
PHYSICAL REVIEW B 102, 125127 (2020)
Editors’ Suggestion

Squaring the fermion: The threefold way and the fate of zero modes

Qiao-Ru Xu ,1 Vincent P. Flynn ,2 Abhijeet Alase ,3 Emilio Cobanera ,4,2 Lorenza Viola ,2 and Gerardo Ortiz 1,5

1Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
2Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA

3Institute for Quantum Science and Technology, and Department of Physics and Astronomy,
University of Calgary, Calgary, AB, Canada T2N 1N4

4Department of Mathematics and Physics, SUNY Polytechnic Institute, 100 Seymour Rd, Utica, New York 13502, USA
5Indiana University Quantum Science and Engineering Center, Bloomington, Indiana 47408, USA

(Received 24 June 2020; accepted 20 August 2020; published 16 September 2020)

We investigate topological properties and classification of mean-field theories of stable bosonic systems. Of the
three standard classifying symmetries, only time reversal represents a real symmetry of the many-boson system,
while the other two, particle-hole and chiral, are simply constraints that manifest as symmetries of the effective
single-particle problem. For gapped systems in arbitrary space dimension, we establish three fundamental no-
go theorems that prove the absence of parity switches, symmetry-protected-topological quantum phases, and
localized bosonic zero modes under open boundary conditions. We then introduce a squaring, kernel-preserving
map connecting noninteracting Hermitian theories of fermions and stable boson systems, which serves as a
playground to reveal the role of topology in bosonic phases and their localized midgap boundary modes. Finally,
we determine the symmetry classes inherited from the fermionic tenfold-way classification, unveiling an elegant
threefold-way topological classification of noninteracting bosons. We illustrate our main findings in one- and
two-dimensional bosonic lattice and field-theory models.
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I. INTRODUCTION

Weakly interacting many-body systems of fermions or
bosons can be described approximately by an effectively
noninteracting (mean-field) theory as long as their equilib-
rium states are adiabatically connected [1], and no phase
transition separates them. This is the essence of Landau’s
quasiparticle framework, where the symmetries of the system
define the principles behind matter organization and its ele-
mentary excitations. Recently, another organizing principle,
linked to topology, was recognized as fundamental to char-
acterize hidden nonlocal order and the resilience of localized
excitations against local perturbations. The “tenfold way” or
“topological classification” [2–4] of mean-field (free-)fermion
Hamiltonians asserts that one cannot adiabatically connect,
while preserving certain classifying symmetries, topologically
inequivalent gapped systems. For stable free-boson Hamilto-
nians, which (like their fermionic counterparts) are bounded
from below, what is the equivalent result? We address this and
related questions in full generality.

One of the most remarkable consequences of the topologi-
cal classification of free-fermion systems is the bulk-boundary
correspondence [5,6]. When a gapped free-fermion sys-
tem is not adiabatically connected to a topologically trivial
free-fermion system, the obstruction to the deformation is
diagnosed by a bulk topological invariant assuming different
values for the two phases. The bulk-boundary correspondence
relates the value of this invariant to the number and properties
of midgap states (in one dimension) or surface bands of the
systems subject to open boundary conditions (BCs). In every

space dimension d , there are precisely five classes of systems
for which the bulk-boundary correspondence specifically pre-
dicts zero modes (ZMs). Those ZMs often show remarkable
localization properties. The topologically mandated Majorana
ZMs of superconductors [7–10], in particular, are a source of
endless fascination [11,12]. Are there topologically mandated
bosonic ZMs? What are the algebraic, localization, and stabil-
ity properties of bosonic ZMs? In this paper we investigate
these issues in detail. Since much of what is known about
fermionic ZMs was learned from the topological classification
by way of the bulk-boundary correspondence, we systemati-
cally follow an analogous line of reasoning for bosons. The
outcome of this analysis will be a series of no-go theorems.

Similar to the fermionic case, our starting point is the iden-
tification of the classifying internal symmetries of free-boson
systems. Of the three classifying conditions of the tenfold way
(time reversal, particle-hole, and chiral), we show that only
time reversal can be related to a (many-body) symmetry of
the free-boson system. In contrast to fermions [5], for bosons
the particle-hole and chiral classifying conditions cannot be
associated with many-body symmetries. Particle-conserving
systems are effectively well described by Hermitian single-
particle matrices or operators that may belong to any of the
ten symmetry classes of the tenfold way. However, these free-
boson systems Bose condense and are generically gapless in
the thermodynamic limit. Particle nonconserving free-boson
systems, on the other hand, may display gapped phases.
These systems are analyzed in terms of non-Hermitian ef-
fective Bogoliubov–de Gennes (BdG) matrices or operators
that satisfy a particle-hole constraint [13]. A symmetry of
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an ensemble of effective BdG matrices is a “pseudounitary”
matrix (in a sense that will be made precise later) which
commutes with every member of the ensemble. There is a
special class of many-body linear symmetries that is in direct
correspondence with pseudounitary symmetries. Many-body
time-reversal symmetry descends into the product of a pseu-
dounitary matrix and complex conjugation, and this product
commutes with the effective BdG Hamiltonian.

Knowing the gapped stable free-boson ensembles and the
symmetries at play, we proceed to investigate symmetry-
preserving adiabatic deformations. Our first result is a no-go
theorem for boson parity switches. Fermionic parity can be
odd or even depending on the topological nature of the state
and BCs. In contrast, it is typically even for topologically
trivial superfluid phases, regardless of BCs. Indeed, fermion
parity switches can be used as indicators for topological
transitions also in interacting particle-conserving fermionic
systems [14,15]. Similar to fermions, bosonic pairing terms
break the symmetry of particle conservation down to the
symmetry of boson parity. However, unlike fermions, we will
show that the boson parity can only be even in the ground
manifold of a gapped free-boson system. Our second no-go
theorem shows explicitly that any two gapped free-boson
systems are adiabatically connected, regardless of symmetry
constraints. It is a “no-go” result in the sense that it for-
bids nontrivial symmetry-protected topological (SPT) phases
of free-boson systems. And finally, our third no-go theorem
states roughly that, for open BCs, a gapped free-boson system
cannot possibly host surface bands inside the gap around
zero energy or midgap ZMs. For fermions, the most localized
ZMs are Majorana (self-adjoint) operators each localized on
opposite boundaries.

Does our third no-go theorem mean that localized bosonic
analogs of Majorana ZMs are forbidden altogether? Certainly
this complicates matters considerably because one naturally
looks for examples in systems subject to open BCs and that
approach is doomed to failure. Fortunately, the precept that
the “square of a fermion is a boson” comes to our rescue.
We present a kernel-preserving map between fermions and
bosons that provides a systematic way to generate bosonic
Majorana (self-adjoint) ZMs subject to special BCs that are
not open. The square of a fermionic BdG Hamiltonian can
be naturally reinterpreted as a bosonic (non-Hermitian) effec-
tive BdG Hamiltonian. This mapping does not preserve any
spectral properties other than its kernel. Moreover, it allows
a topological classification of “squared ensembles,” leading
to the threefold way of stable free-boson systems away from
zero energy.

Following our squaring-the-fermion map, we can construct
a wealth of examples of bosonic Majorana ZMs by taking the
square of a fermionic topological superconductor hosting Ma-
jorana ZMs. For example, we find that the square of the Kitaev
chain hosts two exponentially localized (self-adjoint) ZMs
and these modes can be normalized so that their commutator is
equal to ih̄. In this sense, one can indeed “split a single boson”
into two widely separated halves. The consequences for the
ground manifold of the system are, however, more dramatic
for bosons than for fermions, because an exact fermionic ZM
implies twofold degeneracy only, whereas an exact bosonic

ZM implies macroscopic degeneracy if the number of par-
ticles is unconstrained. How does the squaring map bypass
our no-go result on ZMs? The answer is that to obtain ZMs
in gapped free-boson systems, one must enforce special BCs
that are not open. The squaring procedure is a way to find
both the required bulk and BCs. How robust are those ZMs?
Krein stability theory [16–18] helps us to rigorously address
this question and conclude that bosonic Majorana ZMs are as
exotic as they are fragile, something in complete agreement
with our previous no-go theorems. Perhaps one could have
intuited this since particle-hole and chiral symmetries are not
many-body features of free-boson systems.

