

U (rα − rβ )

+
∑
i,α

U (rα − Ri ) (9)

accounts for both the degrees of freedom of the σ electrons,
with momenta and positions denoted by rα and pα , respec-
tively (α = 1, 2, . . . , N (σ )

e ), and their coupling with the π

electrons. Hereafter, we reserve Roman (Greek) characters as
indices for quantities referring to π electrons (σ electrons).
It is important to note that the periodic potential Ṽc(r) that
appears in Eqs. (8) and (9) is not the same as Vc(r) defined in
Eq. (3): Vc(r) is generated by both the ring’s sites with their
core electrons, and the frozen σ electrons in the bonds, Ṽc(r),
on the other hand, do not include any contribution from the
σ electrons. In other words, recalling our discussion in the
beginning of this section, Vc(r) is essentially Ṽc(r) dressed

by the static charge density in the bonds generated by the σ

electrons in their many-body ground state.
In this section, we denote by ψ (r, R) the total many-body

wave function of our system, where r stands for the entire
set of positions of the σ electrons {r1, r2, . . . , rN (σ )

e
}, and

similarly R denotes the set of positions of the π electrons,
{R1, R2, . . . , RN (π )

e
}. Motivated by the aforementioned sepa-

ration of energy scale, we assume that the total wave function
has the following separable form:

ψ (r, R) =
∑

ν

φν (R) ϕν (r, R), (10)

where φν (R) refers to the π -electron wave functions, and
ϕν (r, R) denotes the σ -electron wave functions for a frozen
configuration of π electrons (fixed R). The latter obeys the
following Schrödinger equation:

Hb(R)ϕν (r, R) = λν (R)ϕν (r, R). (11)

We emphasize that R in Eq. (11) is an external pa-
rameter rather than a dynamical variable. For each R, the
Schrödinger equation (11) determines the σ -electron eigen-
values λν (R) (with quantum numbers ν = 0, 1, 2, . . .), which,
as will shortly become clear, act as extra external potentials
for the π electrons. Note that, in principle, ν actually refers
to a set {nα} where nα = 0, 1, 2, . . . and α = 1, 2, . . . , 3N (σ )

e .
However, as we shall organize the energy levels in ascending
order, we may label {nα} as a sequence of integers ν, specify-
ing any eventual degeneracy whenever necessary.

Substituting the ansatz (10) into the full time-independent
Schrödinger equation Hψ = Eψ and using Eq. (11), we find
that the π -electron wave function must obey

∑
ν

⎛
⎝[Hpφν (R) + λν (R)φν (R)]ϕν (r, R) + 1

2m

N (π )
e∑

j=1

{
P2

j ϕν (r, R) + 2[P j ϕν (r, R)] · P j
}⎞⎠φν (R)

= E
∑

ν

φν (R)ϕν (r, R), (12)

where P j ϕν (r, R) is merely −ih̄∇ j ϕν (r, R), the gradient of
ϕν (r, R) with respect to Ri considered as a parameter in
ϕν (r, R). Now, multiplying Eq. (12) on the left by ϕ∗

μ(r, R),
integrating over the σ -electron positions, and using the fact
that ϕμ(r, R) defines an orthonormal basis, i.e.,

〈ϕμ|ϕν〉r =
∫

dr ϕ∗
μ(r, R)ϕν (r, R) = δμ,ν, (13)

we readily rewrite Eq. (12) as the following set of coupled
equations:

[Hp + λν (R)]φν (R) +
∑

μ

Aνμφμ(R) = Eφν (R). (14)

Note that, in contrast to Eq. (11), R is now a dynamical
variable. Moreover, the operator Aνμ is responsible for cou-
pling the π -electron wave functions with different μ and ν,

and has the form

Aνμ = fνμ(R) +
N (π )

e∑
j=1

g( j)
νμ(R) · P j, (15)

with

fνμ(R) ≡ − h̄2

2m

N (π )
e∑

j=1

〈
ϕν

∣∣∇2
j ϕμ

〉
r

= −
N (π )

e∑
j=1

h̄2

2m

∫
dr ϕ∗

ν (r, R)∇2
j ϕμ(r, R) (16)

and

g( j)
νμ(R) ≡ − ih̄

m
〈ϕν |∇ j ϕμ〉r

= − ih̄

m

∫
dr ϕ∗

ν (r, R)∇ j ϕμ(r, R). (17)
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FIG. 3. Energy “surfaces” of the σ -electrons. Illustration of the
energy levels λν (R) of the σ -electrons as a function of the π -electron
configurations as if they were a function of a scalar variable, in
analogy to the simpler standard Born-Oppenheimer approximation.
Panel (a) represents the first three low-lying λν (R). Panel (b) focuses
only on the first two σ -electron energy levels. In each one of them,
the π -electron Hubbard spectrum is represented by the horizontal
black lines. The blue arrows indicate virtual excitations that may
occur in the system if the energy separation (�) between the two
σ -electron surfaces is comparable with the π -electron bandwidth,
which is set by the π -electron hopping amplitude t0.