The paper is organized as follows. Section II covers the
background, including a little-known necessary and sufficient
condition for a free-boson system with pairing to be stable and
a theorem [19] that completely characterizes general bosonic
ZMs, both canonical and free-particlelike. Since bosonic
ZMs are central to this paper, we provide a self-contained
proof of this theorem in Appendix A by using modern tools
from indefinite linear algebra [20]. In Sec. III we discuss
the many-boson underpinnings of the Altland-Zirnbauer (AZ)
classifying conditions (time reversal, particle-hole, and chi-
ral) [21] and conclude that only time reversal is associated
with a many-body symmetry. In addition, from a many-
body perspective, non-Hermitian ensembles of effective BdG
Hamiltonians should be symmetry reduced with respect to
groups of pseudounitary matrices (details of the symmetry-
reduction analysis can be found in Appendix B). Section IV
is devoted to our three no-go theorems for gapped free-boson
systems: no parity switches, no SPT phases, and no localized
ZMs subject to open BCs. In Sec. V we introduce the squaring
map from fermionic BdG Hamiltonians to bosonic effective
BdG Hamiltonians and investigate it from the point of view
of ensembles, symmetries and topological classifications, and
bosonic topological invariants characterizing midgap bound-
ary states. Appendix C presents a simple proof of the validity
of our threefold way classification to general stable bosonic
ensembles. Finally, in Sec. VI we address the fate of bosonic
Majorana ZMs in terms of examples obtained by the squaring
map and discuss their stability. We close in Sec. VII with a
summary and comments on the problem of characterizing SPT
phases of interacting bosonic systems.

II. BACKGROUND

A. Free particles in second quantization

Consider first a general quadratic fermionic Hamiltonian

Ĥf =
N∑

i=1

N∑
j=1

(
Ki jc

†
i c j + 1

2
�i jc

†
i c†

j + 1

2
�∗

i jc jci

)
, (1)

for a system with N single-particle states. The creation and
annihilation operators c†

i and ci satisfy canonical anticommu-
tation relations. Since, in addition, Ĥf = Ĥ†

f , it follows that

K = K† and � = −�T. In terms of the Nambu array �̂ = [ c
c†]

(�̂† = [c† c]), with �̂i = ci and �̂N+i = c†
i , i = 1, . . . , N , one
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can rewrite Ĥf as

Ĥf = 1
2 �̂†Hf �̂ + 1

2 tr(K ), (2)

where Hf = [ K �

−�∗ −K∗] is the (Hermitian) BdG Hamiltonian.

Let τ1 ≡ σ1 ⊗ 1N , with σ1 = [0 1
1 0]. Because the Nambu ar-

ray satisfies the particle-hole constraint �̂ = τ1�̂
† T, one finds

that the BdG Hamiltonian satisfies the particle-hole constraint
τ1H∗

f τ1 = −Hf .

The diagonalization of Hf implies [13] that of Ĥf . If the
pairing contributions vanish, � = 0, one can rewrite

Ĥf = K̂ f = ψ̂†Kψ̂ (3)

in terms of ψ̂† = [c†
1 · · · c†

N ] and the associated column array
ψ̂ of annihilation operators. Because these arrays are inde-
pendent, the single-particle Hamiltonian K , as opposed to the
BdG Hamiltonian Hf , does not satisfy any constraints other
than Hermiticity. Again, the diagonalization of K implies that
of K̂ f .

Next, consider a general quadratic bosonic Hamiltonian

Ĥb =
N∑

i=1

N∑
j=1

(
Ki ja

†
i a j + 1

2
�i ja

†
i a†

j + 1

2
�∗

i ja jai

)
, (4)

where the bosonic operators a†
i and ai satisfy canonical

commutation relations [ai, a†
j ] = δi j , [ai, a j] = 0. In addition,

since Ĥb is Hermitian, it follows that K = K† and � = �T.
Rewriting Ĥb in terms of the Nambu array �̂ = [ a

a†] (�̂† =
[a† a]), with �̂i = ai and �̂N+i = a†

i , i = 1, . . . , N , we have

Ĥb = 1
2 �̂†Hb�̂ − 1

2 tr(K ), (5)

with Hb = [ K �

�∗ K∗] a Hermitian matrix, and [�̂i, �̂
†
j ] =

(τ3)i j , where τ3 ≡ σ3 ⊗ 1N , with σ3 = [1 0
0 −1]. Unlike the

fermionic case, the diagonalization of Hb does not imply
that of Ĥb in general. To diagonalize the bosonic many-body
Hamiltonian, one must instead diagonalize, or at least put in
Jordan normal form, the following non-Hermitian effective
BdG Hamiltonian [13,19,22]:

Hτ ≡ τ3Hb, (6)

which controls the dynamics of �̂. The effective BdG Hamil-
tonian satisfies the particle-hole constraint τ1H∗

τ τ1 = −Hτ

because of the constraint �̂ = τ1�̂
† T.

Suppose that Hb is positive definite, which we indicate
from now on as Hb > 0, so that Hτ is both invertible and
diagonalizable [13] (see also Sec. II B). Let |ψ+

n 〉 be an eigen-
vector of Hτ corresponding to a positive eigenvalue εn, with
0 < ε1 < ε2 < · · · < εN . Then τ1K |ψ+

n 〉 ≡ |ψ−
n 〉, with K de-

noting complex conjugation, is an eigenvector corresponding
to the negative eigenvalue −εn because of the particle-hole
constraint. As shown in Ref. [13], these eigenvectors can be
normalized to satisfy the following orthonormality relations:

〈ψ±
m |τ3|ψ±

n 〉 = ±δmn, 〈ψ±
m |τ3|ψ∓

n 〉 = 0, (7)

and to construct the completeness relation

12N =
N∑

n=1

(|ψ+
n 〉 〈ψ+

n | − |ψ−
n 〉 〈ψ−

n |)τ3, (8)

with quasiparticle (Bogoliubov) operators corresponding to εn

and −εn defined as{
bn = 〈ψ+

n | τ3�̂

b†
n = �̂†τ3 |ψ+

n 〉
,

{
b−n = 〈ψ−

n | τ3�̂

b†
−n = �̂†τ3 |ψ−

n 〉
. (9)

Immediately, from Eq. (7), one can check that (bn, b†
n)

satisfy canonical commutation relations [bm, b†
n] = δmn and

[bm, bn] = 0, whereas b−n and b†
−n do not (e.g., [b−m, b†

−n] =
−δmn). Taking advantage of Eq. (8), we can rewrite Eq. (5) in
terms of quasiparticle operators,

Ĥb = 1

2

N∑
n=1

εn(b†
nbn + b†

−nb−n) − 1

2
tr(K ), (10)

where only b†
nbn corresponds to the bosonic particle number

operator, and we need to rewrite b†
−nb−n in terms of the

bosonic one using the relation b−n = −b†
n. Finally, we arrive

at the bosonic quasiparticle Hamiltonian

Ĥb =
N∑

n=1

εnb†
nbn −

N∑
n=1

εn〈ψ◦
n |ψ◦

n 〉, (11)

where |ψ◦
n 〉 ≡ 1

2 (12N − τ3) |ψ+
n 〉. Accordingly, we see that ex-

citation energies are always positive and the vacuum (ground
state) of this bosonic Hamiltonian is a state with no quasipar-
ticles.

The problem simplifies considerably if � = 0. Then one
can rewrite

Ĥb = K̂b = φ̂†Kφ̂, (12)

in terms of φ̂† = [a†
1 · · · a†

N ] and the associated column
array φ̂ of annihilation operators. As before, since these ar-
rays are independent, the single-particle Hamiltonian K , as
opposed to the effective BdG Hamiltonian Hτ , does not satisfy
any constraints other than Hermiticity. Again, the diagonaliza-
tion of K implies that of K̂b.