In order to develop a more intuitive picture of the meaning
of Eqs. (11) and (14) we show a simplified sketch of λν (R)
in Fig. 3. Panel (a) illustrates three of these eigenvalues as
if they were a function of a scalar variable, in analogy with
the standard Born-Oppenheimer approximation, to which we
are more accustomed. In reality, of course, λν (R) defines a
hypersurface in the space configuration of the π electrons.
Hereafter, since we want to derive a low-energy effective
model for the π electrons, we focus only on the ground state
and the first excited state of the σ electrons, as illustrated in
Fig. 3(b); i.e., we truncate the sum in Eq. (10) at ν = 1. In this
case, Eq. (14) simplifies to a set of two coupled equations,

H0 φ0,n(R) + A01 φ1,n(R) = En φ0,n(R), (18)

H1 φ1,n(R) + A10 φ0,n(R) = En φ1,n(R). (19)

Here, index n labels the π -electron quantum numbers. Be-
sides, we define H0 ≡ Hp + λ0(R) + A00 and H1 ≡ Hp +
λ1(R) + A11. We emphasize that in the language of second
quantization, H0 is a single-band Hubbard Hamiltonian with

a renormalized hopping amplitude t0. Similarly, H1 is a Hub-
bard Hamiltonian with another hopping parameter t1.

If λ0(R) and λ1(R) are energetically too far apart
[�1,0(R) ≡ λ1(R) − λ0(R) � t0], Aνμ becomes negligible.
Consequently, Eqs. (18) and (19) decouple and the system’s
energy levels are just the set composed by the union of the
eigenvalues of H0 and H1, illustrated by the horizontal black
lines in Fig. 3(b). In this case, the low-lying energy states of
the system are those of H0, which means that the π electrons
move along the ring as if the σ electrons were frozen in their
ground state λ0(R), recovering the standard Hubbard model
we described in Sec. II A. The interesting limit we consider
here is when �1,0(R) is still larger than t0, but they are of
the same order [�1,0(R) � t0]. In this case, Aνμ mixes the
eigenstates of H0 and H1. Let us explore this scenario in more
details in the next paragraphs.

Isolating φ1,n(R) in Eq. (19) and substituting it in Eq. (18),
we obtain an effective Schrödinger equation for φ0,n(R),

[H0 + A01(En − H1)−1A10]φ0,n(R) = En φ0,n(R). (20)

Here

Weff (P, R) ≡ A01(En − H1)−1A10, (21)

which in general depends on both momenta and positions,
defines an effective interaction between the π electrons, which
carries information about the virtual excitations of the σ

electrons. Moreover, Eq. (20) is a self-consistent equation,
since the potential defined in Eq. (21) itself depends on the
energy levels En we want to calculate. Fortunately, this is a
typical problem that can be approached by the well-known
Wigner-Brillouin perturbation theory [21].

Let us denote by ζ0,n(R) and ε(0)
n [ζ1,n(R) and ε(1)

n ] the
eigenstates and corresponding eigenvalues of the Hubbard-
like Hamiltonian H0 (H1). Both ζ0,n(R) and ζ1,n(R) span an
orthonormal basis, i.e.,

∑
n

|ζν,n〉〈ζν,n| = 1, (22)

〈ζν,n|ζν,m〉 =
∫

dRζ ∗
ν,n(R)ζν,m(R) = δn,m, (23)

with ν = 0, 1 and 〈ζ0,n|ζ1,m〉 
= δm,n. Wigner-Brillouin pertur-
bation theory tells us that φ0,n(R) and ζ0,n(R), as well as En

and εn, are related through, up to first order in Weff ,

φ0,n(R) = ζ0,n(R) +
∑
m 
=n

〈ζ0,m|Weff |ζ0,n〉
En − ε

(0)
m

ζ0,m(R), (24)

En = ε(0)
n + 〈ζ0,n|Weff |ζ0,n〉. (25)

The matrix element of the effective interaction (21) is explic-
itly given by

〈ζ0,m|Weff |ζ0,n〉 =
∫

dR ζ ∗
0,m(R)Weff (P, R) ζ0,n(R), (26)

in the basis spanned by the ζ0,n(R) states.
In zeroth-order perturbation theory for the energy (En ≈

ε(0)
n ), and neglecting quadratic or higher orders of Weff in the
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perturbation expression for the eigenstates, we obtain

φ0,n(R) ≈ ζ0,n(R) +
∑
m 
=n

1

ε
(0)
n − ε

(0)
m

× 〈ζ0,m|A01
(
ε(0)

n − H1
)−1A10|ζ0,n〉ζ0,m(R), (27)

from which it is clear that the matrix element defined in
Eq. (26) simplifies to

〈ζ0,m|Weff |ζ0,n〉 ≈ − 1

�
〈ζ0,m|A01OnA10|ζ0,n〉. (28)

We denote by On the many-body operator

On ≡
∑

m

(
1 − ε(0)

n − ε(0)
m

�

)−1

|ζ1,m〉〈ζ1,m|. (29)