Back to the general case, including pairing, under a per-
mutation (unitary) transformation π†Hbπ with permutation
matrix πi j = δi,( j+1)/2 + δi, j/2+N , the Hermitian matrix Hb can
be rewritten as a N × N block matrix with the matrix el-
ements (π†Hbπ )i j = [Ki j �i j

�∗
i j K∗

i j
]. Then the diagonalization of

π†Hbπ with respect to the metric π†τ3π = 1N ⊗ σ3 implies
that of Ĥb. For systems in which translation symmetry may
be broken only by BCs, this reordering makes it possible
to leverage a block-Toeplitz formalism [23–25], which we
will take advantage of in Secs. IV C and VI A in order to
analytically determine closed-form solutions in limiting cases.
Hereinafter, we will use τ3 to denote either the metric σ3 ⊗ 1N

or 1N ⊗ σ3 depending on the formalism in use (see Table I).
A fully translation invariant system on a d-dimensional

Bravais lattice can be described in terms of an effec-
tive Bloch-BdG Hamiltonian satisfying the particle-hole
constraint τ1H∗

τ (−k)τ1 = −Hτ (k), where k = (k1, . . . , kd )
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TABLE I. Different metrics in the Nambu and the block-Toeplitz
formalisms [23–25].

Nambu formalism Block-Toeplitz formalism

τ1 σ1 ⊗ 1N 1N ⊗ σ1

τ3 σ3 ⊗ 1N 1N ⊗ σ3

denotes a d-dimensional crystal momentum vector in the Bril-
louin zone. We will also consider systems on d-dimensional
lattices that suddenly stop at a flat (d − 1)-dimensional hyper-
surface. Such terminations are called ideal surfaces [26,27].
In this setup, the system is half-infinite in one of the d di-
rections, and retains translation symmetry in the remaining
d − 1 directions. The associated effective BdG Hamiltonians
will be denoted as Ho

τ , where the superscript “o” stands for
open BCs for the termination (see Sec. II A of Ref. [28] for a
detailed discussion). It is advantageous to introduce the quan-
tum number k‖, the crystal momentum in the surface Brillouin
zone (SBZ) [27]. Then the system is described by an effective
Bloch-BdG Hamiltonian of the form Ho

τ,k‖ = τ3Ho
b,k‖ . For a

fixed k‖, the matrix Ho
τ,k‖ can be visualized as describing a

half-infinite “virtual chain” system; notice, however, that such
a system satisfies τ1(Ho

τ,k‖ )∗τ1 = −Ho
τ,−k‖ 
= −Ho

τ,k‖ in gen-
eral, which is different from the usual particle-hole constraint
for a one-dimensional system. If we change the BCs of these
virtual chains back to periodic BCs, then we can describe the
chains in terms of the one-dimensional crystal momentum
k ∈ [−π, π ) in units of the reciprocal stacking period and
matrices Hτ,k‖ (k). Naturally we have Hτ,k‖ (k) = Hτ (k).

B. Single-particle characterization of stability

The condition of Hamiltonian stability plays essentially
no role for free-fermion lattice systems because of the Pauli
exclusion principle. By contrast, quadratic bosonic Hamilto-
nians may fail to be “stable” in different ways, even for a
finite number of modes N . We recall here a single-particle
characterization of stability for free-boson systems [29] upon
which we will rely heavily in Sec. IV.

For free-boson systems there are in fact different notions of
stability of practical importance [17,18]. One notion, which
is the usual notion of stability in quantum mechanics, is
the condition that Ĥb should be bounded below, and applies
to particle-conserving and nonconserving systems alike. The
following theorem identifies the necessary and sufficient con-
dition for this form of stability:

Theorem ([29]). The quadratic bosonic Hamiltonian Ĥb

is stable if and only if the Hermitian matrix Hb is positive
semidefinite.

A weaker notion of stability is meaningful only for
particle-conserving systems: in such a case, it may happen that
Ĥb = K̂b is bounded from below in any subspace with a fixed
number of particles but not over the full Fock space. Stability
in the usual sense is then achieved if and only if K is positive
semidefinite. This condition will be indicated as K � 0 from
now on.

It is interesting to note the following related result:
If K is not positive semidefinite, then neither is Hb, regard-

less of the properties of the pairing matrix �.
This has implications for interacting particle-conserving

systems. For suppose that one is interested in a weakly inter-
acting, particle-conserving boson system. Then one may try
a mean-field approximation that breaks particle conservation.
But, if K is not positive semidefinite, this mean-field approx-
imation will necessarily yield an unstable quadratic bosonic
Hamiltonian. (See also Ref. [18] for a more general discus-
sion, partly motivated by topology, of unstable free-boson
systems.)

One can also approach the notion of stability from the point
of view of the response of the system to a classical forcing
term. For free-boson systems, but not for free fermions, the
simplest model one may consider is described by the linear-
quadratic Hamiltonian

Ĥb,F = Ĥb + �̂†F, (13)

where F = [ f1 · · · fN f ∗
1 · · · f ∗

N ]T is a vector of complex pa-
rameters. If there is a solution Z = [z1 · · · zN z∗

1 · · · z∗
N ]T of the

equation F = HbZ , then the Hamiltonian of Eq. (13) satisfies
the relationship

Ĥb + �̂†F = UZĤbU
†
Z − 1

2 Z†HbZ, (14)

in terms of the unitary map UZ = e
∑N

i=1(z∗
i ai−zia

†
i ). For stable

systems without ZMs (Hb > 0), Z = H−1
b F . For stable sys-

tems with ZMs (Hb � 0), Z may fail to exist.

C. (Not so well) Known results on general bosonic zero modes

To the best of our knowledge, the first complete characteri-
zation of ZMs of quadratic bosonic Hamiltonians with Hb � 0
appeared in Ref. [19]. We recall this somewhat hidden result
here for later use in the form of a Theorem and, as mentioned,
include a new proof in Appendix A. The problem is difficult
for particle nonconserving systems because the normal modes
and frequencies of the system are calculated from the effec-
tive BdG Hamiltonian Hτ = τ3Hb defined in Eq. (6) and this
matrix is not Hermitian in general.

The starting point of the analysis are several spec-
tral properties of the non-Hermitian matrix Hτ . First, be-
cause τ3H†

τ τ3 = Hτ (pseudo-Hermiticity) and τ1H∗
τ τ1 = −Hτ

(particle-hole constraint), it follows that the eigenvalues of Hτ

come in quartets {ε, ε∗,−ε,−ε∗}. Since in this paper we al-
ways assume that Hb � 0, it also follows that the eigenvalues
of Hτ are purely real [13]. Finally, since Hτ is not a Hermitian
matrix in general, it could fail to be diagonalizable. Again,
this possibility is highly constrained by the condition Hb � 0.
Theorem 5.7.2 in Ref. [20] tells us that Hτ is diagonalizable
except possibly on the subspace of ZMs. The Jordan normal
form of Hτ restricted to this subspace can contain Jordan
blocks that are at most of size two (2 × 2 blocks). Since there
is an even number of eigenvectors associated with nonzero
eigenvalues, due to the particle-hole constraint, it follows that
the algebraic multiplicity of the zero eigenvalue must be even.
And, since the Jordan blocks are at most of size two, the
Jordan chains of length one come in pairs.
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Theorem (ZMs [19]). For the effective BdG Hamiltonian
Hτ = τ3Hb, let 2n and m be the number of linearly inde-
pendent zero eigenvectors associated with Jordan chains of
lengths one and two, respectively. Then there are n pairs of
canonical boson b0, j, b†

0, j that commute with the many-body

Hamiltonian Ĥb and all other normal modes of the system. In
addition, there exist m pairs of Hermitian operators P0, j, Q0, j

that also commute with all other normal modes of the system
and obey [Q0, j, P0,�] = iδ j�, [Ĥb, P0, j] = 0, and [Ĥb, Q0, j] =
(i/μ j )P0, j , with μ j > 0.

It is crucial to point out that Goldstone modes of free-boson
systems [13] are a particular instance of the above theorem.
Generically, Goldstone modes are bulk, delocalized modes.
In contrast, our focus in this paper is on localized bosonic
ZMs.

How robust are bosonic ZMs? There are some results in the
literature regarding small perturbations [16,17,30]. In prac-
tice, it can be hard to decide whether a small perturbation
preserves the stability condition Hb � 0, thus it is possible
for a ZM to split away from zero into the complex plane.
In this case one says that the mode has become dynamically
unstable [17,18]. From a dynamical perspective, the loss of di-
agonalizability is also regarded as a dynamical instability even
if the system satisfies Hb � 0. Fortunately, these additional
complications (as compared to the Hermitian case) come
paired with an additional theoretical tool: the Krein stability
theory of dynamical systems in an indefinite inner-product
space [16].