To derive Eqs. (28) and (29), we use the closure relation in
Eq. (22) to rewrite ε(0)

n − H1 in Eq. (27) as

ε(0)
n 1 −

∑
m

ε(1)
m |ζ1,m〉〈ζ1,m|

=
∑

m

(
ε(0)

n − ε(1)
m

)|ζ1,m〉〈ζ1,m|. (30)

Besides, we approximate the energy levels of H1 as those of
H0 displaced by the energy separation between the two σ -
electron energy surfaces, i.e.,

ε(1)
m ≈ ε(0)

m + �1,0(R). (31)

Recall that we previously define �1,0(R) ≡ λ1(R) − λ0(R).
Interestingly, in [24] it is shown that such energy spacing
between the σ -electron energy surfaces depends weakly on R,
so it is reasonable to approximate it by a constant, �1,0(R) ≈
� > 0, consistently with the notation we have been using
since the beginning of this section.

Unfortunately, even after the aforementioned approxima-
tions, the effective interaction is still complicated because of
the infinite sum involving the projectors in Eq. (29). Thus,
to proceed further, we need to establish new simplifying
hypotheses, and approximations, as described in detail in
Appendix A, which, when applied to Eqs. (15)–(17), lead us
to

A01 ≈ −2ih̄UgN

ma�

N (π )
e∑

j=1

n̂ j · P j, (32)

A10 ≈ 2ih̄UgN

ma�

N (π )
e∑

j=1

n̂ j · P j . (33)

Here n̂ j ≡ (d̂(R)
j − d̂(R)

j−1)/|d̂(R)
j − d̂(R)

j−1|, with |d̂(R)
j − d̂(R)

j−1| =
gN = √

2 − 2 cos(2π/N ), is the versor in the direction of the
position of the site at which the π electron is localized, but
pointing inward.

At this point, we have almost everything we need to derive
a simplified expression for Weff . All we need now is return
to Eq. (29), and analyze it more carefully. If On were a
constant, it would generate a Weff , which would be just a
product of two one-body operators, instead of a true two-
body operator. However, the very form of On, if written in

coordinate representation, induces us to assume it is a non-
separable function of the generalized coordinates R and
R′. Therefore, the simplest assumption we can make about
Eq. (29) is to neglect contributions from three- and four-
body interactions and so on; that is, it only has a two-body
component which can correlate the momentum operators that
appear in Eqs. (32) and (33). In this case, we obtain

Weff ≈ − 1

�3

(
2h̄UgN

ma

)2 N (π )
e∑

i, j=1

Pi · n̂iO(Ri, R j )n̂ j · P j . (34)

Note that since n̂ j is a simple versor rather than an operator,
we can freely interchange it with the momentum operator, i.e.,
n̂ j · P j = P j · n̂ j , and define a tensor

←→
T (Ri, R j ) ≡ n̂iO(Ri, R j )n̂ j, (35)

which encodes the information about the ring’s σ -bond orien-
tation through the versors n̂i.

An effective attractive momentum-momentum interaction
with a form similar to that of Eq. (34) appeared in the literature
some decades ago, when Bohm and Pines wrote the seminal
series of papers about the electron gas [25–27]. They were
able to show that there is an effective interelectronic poten-
tial mediated by plasmons (longitudinal plasma fluctuations),
which they called a residual interaction [27]. However, they
argued that such an interaction is negligible because of the
screening effects in a dense electron gas. In our case, on
the other hand, since we are dealing with few-body systems,
screening effects are not strong enough to suppress this kind
of interaction.

Only for the sake of completeness, it is worth mentioning
that in Ref. [25] the authors also described the effective inter-
electronic interaction mediated by transverse electromagnetic
radiation in the electronic medium. This also results in a
momentum-momentum interaction, that they recognized as
a Biot-Savart interaction. The latter is basically unscreened
and is a relativistic correction of the order of (v/c)2 to the
interelectronic interaction. Incidentally, in classical electrody-
namics, this same interaction is also described by the so-called
Breit-Darwin (or current-current) interaction [28].

B. Effective interaction in second quantization

In the previous section, we show that virtual excitations of
the σ electrons mediate an effective momentum-momentum
attraction between the π electrons, which, in first quantiza-
tion, is given by Eq. (34). Here, we derive its expression in
the language of second quantization. By adding the second-
quantized Weff to Eq. (2), we derive an extended Hubbard
Hamiltonian for the degrees of freedom of the π electrons
alone, but which takes into account the effects of the σ

electrons in their dynamics. It is important to note that in
this section r no longer denotes the set of positions of the σ

electrons but rather a generic position in space.
Since Weff in Eq. (34) is a two-body operator, the standard

procedure to determine its second-quantized expression is
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[8,21]

Ŵeff = 1

2

∑
σ,σ ′

∫∫
dr dr′ ψ̂†

σ (r) ψ̂
†
σ ′ (r′)

× P · ←→
T (r, r′) · P′ ψ̂σ ′ (r′)ψ̂σ (r), (36)

where, in coordinate representation, P = −ih̄∇ and P′ =
−ih̄∇′, with ∇′ denoting the gradient with respect to r′.
Besides, ψ̂†

σ (r) [ψ̂σ (r)] is the field operator that creates (anni-
hilates) an electron with spin σ at the position r. Since we
are deriving an effective model for the π electrons alone,
such a field operator is defined only in terms of the Wan-
nier wave functions of the pz orbitals [ϕ jσ (r)], as ψ̂σ (r) =∑

i,σ ϕiσ (r)ciσ , where ciσ annihilates an electron with spin σ

at the site i. Here the reader should be warned not to confuse
ϕ j (r) with the σ -electron wave functions ϕν (r, R) that we
defined in Sec. III A.

Substituting the expression for ψ̂σ (r) in terms of ciσ into
Eq. (36) we find the second-quantized effective interaction in
the site basis,

Ŵeff = − 1

2�3

(
2h̄UgN

ma

)2 N∑
i, j,k,l=1

∑
σ,σ ′

wi jkl c†
iσ c†

jσ ′ckσ ′clσ ,

(37)

where wi jkl is the matrix element

wi jkl ≡ 〈i j|P · ←→
T · P′|lk〉

= −h̄2
∫∫

drdr′ ϕ∗
i (r) ϕ∗

j (r′)

× ∇ · ←→
T (r, r′) · ∇′ϕk (r′)ϕl (r), (38)

which we study in detail henceforth.

Applying the closure identity,
∑N

i, j=1 |i j〉〈i j| = 1, between

the momentum operators and the tensor
←→
T , we obtain

wi jkl =
∑
i1,i2

∑
j1, j2

〈i j|P|i1i2〉 · 〈i1i2|←→T | j1 j2〉 · 〈 j1 j2|P′|lk〉.

(39)

Note that P acts only on the first entry of a ket |i j〉, i.e.,

〈rr′|P|i j〉 = 〈r|P|i〉〈r′| j〉. (40)

Similarly, P′ acts only on the second entry of |i j〉. Therefore

〈i j|P|i1i2〉 = 〈i|P|i1〉〈 j| i2〉 = 〈i|P|i1〉δ j,i2 , (41)

〈 j1 j2|P′|lk〉 = 〈 j2|P′|k〉〈 j1|l〉 = 〈 j2|P′|k〉δ j1,l , (42)

and, as a consequence of the orthonormality of the Wannier
wave functions, Eq. (39) becomes

wi jkl =
N∑

i1, j2=1

〈i|P|i1〉 · 〈i1 j|←→T |l j2〉 · 〈 j2|P′|k〉. (43)

Consistently with the standard approximations used to de-
rive the single-band Hubbard Hamiltonian [9], the momentum
matrices elements in Eq. (43) can be approximated by a term
connecting only nearest-neighbor sites,

〈i|P| j〉 ≈ imt

h̄
(Ri − R j )δ j,i±1. (44)

A detailed derivation of Eq. (44) is shown in Appendix B.
Recall that t is the hopping parameter between two neigh-
boring pz orbitals, and m is the electron mass. Therefore,
substituting Eq. (44) into Eq. (43) we obtain four contributions
for wi jkl :

wi jkl ≈ −
(

mt

h̄

)2

× [(Ri − Ri+1) · 〈i + 1 j|←→T |l k + 1〉 · (Rk+1 − Rk ) + (Ri − Ri+1) · 〈i + 1 j|←→T |l k − 1〉 · (Rk−1 − Rk )

+ (Ri − Ri−1) · 〈i − 1 j|←→T |l k + 1〉 · (Rk+1 − Rk ) + (Ri − Ri−1) · 〈i − 1 j|←→T |l k − 1〉 · (Rk−1 − Rk )]. (45)

Assuming that the on-site contribution of the matrix elements of the tensor
←→
T is the dominant one, Eq. (45) becomes (see

Appendix C)

wi jkl ≈
(

mt

h̄

)2 a2O0[1 − cos(2π/N )]

2
(δ j,i+1δl,i+1δk,i + δ j,i+1δl,i+1δk,i+2 + δ j,i−1δl,i−1δk,i−2 + δ j,i−1δl,i−1δk,i ), (46)

leading to the following second-quantized expression for the effective interaction between the π electrons:

Ŵeff = − (tU )2

�3
2O0[1 − cos(2π/N )]2

N∑
j=1

∑
σ,σ ′

[(c†
jσ c†

j+1σ ′c jσ ′c j+1σ + H.c.) + (c†
jσ c†

j−1σ ′c j−2σ ′c j−1σ + H.c.)]. (47)

Here, we define the site-independent constant O0 ≡
〈ii|O(r, r′)|ii〉. See Appendix C for more details.