We recall some essential definitions. Given a vector |v〉 ∈
C2N , the sign of the τ3-norm 〈v|τ3|v〉 is its Krein signature.
If 〈v|τ3|v〉 = 0, we say the Krein signature is 0. Let λ be
an eigenvalue of a matrix that is Hermitian with respect to
the indefinite τ3 inner product (e.g., Hτ ). If all eigenvectors
associated with λ have either a +1 or −1 Krein signature, then
we say that λ is ± definite. Otherwise, we say λ is indefinite.
Note that λ being ± definite requires that λ ∈ R. A key result
in the theory of Krein stability is the Krein-Gel’fand-Lidskii
theorem [16]:

If λ is a ±-definite eigenvalue of a τ3-pseudo-Hermitian
matrix M, then there exists an open neighborhood of M, such
that all matrices in this neighborhood have eigenvalues close
to λ that remain on the real axis and have diagonal Jordan
blocks.

Physically, this means that the corresponding modes re-
main dynamically stable (that is, they result in bounded
evolution in time) under all sufficiently small perturbations.
Furthermore, in any open neighborhood of a matrix M with
an eigenvalue that is either indefinite or has a nondiagonal
Jordan block, there are matrices with eigenvalues off the real
axis [30].

Returning to the bosonic problem, recall that the kernel
vectors of Hτ are either associated with canonical bosonic
ZMs or free-particlelike ZMs (Hermitian quadratures). The
canonical bosonic ZMs arise from pairs of eigenvectors with
different Krein signatures, while the free-particlelike ZMs
arise from eigenvectors with vanishing Krein signatures [13].
Hence, according to Krein stability theory, there exist arbitrar-
ily small perturbations that will cause these ZMs to become
dynamically unstable. The stability properties of bosonic ZMs

TABLE II. Standard names for the ten symmetry classes of ir-
reducible ensembles of Bloch Hamiltonians for all dimensions. The
three symmetries T , C, and S are denoted by 1 (−1) if they square
to 1 (−1) and denoted by 0 if they are absent. Classifying spaces
(CS) associated with complex classes and real classes in d = 0 are
denoted by Cq, q = 0, 1 and Rq, q = 0, 1, . . . , 7, respectively.

A AIII AI BDI D DIII AII CII C CI

T 0 0 1 1 0 −1 −1 −1 0 1
C 0 0 0 1 1 1 0 −1 −1 −1
S 0 1 0 1 0 1 0 1 0 1
CS C0 C1 R0 R1 R2 R3 R4 R5 R6 R7

we have summarized here will illuminate some features of our
prototype squared Kitaev chain model in Sec. VI A.

D. The tenfold way

In this section we summarize the basics of the classification
of Hermitian ensembles (or equivalently, the classification
of free-fermion SPT phases) and the bulk-boundary corre-
spondence because these subjects will guide and inspire our
investigation of free-boson systems. For this summary we
especially benefited from the review articles in Refs. [5,31].
The classification of non-Hermitian ensembles [32] will also
play a role in Sec. V. Since this subject is still evolving fast,
we refer the interested reader to Ref. [33], and references
therein.

A Bloch Hamiltonian is a Hermitian-matrix-valued func-
tion H (k). For fixed but arbitrary k, H (k) is an operator
acting on the Hilbert space Hint of internal degrees of freedom
(the same for all k). The symmetry classification of Bloch
Hamiltonians is a classification scheme for sets (“ensembles”)
of H (k)’s acting on a common Hilbert space Hint and with a
common argument k. The dimensionality d of the ensemble
is that of k. The group of symmetries of an ensemble is the
group of isometries of Hint that commute with every H (k) in
the ensemble. An ensemble is called irreducible if its group of
symmetries consists only of the identity up to a phase.

The simultaneous block diagonalization of an ensemble
and its unitary symmetries decomposes the ensemble into a
sum of irreducible ensembles. An irreducible element H (k)
satisfies some subset of the following conditions:

T H (k)T −1 = H (−k) (T = U †
TK, UT U ∗

T = ±1),

CH (k)C−1 = −H (−k) (C = U †
CK, UCU ∗

C = ±1),

SH (k)S−1 = −H (k)
(
S = U †

S , U 2
S = 1

)
. (15)

Here K denotes complex conjugation in some preferred ba-
sis of Hint and the linear isometries UT ,UC,US of Hint do
not depend on H (k) but only on the specific irreducible
ensemble. For d = 0 ensembles, that is, dropping the k de-
pendence, these conditions become the usual conditions of the
AZ classification [21,34,35]. There are precisely ten distinct
combinations of these conditions, which motivates the name
“tenfold way” [4]. The standard names of the ten classes of
irreducible Hermitian ensembles are shown in Table II, with
{A, AIII} being the complex classes while the other eight the
real classes.
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The condition associated with T can be understood phys-
ically in terms of the time-reversal symmetry. Ignoring the
other two conditions that do not have in general an obvious
physical interpretation, one arrives at the “threefold way” of
Dyson [34]. The other two conditions, dubbed particle-hole
(or charge conjugation) and chiral “symmetries” arise natu-
rally for free fermions as “descendants” of special many-body
symmetries [21,35]. We will come back to this point in more
detail for bosons. The reminder of this subsection is focused
on (single-particle or BdG) Bloch Hamiltonians associated
with free-fermion systems.

Consider the following question: Given a choice of Fermi
energy (zero energy for superconductors) and two members,
H1(k) and H2(k), of an irreducible ensemble of Bloch Hamil-
tonians fully gapped at that Fermi energy, is it possible to find
a continuous deformation Hs(k) of H1(k) into H2(k) such that
(1) Hs(k) is fully gapped at the Fermi energy for all s, and
(2) Hs(k) is a member of the same irreducible ensemble of
Bloch Hamiltonians for all s? The answer can be “Yes” or
“No” depending on the classifying parameters: the dimension
d and the symmetry class. If the answer is No, the obstruction
to the deformation is characterized by a topological invariant
that can be calculated directly for individual Hamiltonians.
Bloch Hamiltonians that cannot be deformed into one another
are distinguished by the value of some topological invariant.
The pattern of “Yes/No” and the topological invariants at play,
both as a function of the symmetry class, are periodic in d ,
with period two for complex classes and period eight for real
classes. This remarkable result goes by a catchy name, the
“periodic table” (of the tenfold way), which was established
through Clifford algebras and K theory in Ref. [3]. For ex-
ample, when d = 0, the two complex classes {A, AIII} are
associated with two types of complex Clifford algebras and
classifying spaces Cq, q = 0, 1, as shown in Table II, while the
other eight real classes are associated with eight types of real
Clifford algebras and classifying spaces Rq, q = 0, 1, . . . , 7.
Then the number of disconnected components of Cq and Rq

can be used as topological invariants to classify topological
phases. Hereinafter we will always refer to the classifying
space of a symmetry class as the one associated with d = 0.

As it turns out, it is possible in general to continuously
deform two Bloch Hamiltonians into each other without clos-
ing the gap at the Fermi energy, provided that one is allowed
to break the classifying symmetries at intermediate steps. In
this sense, the topological distinction between Bloch Hamil-
tonians is “symmetry protected.” As hinted by the role of the
Fermi energy in this discussion, fermionic statistics lead to
a strong connection between low-energy many-body physics
and the predictions of the topological classification.

First, for bulk systems, the topological classification of
gapped Bloch Hamiltonians translates into a classification of
SPT phases of free-fermion systems. Recall that two many-
body ground states are regarded as describing distinct SPT
phases if it is not possible to deform one into the other adiabat-
ically (as in the Gell-Mann-Low theorem [1]) without closing
the many-body gap—while maintaining a preferred, “protect-
ing” set of symmetries at all steps of the deformation. For
fermions, topologically distinct ensembles of gapped Bloch
Hamiltonians are in one-to-one correspondence with distinct
SPT phases. This result is consistent with the fact that the

classifying conditions of Eq. (15) are in correspondence with
many-body symmetries for fermions. For superconductors,
SPT order is often signaled by the fermion parity observable.

Second, the celebrated bulk-boundary correspondence re-
lates nonzero values of the bulk topological invariants to the
presence of boundary states of individual Hamiltonians sub-
ject to open BCs. For d > 1, these boundary or edge states
cross the Fermi energy (zero energy for superconductors) and
establish another link between low-energy many-body physics
and the topological classification, i.e., the topologically dic-
tated boundary metals/gapless superconductors that emerge at
the termination of a fully gapped topologically nontrivial bulk.
The Bloch Hamiltonians for the integer quantum Hall effect
are important examples; they form a d = 2, class A ensemble.
For d = 1, {AIII, BDI, D, DIII, CII} are the five classes where
the bulk-boundary correspondence dictates midgap ZMs for
topologically nontrivial bulks. From a many-body perspective,
the most remarkable example is the Kitaev chain because,
loosely speaking, it features a single fermion split into halves
in terms of a pair of Majorana ZMs localized on opposite ends
of the chain.

III. INTERNAL SYMMETRIES OF
MANY-BOSON SYSTEMS

In this section we investigate a special class of symmetries
of free-boson systems that we call Gaussian [36]. These sym-
metry transformations on Fock space are special because they
map (by similarity) creation and annihilation operators to lin-
ear combinations of themselves. For fermions, the classifying
conditions of the symmetry classification known as the tenfold
way are in correspondence with many-body Gaussian symme-
tries. As we will see, this is only partially true for bosons. The
symmetry analysis of this section will be important in Sec. V
when we consider non-Hermitian classification schemes as
they apply to certain effective BdG Hamiltonians.

A. Particle-conserving systems

An ensemble of particle-conserving quadratic bosonic
Hamiltonians is in one-to-one correspondence with an aux-
iliary ensemble of single-particle Hamiltonians by Eq. (12),
regarded as a mapping. We will focus on symmetry transfor-
mations on Fock space that map particle-conserving quadratic
bosonic Hamiltonians to Hamiltonians of the same type.
There are two possibilities in principle: canonical mappings
of the form

V φ̂ V −1 =

⎡⎢⎣V a1V −1

...
V aNV −1

⎤⎥⎦ = UV φ̂, (16)

and of the form

C φ̂ C −1 = U ∗
C φ̂†T, (17)

where, because the commutation relations are necessarily pre-
served, UV and UC are N × N unitary matrices. The same is
true for fermions with φ̂ replaced by ψ̂ . Notice that if O
denotes an operator in Fock space, the equation (V OV −1)† =
V O† V −1 also holds for V antilinear provided it is antiunitary.
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The two distinct possibilities above arise because of the
requirement of particle conservation. For particle noncon-
serving systems, there is no obstruction to mix creation and
annihilation operators and so there is only one kind of Gaus-
sian map [see Eq. (20) below]. This fact is closely related
to the particle-hole constraint satisfied by Nambu arrays. For
particle-conserving free fermions, both possibilities are real-
ized and transformations of the second kind, conventionally
assumed linear without loss of generality, so that C −1 = C †,
are called particle-hole (or charge conjugation) symmetries
because the symmetry condition C K̂ f C † = K̂ f translates into
a particle-holelike condition U †

C K∗ UC = −K for the single-
particle Hamiltonian K . As we will see, particle-hole and
so-called chiral symmetries are forbidden for bosons by the
canonical commutation relations.

Going back to ensembles of particle-conserving free-boson
systems, the unitary symmetries of the auxiliary ensemble
of single-particle Hamiltonians are in one-to-one correspon-
dence with the Gaussian symmetries of the ensemble of
many-body Hamiltonians. Suppose

V φ̂ V † = UV φ̂ (18)

is a unitary Gaussian symmetry transformation. Then the con-
dition V K̂b V † = K̂b for all K̂b implies that U †

V K UV = K for
all K . That is, a Gaussian symmetry of the many-body en-
semble descends into a symmetry of the auxiliary ensemble of
single-particle Hamiltonians. For the reverse process of lifting
a single-particle symmetry to a Gaussian many-body sym-
metry, one needs to invoke the Stone-von Neuman-Mackey
theorem [37,38], which guarantees that the unitary transfor-
mation V in Eq. (18) exists given UV as the input, provided
that the number of modes N < ∞.

As a result of this analysis, one concludes that the de-
composition of the auxiliary ensemble of single-particle
Hamiltonians into irreducible AZ ensembles is equivalent to
the decomposition of the ensemble of bosonic many-body
Hamiltonians as a sum of commuting bosonic many-body
Hamiltonians labeled by Gaussian-symmetry quantum num-
bers. It is important to appreciate how particle conservation
fits in this discussion. Let N ≡ ∑N

j=1 a†
j a j denote the number

operator. Then eiθN φ̂ e−iθN = e−iθ φ̂ and thus particle conser-
vation induces a trivial symmetry of the auxiliary ensemble of
single-particle Hamiltonians.

This aspect of the problem is identical for bosons and
fermions with the complication, in the case of bosons, that
one must rely on the highly nontrivial Stone-von Neumann-
Mackey theorem to establish it (see also Theorem 11 in
Ref. [38] for fermions, with N < ∞). The key difference
between particle-conserving fermions and bosons is that for
bosons not all of the classifying AZ conditions are associated
with Gaussian many-body symmetries. Time reversal works
fine. Suppose T is an antilinear isometry of the Fock space
such that

T φ̂ T−1 = UT φ̂, T i = −iT . (19)

Because commutation relations of bosonic operators are pre-
served, so UT is a unitary matrix, and T K̂b T−1 = K̂b is
equivalent to T KT −1 = K in terms of T = U †

TK. Conversely,
given a unitary transformation that intertwines K and K∗, one

can lift it into an antilinear Gaussian symmetry by a variation
of the argument of the previous paragraph.

How about particle-hole symmetries, Eq. (17)? If such a
C were to exist, it would have to preserve the commuta-
tion relations, which would imply that UC U †

C = −1N . There
is no solution to this equation. Finally, a chiral symmetry
is a Gaussian symmetry of the form S = TC, which is of
interest for fermions in situations where T and C are not
separately symmetries of the many-body ensemble but S is.
Since particle-hole symmetries do not exist for bosons, neither
do chiral symmetries. The interested reader can play around
with the idea of defining a chiral symmetry for bosons, say as
a sublattice symmetry, to gain physical insight into this no-go
result.

In summary, for particle-conserving free-boson systems,
the time-reversal classifying condition T is in correspondence
with an antilinear Gaussian symmetry T . By contrast, and
contrary to fermions, the particle-hole and chiral classifying
conditions can well emerge at the single-particle level but have
no many-body counterpart. But then, what exactly is accom-
plished by feeding a topologically nontrivial single-particle
Hamiltonian into Eq. (12)?

B. Particle nonconserving systems

For particle nonconserving free-boson systems, Eq. (5),
regarded as a map, puts ensembles of quadratic bosonic
Hamiltonians in correspondence with ensembles of Hermitian
matrices Hb that satisfy the constraint τ1H∗

b τ1 = Hb. However,
the many-body system is governed by the spectral properties
of the effective BdG Hamiltonian Hτ = τ3Hb. Moreover, as
we will see next, Gaussian symmetries are in correspondence
with symmetries of Hτ , not Hb. Hence, one is drawn to the
conclusion that ensembles of particle nonconserving free-
boson systems should be regarded as being in correspondence
with those of pseudo-Hermitian effective BdG Hamiltonians.