The effective interaction (47) has two types of pro-
cesses, as illustrated in Fig. 4. The first process, involv-
ing c†

jσ c†
j+1σ ′c jσ ′c j+1σ and its Hermitian conjugate, is what

we called the “bubble term,” since it destroys an elec-

tron at the site j and creates it at the site j + 1 of the
ring, but also destroys another electron at the same site
j + 1 displacing it to the site j. In other words, such
term restricts the electronic motion between two neigh-
boring sites of the ring. On the other hand, the sec-
ond term, which is proportional to c†

jσ c†
j−1σ ′c j−2σ ′c j−1σ ,
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FIG. 4. Effective interaction. Illustration of two types of two-
body processes that appear in the effective interaction Eq. (47). (a) is
the “Bubble term,” while (b) is the extended term that favors the
electron delocalization. The Hermitian conjugates of (a) and (b) just
reverse the direction of the arrows.

involves two neighboring sites and favors the electron
delocalization.

Combining Eq. (47) with Eq. (2), we obtain the following
extended Hubbard model for the π electrons:

Ĥ = − t
N∑

j=1

∑
σ

(c†
jσ c j+1σ + H.c.) + U

N∑
j=1

n̂ j↑n̂ j↓

− λN

(
U

t

)2 N∑
j=1

∑
σ,σ ′

[(c†
jσ c†

j+1σ ′c jσ ′c j+1σ + H.c.)

+ (c†
jσ c†

j−1σ ′c j−2σ ′c j−1σ + H.c.)], (48)

where we define the coupling constant

λN ≡ 2
t4

�3
O0[1 − cos(2π/N )]2. (49)

Recall that � > 0 is the energy scale of the separation
between the ground and the first-excited states of the σ

electrons, which we approximate by a constant, i.e., indepen-
dent of the π -electron configuration. Importantly, although
the coupling constant carries information about the direction
of the in-plane bonds though the term cos(2π/N ), it is the
relation between the parameters t and � that sets the en-
ergy scale of the coupling λN . Therefore, hereafter we set
2O0 [1 − cos(2π/N )]2 ∼ 1, making the coupling constant site
independent, λ ≡ t4/�3 < 1. At this point, it becomes clear
that λ is indeed the parameter that controls the validity of

our generalized Born-Oppenheimer approach to this problem.
If t/� � 1, the effective momentum-momentum coupling
is negligible, and we end up with the standard Hubbard
model where the bonding electrons are frozen at the chemical
bonds and only dress the ionic potential experienced by the
itinerant electrons. In other words, Eq. (48) shows that in
systems where the bonding electrons behave as if they were
in a covalent bond, the first correction to the motion of the
itinerant electrons due to the remaining electrons of the system
takes place by the generation of an effective interelectronic
momentum-momentum coupling between the former.

As Eq. (48) is the central result of this work, we now
investigate some of its physical consequences. In particular,
we focus on the energy spectrum of the rings. Figure 5
highlights the impact of the effective interaction (47) into
the energy spectrum of the rings. The solid lines correspond
to the lowest energy levels of a ring with (a) N = 3, (b)
N = 4, (c) N = 5, and (d) N = 6 sites at the half-filling
regime (N = Ne) obtained through exact diagonalization of
Eq. (48) with λ/t = 0.04. The dashed lines in each panel
(shown here for comparison purposes) refer to the energy
level of the standard Hubbard model Eq. (2). We verify that
the effective momentum-momentum interaction between the
π electrons [Eq. (47)] almost always reduces the energy of the
ground state of the rings, while there is no systematic behavior
concerning their excited states.

The nonmonotonic behavior of the ground state energy
(E0) as a function of U/t results from the competition be-
tween the on-site Coulomb repulsion and the momentum-
momentum effective coupling. Initially, E0 tends to increase
with U , since the on-site Coulomb repulsion favors local-
ization. However, for large enough U , the effects of the
attractive momentum-momentum interaction dominate and E0
decreases. The larger λ/t is, the sooner such a crossover
takes place. We emphasize, however, that for the perturba-
tion scheme and approximations we used in the derivation
of Eq. (47) to be valid, we need to have λ(U/t )2 < t , or
equivalently, (t/�)3(U/t )2 = (t/�)(U/�)2 < 1. This condi-
tion implies that, no matter what the ratio U/t is, the spec-
tra of Fig. 5 make perfect sense for either t < U < � or
U < t < �, which fulfill the previously assumed conditions
t/� < 1 and U/� < 1. Actually, for a fixed ratio t/�, the
restriction on the maximum value for U/t obeys the condition
U/t < (�/t )3/2.

In realistic situations we believe that what our approxi-
mation really does is provide an extension of the Hubbard

FIG. 5. Energy spectrum of the extended Hubbard Hamiltonian. The panels show the energy levels of Eq. (48), as a function of U/t for
rings with (a) N = 3 sites, (b) N = 4 sites, (c) N = 5 sites, and (d) N = 6 sites at the half-filling regime (N = Ne) and with λ/t = 0.04. In the
panels (b) to (d), only a few of the low-lying energy levels are plotted. The dashed lines correspond to λ = 0, i.e., the spectrum of the standard
Hubbard model defined in Eq. (2).
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model which is suitable for applications to broader band
correlated systems, but more precise conclusions on this issue
would require a more careful analysis of the Wigner-Brillouin
perturbative method in Sec. III A. From our present approach,
and knowledge of correlated electronic systems, we expect
this term to be innocuous in the noninteracting Hückel limit
(U/t � 1) and completely overwhelmed by localization ef-
fects in very narrow band systems (U/t � 1). Once again,
conclusions of this sort strongly depend, in particular, on
the ratio U/� which ultimately limits the extension of each
many-body energy level as a function of U/t in Fig. 5.