The focus is again on symmetry transformations on Fock
space that generically map particle nonconserving quadratic
bosonic Hamiltonians to Hamiltonians of the same type. Since
there is no need to preserve particle conservation, nothing pre-
vents mixing creation and annihilation operators and, thus, the
notion of particle-hole symmetry becomes redundant. Gaus-
sian symmetry transformations are of the form

V �̂V −1 = UV �̂ = U ′
V �̂† T, (20)

with V linear or antilinear. Because canonical commutation
relations are necessarily preserved, the above implies

UV τ3 UV
† = τ3, U ′

V τ3 U ′
V

† = −τ3, (21)

with UV a pseudounitary matrix, and U ′
V (= UV τ1) a skew-

pseudounitary matrix. Hence, one can focus on the pseudouni-
tary matrices UV without loss of generality. In addition, the
Nambu constraint �̂ = τ1�̂

† T is also preserved by a Gaus-
sian isometry. As a result, the pseudounitary transformation
UV is real symplectic, satisfying conditions τ1U ∗

V τ1 = UV and
U T

V τ2UV = τ2.
Consider first linear Gaussian symmetries. One finds that

V Ĥb V † = Ĥb if and only if U −1
V HτUV = Hτ . Hence, linear

Gaussian symmetries of the many-body ensemble descend
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into symmetries of the auxiliary pseudo-Hermitian ensem-
ble of Hτ . Conversely, one can again invoke the Stone-von
Neumann-Mackey theorem to lift a symmetry of the auxiliary
ensemble into a linear Gaussian symmetry of the many-body
ensemble. If those symmetries are continuous, then V =
eiQ̂b for some Hermitian quadratic bosonic generator Q̂b. An
infinitesimal symmetry transformation leads to a pseudouni-
tary matrix UV = euV ≈ 1 + uV , such that uV τ3 + τ3 u†

V = 0
and τ1 u∗

V τ1 = uV . Combining these observations with the
identity i[Q̂b, �̂] = −iτ3Qb�̂ = −iQτ �̂ and Eq. (20), one
concludes that uV = −iQτ and U −1

V HτUV = Hτ if and only
if [Qτ , Hτ ] = 0. Physically, the matrix Qτ = τ3Qb may repre-
sent a conserved charge. One can reach the same conclusion
directly by calculating

[Q̂b, Ĥb] = i

2
�̂†τ3[Qτ , Hτ ]�̂. (22)

It is reasonable to have an ensemble of Hτ reducible, under
the same conditions as before, and assume that any such
ensemble can be decomposed into a sum of irreducible ensem-
bles by, roughly speaking, block diagonalizing the ensemble
together with its Gaussian symmetries. This decomposition of
the auxiliary ensemble corresponds to decomposing Hamil-
tonians of the many-body ensemble as sums of commuting
many-body Hamiltonians labeled by the quantum numbers of
the Gaussian symmetries.

Next, consider antilinear Gaussian symmetries, that is,
time-reversal-like symmetries of the form

T �̂ T−1 = UT �̂, T i = −iT , (23)

where UT is a pseudounitary matrix. From the symmetry
condition T Ĥb T−1 = Ĥb we get a constraint on the effective
BdG Hamiltonians Hτ of the form

U −1
T H∗

τ UT = T HτT −1 = Hτ (24)

in terms of T = U −1
T K. Applying Eq. (24) to Hτ twice and as-

suming that the ensemble is irreducible one finds that UT U ∗
T =

±12N . If we consider the simplest case where there are no
internal degrees of freedom, UT could be 12N , which is typical
for phonons. Then one obtains the reality condition H∗

τ = Hτ .

IV. TOPOLOGY OF GAPPED FREE BOSONS:
NO-GO THEOREMS

Particle-conserving free-boson systems in equilibrium are
generically gapless (in the thermodynamic limit) regardless
of the spectral gaps of the auxiliary single-particle Hamilto-
nian. By contrast, particle-nonconserving systems can be fully
gapped at the many-body level. This observation opens up the
possibility for SPT phases. In general, nontrivial SPT phases
of particle nonconserving free-fermion systems display at
least one of the following signatures:

(1) ZMs for open BCs; and
(2) odd or even fermion parity in the ground state, depend-

ing on BCs being periodic or antiperiodic [14,15].
In this section we prove that fully gapped free-boson sys-

tems cannot possibly show these signatures. Moreover, we
show that any pair of fully gapped free-boson Hamiltoni-
ans can always be connected adiabatically without closing
the many-body gap or breaking any protecting symmetries.

Hence, nontrivial SPT phases do not exist for free-boson
systems. For the special case d = 2, periodic BCs, and no
additional symmetries, a related result was derived based on
the triviality of the Chern number in Ref. [39].

We organize these results as three no-go theorems for fully
gapped free-boson systems. Our proofs are independent of
each other and, in all cases, the central obstruction is the
stability constraint discussed in Sec. II B, rather than pro-
found differences of internal symmetries between fermions
and bosons. The theorems are:

(1) Theorem 1 (no parity switches): The boson parity of
the ground state is always even.

(2) Theorem 2 (no nontrivial SPT phases): All Hamilto-
nians are adiabatically connected regardless of the choice of
protecting symmetries.

(3) Theorem 3 (no localized ZMs): The system subject to
open BCs cannot develop localized ZMs.

All these results are pleasingly consistent. Of course our
no-go Theorem 3 does not forbid localized ZMs for gapped
systems subject to special BCs other than open. The squaring-
the-fermion map can precisely generate such ZMs, and we
will see concrete examples in Sec. VI. With minimal modifi-
cations, our Theorems 2 and 3 hold also for linear-quadratic
Hamiltonians of Eq. (13) in Sec. II B.

A. Theorem 1: No parity switches

Theorem 1. Let Ĥb be a quadratic bosonic Hamiltonian
with finitely many modes N and Hb > 0. Then its ground state
is nondegenerate with even boson parity.

Proof. Since Hb > 0, it follows that there are no ZMs and
Ĥb can be written in the form of Eq. (11). The ground state is
the unique vacuum for the quasiparticles. Let the Bogoliubov
transformation from the a to the b bosonic modes be furnished
by a 2N × 2N matrix of the following block structure:[

b
b†

]
=
[

X −Y
−Y ∗ X ∗

][
a
a†

]
, (25)

then the quasiparticle vacuum state is [13]

|�〉 = det(X †X )−1/4 exp
[

1
2 φ̂†(X −1Y )φ̂†T

]|0〉. (26)

Since the exponent is quadratic, the even parity of the ground
state |�〉 follows. We still need to show that the formula
always holds, that is, we need to show that X is invertible.
Because the matrix in Eq. (25) is a canonical transfor-
mation, it follows that XX † − YY † = 1N , another form of
the orthonormality relations of Eq. (7). Thus, det(XX †) =
det(1N + YY †) � 1, whereby X is necessarily invertible. �

On the one hand, odd fermion parity in the ground state
and fermion parity switches are usual (albeit not mandatory
[23,24]) signatures of nontrivial SPT phases in fermionic sys-
tems, even interacting ones [14,15]. On the other hand, for
free fermions a ground-state expression equivalent to Eq. (26)
exists [13], seemingly implying that fermions always have
even parity ground states. Crucially, the fermionic analog of
the matrix X in Eq. (25) can fail to be invertible, leading in
those cases to an odd-parity ground state. For bosons, this
possibility is excluded because Hb > 0 implies a many-body
gap (as we discussed in Sec. II B), a condition that has no
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analog for fermions. We conclude that parity switches are
nonexistent for stable free bosons.

B. Theorem 2: No SPT phases

Theorem 2. Let Ĥb,1 and Ĥb,2 denote gapped, particle-
nonconserving quadratic bosonic Hamiltonians sharing a
group of symmetries. Then Ĥb,1 can be adiabatically deformed
into Ĥb,2 without breaking any of the symmetries, or closing
the many-body gap.

Proof. Consider the continuous path

Ĥb(s) = (1 − s)Ĥb,1 + sĤb,2, s ∈ [0, 1], (27)

which implies the Hermitian matrix Hb(s) = (1 − s)Hb,1 +
sHb,2 satisfies the constraint τ1H∗

b (s)τ1 = Hb(s) for all s.
Moreover, if V is a linear or antilinear symmetry shared by the
initial and final free-boson systems, then V Ĥb(s)V −1 = Ĥb(s)
for all s. Finally, since Ĥb,1 and Ĥb,2 are particle nonconserv-
ing and gapped, it follows that Hb,1, Hb,2 > 0, hence Hb(s) =
(1 − s)Hb,1 + sHb,2 > 0. In other words, Ĥb(s) is fully gapped
for all s. �

Notice that the map in Eq. (27) preserves the locality prop-
erties of Hb,1 and Hb,2. A corollary of this theorem is that
there are no nontrivial SPT phases of particle nonconserving
free-boson systems. Any such system can be adiabatically
deformed into a topologically trivial system without closing
the many-body gap or breaking any symmetry. Hence, one
expects that stable, gapped systems of free bosons will not
display any signatures of nontrivial topology around zero en-
ergy.

How do free-fermion systems escape this triviality result?
Again, the answer is that there is no counterpart for fermions
of the bosonic gap condition Hb > 0. Referring back to the
proof of Theorem 2, there is nothing that can prevent, in
general, the closing of the gap along the path Hf (s) = (1 −
s)Hf ,1 + sHf ,2 of free-fermion Hamiltonians. In fact, a key in-
sight of the tenfold way is that the gap must close when Hf (s)
interpolates between two topologically distinct Hamiltonians
in the same symmetry class. By contrast, it is easy to find ex-
amples of paths of gapped Hamiltonians that connect different
symmetry classes, regardless of topological invariants.

C. Theorem 3: No localized ZMs

Theorem 3. Consider a d-dimensional, translation-
invariant free-boson system Hb(k) > 0, and the same system
subject to open BCs and described by Ho

τ,k‖ . Then zero is not
an eigenvalue of Ho

τ,k‖ .
Remark. This theorem is true even if the pairing contribu-

tions vanish, � = 0, in which case the condition Hb(k) > 0 is
equivalent to K (k) > 0 and does not imply a many-body gap
in general.

Proof. The proof requires results from the theory of matrix
Wiener-Hopf factorization [6,40]. While the following argu-
ment is not self-contained, we provide references for all the
necessary auxiliary theorems. With reference to Sec. II A for
our notation, let k‖ ∈ SBZ and

G(eik ) ≡ Hb,k‖ (k), ∀k ∈ [−π, π ), (28)

that is, G is explicitly defined as a function on the unit circle
in C. Since Hb(k) > 0, it follows that G(eik ) = Hb,k‖ (k) > 0
for all k. The matrix-valued function G is the symbol of
the block-Toeplitz operator Go = Ho

b,k‖ . Regarding Go as an
infinite matrix, one can state the block-Toeplitz property as
[Go]i, j = [Go]i+1, j+1, with i, j = 1, 2, . . . ,∞ being the coor-
dinate of a lattice point in the direction perpendicular to the
termination of the lattice. The blocks [Go]i, j act on internal,
not lattice, degrees of freedom. Back to the symbol, because
G(eik ) > 0 for all k ∈ [−π, π ), it admits a canonical Wiener-
Hopf factorization, that is, a factorization of the form

G(eik ) = G+(eik )G−(eik ), (29)

where the entries of G+(eik ) [G−(eik )] and their inverses are
analytic inside (outside) the unit circle, see Theorem 1.13
in Ref. [40] (and Ref. [41] for a system-theoretic perspec-
tive). Furthermore, according to Theorem 2.13 in Ref. [40],
a block-Toeplitz operator is invertible if and only if its symbol
admits a canonical Wiener-Hopf factorization. In our case,
this implies that the block-Toeplitz operator Go is invertible.
Consequently, Ho

τ,k‖ = τ3Ho
b,k‖ = τ3Go is also invertible. In

conclusion, zero does not belong to the spectrum of Ho
τ,k‖ for

any value of k‖ ∈ SBZ, and therefore it does not belong to the
spectrum of Ho

τ . �
Corollary 1. Localized midgap states cannot exist in the

spectral gap separating positive from negative eigenvalues of
Ho

τ,k‖ .
Proof. Suppose that a state with eigenvalue ε lies in that

spectral gap. Then, similarly to the proof in Theorem 3,
G(eik ) − ετ3 is positive definite and admits a canonical
Wiener-Hopf factorization. As a result, Ho

b,k‖ − ετ3 and
Ho

τ,k‖ − ε1∞ are invertible, whereby it follows that ε does not
belong to the spectrum of Ho

τ,k‖ . �
Physically, Theorem 3 excludes the possibility of having a

ZM subject to open BCs. Corollary 1 excludes surface bands
altogether in the spectral gap around zero energy, regardless
of whether they cross zero energy.

Since our no-go Theorem 3 and its Corollary 1 address
a spectral connection between periodic and open BCs, they
may be taken to provide a no-go result for a bulk-boundary
correspondence, at least of a standard form. Their reach can
be further extended by considering generic single-particle
perturbations bounded in the operator norm. Suppose that a
perturbation Wb that satisfies the constraint τ1W ∗

b τ1 = Wb is
added to Ho

τ . Then the effective bosonic BdG Hamiltonian is

Ho
τ + Wτ = Ho

τ

[
1 + (

Ho
τ

)−1
Wτ

]
, (30)

with Wτ = τ3Wb. As long as ||Wτ || < 1/||(Ho
τ )−1||, the above

Hamiltonian is invertible and therefore does not have a zero
eigenvalue. Notice that 1/||(Ho

τ )−1|| equals the smallest en-
ergy eigenvalue of Ho

τ , which is the first excitation energy
above the bosonic vacuum. These perturbations do not include
bulk disorder but can model a variety of BCs and boundary
disorder that decays sufficiently fast into the bulk.
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V. SQUARING THE FERMION

A. The square of a fermion is a boson

An even-dimensional Hermitian matrix H can arise as
the BdG Hamiltonian of a free-fermion system if and only
if it satisfies the particle-hole constraint τ1H∗τ1 = −H of
Sec. II A. One can recast this constraint in terms of a projector
superoperator,

F (H ) ≡ 1
2 (H − τ1H∗τ1), H = H†. (31)

That is, an even-dimensional Hermitian matrix Hf can be
uniquely associated with a fermionic BdG Hamiltonian if and
only if F (Hf ) = Hf . Similarly, an even-dimensional Hermi-
tian matrix H can be uniquely associated with a free-boson
system if and only if it satisfies the constraint τ1H∗τ1 = H ,
which again can be recast in terms of a projector superopera-
tor,

B(H ) ≡ 1
2 (H + τ1H∗τ1). (32)

We call a Hermitian matrix Hb with B(Hb) = Hb bosonic.
Now we are in a position to state two interesting rela-

tionships between fermionic BdG Hamiltonians and bosonic
matrices:

(1) Every even-dimensional Hermitian matrix is the sum
of a unique fermionic BdG Hamiltonian and a unique bosonic
matrix; and

(2) the square of a fermionic BdG Hamiltonian is a
bosonic matrix.

The first result follows because the projectors F and B
are complementary, H = F (H ) + B(H ), and have disjoint
ranges, F ◦ B = B ◦ F = ∅. The second result follows be-
cause B(H2

f ) = H2
f . More generally, bosonic matrices can be

obtained from fermionic ones via application of a broader
class of even functions, e.g., if P is an even polynomial, then
P(Hf ) is a bosonic matrix. However, not only does the square
function provides the simplest mathematical option but, as we
discuss next, the resulting fermion-to-boson mapping has a
number of remarkable properties from a physical standpoint.

By construction, the bosonic matrix H2
f is positive semidef-

inite, H2
f � 0. Hence, the free-boson system described by the

quadratic bosonic Hamiltonian

ε0Ĥb = 1
2 �̂†H2

f �̂ − 1
2 tr(K ′), ε0 > 0 (33)

is stable. Here ε0 is some suitable constant with units of
energy and K ′ ≡ K2 − ��∗ in terms of the single-particle
Hamiltonian and pairing for the free-fermion system. Accord-
ingly, we have identified a squaring map,

S(Hf ) ≡ τ3H2
f ≡ Hτ,S, (34)

from BdG Hamiltonians of free-fermion systems to effective
BdG Hamiltonians of stable free-boson systems.

The above squaring map is interesting because the kernel,
that is, the ZMs, of Hf and τ3H2

f coincide, even though
τ3H2

f may also display additional zero-energy generalized
eigenvectors (see Sec. VI A for an example). In this sense,
the square-of-a-fermion procedure offers a systematic way
of constructing bosonic models with “Majorana bosons” in
a gap or as part of a surface band. Notice that locality is
not a concern. If Hf features a nonzero hopping amplitude

between sites that are r units apart, then H2
f features a hopping

amplitude between sites that are at most 2r units apart (see
Sec. VI for explicit examples). Importantly, not all effective
BdG Hamiltonians are in the range of the squaring map. For
example, for periodic BCs, the effective BdG Hamiltonian of
the gapless harmonic chain Ĥhc = ∑

k

√
2(1 − cos k)(a†

kak +
1/2) + P2

0 /2 displays a single zero-energy eigenvector asso-
ciated with the conserved total momentum operator P0. Since
zero eigenvectors of Hf come in pairs, the same is true of τ3H2

f
and so the harmonic chain cannot possibly be the square of a
fermion.