Although the spectra of Fig. 5 provide only a glimpse of
the physics of each particular example, there is a clear sig-
nature that even the ground state energies of those half-filled
systems may be modified by the presence of the momentum-
momentum coupling in the Hubbard Hamiltonian. Moreover,
this lowering of the ground state energy does not happen
only in those cases where they are known to be degenerate,
such as in the N = 4 or 5 cases, but also in our prototype
of the benzene molecule, N = 6, which has a nondegenerate
ground state. Despite the physics of process (b) of Fig. 4
suggesting that a current-carrying state would have its energy
lowered by this term, it is not plausible that such a state could
be spontaneously generated in a finite-dimensional system.
Nevertheless, in order to test whether this reasoning makes
any sense at all we can apply an external magnetic field
perpendicular to the ring’s plane which generates a persistent
current of the itinerant electrons and analyze the outcome of
our model in this case.

In a separate contribution [29] we have shown that in
the presence of the external field, the effective momentum-
momentum interaction Eq. (47) amplifies the persistent elec-
tric current in the system’s ground state leading to a strong
enhancement of the component of its magnetic suscepti-
bility tensor parallel to the field. Consequently, the effec-
tive momentum-momentum interaction could account for
the well-known unusual magnetic anisotropy of aromatic
molecules [30,31], whose microscopic origin remains a topic
of debate in the literature [32].

Actually, the presence of the momentum-momentum inter-
action opens up a whole avenue for investigating how it affects
different properties of the realistic systems that our minimal
models of Fig. 5 represent. For example, we could study how
it influences the tendency of formation of the cyclopropenium
cation, C3H+

3 , or the cyclopentadienide anion, C5H−
5 . These

systems belong to a class of problems away from half filling,
where the effects of the momentum-momentum coupling are
more dramatic, and do deserve to be studied separately. Our
model can also play some role in the dimerization of the
cyclobutadiene molecule, C4H4, where it could enhance the
well-known contribution of the Jahn-Teller effect, if lattice
distortions are allowed. In these three cases, we should expect
process (a) of Fig. 4 to be the most relevant one, since it favors
the double electronic hopping along a given bond.

IV. CONCLUSIONS

Although the σ electrons are more localized than the π

electrons, they can undergo local excitations in the σ bonds.
These excitations modify the electron charge density in the

bonds and, therefore, renormalize the periodic potential felt
by the π electrons. We showed that such virtual excitations of
the σ electrons mediate an attractive momentum-momentum
effective interaction between the π electrons, which is de-
scribed by Ŵeff defined in Eq. (34). This interaction bears
some similarities with the Biot-Savart kind of interaction
derived by Pines and Bohm [25–27].

Motivated by a natural energy-scale separation between
the σ and π electrons, we could decouple their degrees of
freedom through the employment of a wave function ansatz
similar to that used in the standard Born-Oppenheimer ap-
proximation. The resulting single-band problem was treated
within first-order perturbation theory generating the above-
mentioned effective momentum-momentum interaction.

There is a myriad of physical problems where the conse-
quences of the existence of this kind of interaction could be
tested. In this work, we address only its effect on the lowest-
lying energy levels of some small rings, and compared it to the
results obtained by the exact diagonalization of the standard
Hubbard Hamiltonian as applied to the same systems. We
showed that the effective momentum-momentum interaction
competes with the on-site Coulomb repulsion, dominating as
U/t grows. When this happens, the system’s ground state
energy is reduced significantly. The effective interaction (47)
also has important implications on the magnetic properties of
the rings. In particular, it leads to a substantial enhancement
of the magnetic response of the system and, therefore, might
be linked to the microscopic origin of the magnetic anisotropy
observed in aromatic molecules. This topic has recently been
addressed elsewhere [29].

We emphasize that the results we present here rely on the
exact diagonalization of small systems. In order to improve
our physical understanding of the effects Eq. (47), it would be
interesting to implement other approximation methods such
as mean-field theory. This is something we are aiming at, and
hoping to present in future contributions.

Another important question one should raise at this point
is why the effects of this term have never been observed so
far. Well, in principle, we cannot say that they have never
been observed. As we have already stressed, the importance
of this term lies in a region of the parameter space at which
more realistic systems should not be treated by simplified
many-body models. In our particular case, we are dealing with
the moderate-U regime, which is known to be the one to pro-
vide us with a poor physical picture when modeling realistic
systems within the Hubbard scheme. The regimes U � t or
U � t (narrow band systems) are much more appropriate to
describe specific concrete situations. Therefore, we think that
results arising from the extended Hubbard Hamiltonian should
be compared, for example, with those obtained by the density
functional theory, where one can simulate the dynamics of
all kinds of electrons present in the system without drastic
approximations. In this sort of comparison, the effects of the
new term might be buried among others we could not reach in
our approximation. Nevertheless, we hope this helps us select
the conditions at which the momentum-momentum coupling
generates the main contribution to the observed behavior.

Finally, a few words about the generality of our result.
Despite that our conclusions have been obtained from a model
where we reincorporate the dynamics of the bonding electrons
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into that of the itinerant electrons, the bottom line of our
approach is the fact that we are dealing with two sets of inter-
acting electrons whose typical energy scale is quite different
from that of the former. Whereas in the present case, we have
dealt with σ and π electrons, Bohm and Pines [25–27] treated
electron-hole pairs interacting with the long-wavelength lon-
gitudinal excitations (plasmons) of the same electron gas.
Although the latter authors did not recognize the suitability
of the adiabatic approximation, and perturbative corrections
to it, to their system, we think we have successfully done it to
ours.

Furthermore, there is nothing in our method which pre-
vents us from applying it to more general systems once we
identify the existence of the basic ingredients necessary for
the implementation of the generalized Born-Oppenheimer ap-
proximation, and consequently the generation of an effective
momentum-momentum interaction between the components
of the electronic system of interest. It should be at least
instructive to study the possible effects of this term in 2D
electronic systems such as graphene sheets or Cu-O planes
in high-Tc materials. Not less important would be to study
the influence of such a term in situations where the Hubbard
model is known to be described as a Fermi liquid theory. In
this case we could either find corrections to the Fermi liquid
parameters or establish the conditions under which it would
give rise to non-Fermi-liquid effects.
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APPENDIX A: EFFECTIVE INTERACTION
IN FIRST QUANTIZATION

The first thing we need to do is return to Eqs. (15)–(17)
and find an approximate expression for them. Let us start by
studying g( j)

νμ(R). Taking the gradient of Eq. (11) with respect
to the position of the jth π electron, multiplying the result on
the left by ϕ∗

ν (r, R), and integrating over the positions of the
σ electrons, we obtain∫

dr ϕ∗
ν (r, R)∇ jϕμ(r, R)

= 1

λμ(R) − λν (R)

∫
drϕ∗

ν (r, R)(∇ jHb)ϕμ(r, R). (A1)

Recall that R is merely an external parameter for Hb, and
it appears only in the Coulomb repulsion term [see Eq. (9)].
Therefore, it follows that

∇ jHb(R) = e2
N (σ )

e∑
α=1

rα − R j

|rα − R j |3 . (A2)

Our task now is to evaluate the integral over the positions
of the σ electrons. Since we have a term |rα − R j |3 in the
denominator of the integrand, the σ electrons which are closer
to the jth π electron are those which give the largest contribu-
tion to the right-hand side of Eq. (A1). Furthermore, we have
two σ electrons per bond. Consequently, for each π electron
localized at a given ring site, there are four nearest-neighbor σ

electrons, here labeled by 1 to 4 for simplicity, that dominate
the sum in Eq. (A2), which we can approximate as

∫
dr ϕ∗

ν (r, R)(∇ jHb)ϕμ(r, R) ≈ e2d̂(L)
j

∫
dr ϕ∗

ν (r, R)

(
1

|r1 − R j |2 + 1

|r2 − R j |2
)

ϕμ(r, R)

+ e2d̂(R)
j

∫
dr ϕ∗

ν (r, R)

(
1

|r3 − R j |2 + 1

|r4 − R j |2
)

ϕμ(r, R). (A3)

We define

d̂(R)
j ≡ 1

a
(R j+1 − R j ) (A4)

as the versor in the direction of the right σ bond, between
the sites j and j + 1. Recall that R j is the position of site j
defined in Eq. (1).

Concerning the remaining integrals on the right-hand side
of Eq. (A3), if we had |rα − R j | in the denominator, they
would be of the order of the on-site Coulomb repulsion
between π electrons and σ electrons (Ũ ) which we assume
to be of the same order as the on-site repulsion (U ) between
the π electrons. Moreover, since |rα − R j | is of the order of
the lattice spacing a we can roughly estimate for μ 
= ν = 0, 1

e2
∫

dr ϕ∗
ν (r, R)

1

|rα − R j |2 ϕμ(r, R) ∼ U

a
, (A5)

with α = 1, 2, 3, 4. Therefore, Eq. (A3) results in∫
dr ϕ∗

ν (r, R)(∇ jHb)ϕμ(r, R) ≈ 2
U

a

(
d̂(R)

j − d̂(R)
j−1

)
. (A6)

Substituting Eq. (A6) into Eq. (A1) and comparing it with (17)
we readily identify

g( j)
νμ(R) ≈ − ih̄

am

2U

λμ(R) − λν (R)

(
d̂(R)

j − d̂(R)
j−1

)
. (A7)

Following similar steps for fνμ(R), we find that it is of the
order of (U/�)2, and therefore can be neglected as long as
(U/�)2 � 1, which we assume to be the case here. Moreover,
in contrast to g( j)

νμ(R), fνμ(R) does not involve the π -electron
momenta and, therefore, when included in Eq. (21) gives
rise, in first-order perturbation theory, to a one-body term
that can be incorporated in the hopping parameter. Therefore,
from Eq. (A7), and as in the previous section, assuming
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λ1(R) − λ0(R) ≈ � > 0 (constant), we can approximate A01

and A10 by Eqs. (32) and (33).

APPENDIX B: MATRIX ELEMENT
OF P IN THE SITE BASIS

Here, we derive Eq. (44). To calculate the matrix element
of the π -electron momentum, we use the electron velocity
operator V ≡ P/m, which is related with the system’s single-
particle Hamiltonian (h) though the commutator

V = 1

ih̄
[R, h]. (B1)

Here,

h(r) ≡ P2

2m
+ Vc(r) = − h̄2

2m
∇2 + Vc(r), (B2)

and we denote by R the electron position operator.
Evaluating the matrix element of Eq. (B1) in the single-

particle Wannier wave functions ϕ j (r) = 〈r| j〉, we obtain

1

m
〈 j1|P| j2〉 = 〈 j1| 1

ih̄
[R, h]| j2〉

= 1

ih̄
(〈 j1|Rh| j2〉 − 〈 j1|hR| j2〉). (B3)

Now, inserting the closure relation

1 =
N∑

j=1

| j〉〈 j| (B4)

between the R and h operators on the right-hand side of
Eq. (B3) and approximating the position matrix elements as

〈 j1|R| j2〉 ≈ R j2〈 j1| j2〉 = R j2δ j1, j2 , (B5)

which is justified by the fact that the Wannier function ϕ j (r)
is localized about the jth site of the ring, whose position we

denote by R j , we readily find

1

m
〈 j1|P| j2〉 = 1

ih̄

(
R j1 − R j2

)〈 j1|h| j2〉. (B6)

Finally, recalling that 〈 j1|h| j2〉 = t j1, j2 gives the hopping
between the sites j1 and j2, which, in the nearest-neighbor
approximation, simplifies to

〈 j1|h| j2〉 ≈ −tδ j2, j1±1, (B7)

we obtain Eq. (44):

〈 j1|P| j2〉 = −mt

ih̄

(
R j1 − R j2

)
δ j2, j1±1. (B8)

APPENDIX C: EVALUATION OF wi jkl

In this Appendix we show the intermediate steps between
Eqs. (45) and (46). Our main assumption here involves the
matrix elements of the tensor

←→
T . Similarly to what is done

with the Coulomb repulsion matrix elements in the standard
Hubbard model [9], we consider that its leading contributions
come from the on-site terms:

〈i j|←→T |lk〉 ≈ ←→
Ti δ j,iδk,iδl,i, (C1)

where we define
←→
Ti ≡ 〈ii|←→T |ii〉. As will become clearer

soon,
←→
Ti is site-dependent.

Returning to the definition of
←→
T in Eq. (35), we can write

←→
Ti =

∫∫
dr dr′ ϕ∗

i (r)ϕ∗
i (r′)n̂O(r, r′)n̂′ϕi(r′)ϕi(r), (C2)

with n̂ ≡ r/r and n̂′ ≡ r′/r′. Moreover, since the Wannier
wave functions are localized at the ring’s sites,

←→
Ti = R̂i

[∫∫
drr′ϕ∗

i (r)ϕ∗
i (r′)O(r, r′)ϕi(r

′)ϕi(r)

]
R̂i

= R̂i〈ii|O|ii〉R̂i (C3)

with R̂i = Ri/|Ri| denoting the unitary vector in the direc-
tion of the position of site j. Assuming, for simplicity, that the
matrix element of O(r, r) is homogeneous, i.e., 〈ii|O|ii〉 =
O0 is site-independent, and that O0 is a scalar of order one,
we rewrite Eq. (45) as

wi jkl ≈ −
(

mt

h̄

)2

O0 × [(Ri − Ri+1) · R̂i+1 (Ri+1 − Ri ) · R̂i+1 δ j,i+1δl,i+1δk,i

+ (Ri − Ri+1) · R̂i+1 (Ri+1 − Ri+2) · R̂i+1 δ j,i+1δl,i+1δk,i+2

+ (Ri − Ri−1) · R̂i−1 (Ri−1 − Ri−2) · R̂i−1 δ j,i−1δl,i−1δk,i−2

+ (Ri − Ri−1) · R̂i−1 (Ri−1 − Ri ) · R̂i−1δ j,i−1δl,i−1δk,i]. (C4)

Moreover, using that for an N-site ring

Ri · R̂i = a√
2[1 − cos(2π/N )]

, (C5)

Ri±1 · R̂i = a√
2[1 − cos(2π/N )]

cos

(
2π

N

)
, (C6)

where a is the system’s lattice spacing, Eq. (C4) readily simplifies to (46).
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