Besides lattice models as in Sec. II, the squaring map
we have introduced extends naturally to continuum models.
We consider the simplest case of the Dirac Hamiltonian in
three spatial dimensions for illustration [42]. In the absence
of gauge fields, the latter reads

HD = c(γ1 p1 + γ2 p2 + γ3 p3) + mc2γ4, (35)

where pν = −ih̄∂/∂xν , γν ν = 1, 2, 3, 4, are Hermitian ma-
trices satisfying the Clifford algebra {γν, γν ′ } = 2δνν ′ , which
force them to be (at least) 4 × 4 matrices. The choice
γ1 = 12 ⊗ σ1, γ2 = σ1 ⊗ σ3, γ3 = σ2 ⊗ σ3, and γ4 = σ3 ⊗
σ3 highlights the fact that the Dirac Hamiltonian can be re-
garded as a (continuous-coordinate) fermionic BdG Hamilto-
nian of the form HD = [ K �

−�∗ −K∗], with K ≡ σ1cp1 + σ3mc2

and � ≡ σ3c(p2 − ip3). Thus, one can second-quantize HD as

ĤD = 1

2

∫
�̂†(�x)HD�̂(�x) d3x, (36)

a field theory in terms of the Nambu array

�̂†(�x) = [c†
1(�x) c†

2(�x) c1(�x) c2(�x)], (37)

with {ci(�x), c j (�y)} = 0, {ci(�x), c†
j (�y)} = δi jδ(�x − �y). Applying

the map S yields the associated free-boson system with the
bosonic matrix

H2
D = (p2c2 + m2c4) ⊗ 14. (38)

Choosing ε0 = 2mc2, the gap of HD, we obtain the free-boson
second-quantized form

Ĥb = 1

2

∫
�̂†(�x)

(
p2

2m
⊗ 14 + mc2

2
⊗ 14

)
�̂(�x) d3x, (39)

in terms of the Nambu array of canonical bosons �̂†(�x) =
[a†

1(�x) a†
2(�x) a1(�x) a2(�x)]. From now on we will drop

any explicit reference to ε0.

B. Symmetry analysis of the squaring map

While the squaring map can break some fermionic symme-
tries, it certainly preserves many as well. Here we investigate
those fermionic continuous symmetries that are inherited by
the squaring map. In preparation for the classification of
squared ensembles we will consider in Sec. V C, we will also
need a detailed understanding of how the resulting symmetry
reduction intertwines with the squaring map and the indefinite
metric τ3.

Consider the generators of symmetries of Hf ,

g f ≡ {Q f = Q†
f | τ1Q∗

f τ1 = −Q f , [Q f , Hf ] = 0}. (40)
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Q f ∈ g f if and only if the conserved charge Q̂ f obeys
[Q̂ f , Ĥf ] = 0. The fermion number and the total spin are
good examples. The Lie group eigf of unitary matrices Uf

that commute with Hf and satisfy τ1U ∗
f τ1 = Uf is precisely

the group associated with fermionic Gaussian symmetries of
particle-nonconserving systems. The block structure of these
matrices is

Uf =
[

A B
B∗ A∗

]
, AA† + BB† = 1N , ABT + BAT = 0,

with A and B N × N matrices. Similarly, let

gb ≡ {Qb = Q†
b | τ1Q∗

bτ1 = Qb, [Qτ , Hτ ] = 0} (41)

be the generators of symmetries of Hτ = τ3H2
f , with Qτ =

τ3Qb (see Sec. III B). Again, Qb ∈ gb if and only if [Q̂b, Ĥb] =
0. Since the squaring map involves the τ3 matrix (Nambu for-
malism in Table I), one needs to analyze fermionic symmetries
that either commute or anticommute with τ3.

First, let us focus on Uf that commutes with Hf and τ3.
Then, Uf is also a pseudounitary matrix (with Uf τ3U

†
f =

Uf U
†
f τ3 = τ3) that commutes with τ3H2

f . Consider the class
of symmetry generators of the form

Q f = Qτ = Q ≡
[

q 0

0 −q∗

]
, q = q†, (42)

resulting in

[Q, Hf ] =
[

[q, K] q� + �q∗

(q� + �q∗)∗ [q, K]∗

]
. (43)

Then, symmetries of the particle-conserving part K , which are
preserved by pairing �, will always be symmetries of the free-
boson system τ3H2

f .
The symmetry reduction of the squared ensemble can be

achieved by first reducing the fermionic ensemble and then
applying the squaring map S to each block, but with respect
to a suitably defined indefinite metric. A key aspect of the
problem is precisely the determination of the appropriate re-
duced metric. Technical details of this symmetry-reduction
analysis can be found in Appendix B, whereas a summary
is shown in Table III. This table describes the key structural
feature of the subensembles of {τ3H2

f } as determined by the
shared conserved quantum number labeling the blocks and the
associated subensembles of {Hf }.

Example. For illustration, we square the BdG Hamiltonian
of a conventional BCS superconductor. We start with the BCS
mean-field Hamiltonian

Ĥf =
∑

k,σ∈{↑,↓}
(εk − μ)c†

kσ ckσ +
∑

k

(�c†
k↑c†

−k↓ + H.c.).

In the BdG formalism, the above equation becomes
Ĥf = ∑

k �̂
†
kHf (k)�̂k/2 +∑

k(εk − μ), where �̂
†
k =

[c†
k↑ c†

k↓ c−k↑ c−k↓] and Hf (k) = [ K (k) �(k)
−�∗(−k) −K∗(−k)], with

K (k) = [εk − μ 0
0 εk − μ] and �(k) = [ 0 �

−� 0 ]. Then, besides
the built-in particle-hole constraint τ1K = (σ1 ⊗ 12)K,
Hf (k) has another particle-hole symmetry (σ2 ⊗ σ3)K and,
therefore, a unitary commuting symmetry U = σ3 ⊗ σ3,
with [τ3,U ] = 0. Furthermore, U is also a unitary

TABLE III. Subensembles of {τ3H 2
f } parametrized by the

subensembles of {Hf }. The blocks are labeled by eigenvalues (Eig)
of q [see Eq. (42)] in the first column, with the corresponding degen-
eracy (Deg) listed in the second column. The symbol (f)/(b) in the
third/fourth column means fermions/bosons (squared fermions in
particular). SPH stands for the single-particle Hamiltonian, with the
block describing a particle-conserving many-body block, while the
block of BdG describes a particle-nonconserving many-body block
and displays the particle-hole constraint. The block of U (1) describes
a particle-nonconserving many-body block with a conserved U (1)
charge, for example, the total spin; thanks to this charge, the need
for the Nambu formalism is bypassed and there is no particle-hole
constraint.

Eig Deg Block (f) Block (b) Metric

κ m Kκ (SPH) K2
κ 1m

0 m Hf ,0 (BdG) τ3H 2
f ,0 τ3 = σ3 ⊗ 1m

κ, −κ m, n H±κ [U (1)] τm,nH 2
±κ τm,n =

[
1m 0
0 −1n

]

commuting symmetry of Hτ (k) = τ3H2
f (k) that can be block

diagonalized. After defining a 4 × 4 permutation matrix P
with nonvanishing elements P11 = P23 = P34 = P42 = 1, we
have

P†Hτ (k)P = P†τ3H2
f (k)P = (P†τ3P)(P†Hf (k)P)2,

where P†τ3P = [σ3 0
0 σ3

] and

P†Hf (k)P =
[

H̃f (k, μ,�) 0

0 H̃f (k, μ,−�)

]
, (44)

with H̃f (k, μ,�) = [εk − μ �

�∗ −(ε−k − μ)], that is, the irreducible
block of Hf (k). Now we have

P†Hτ (k)P =
[
σ3H̃2

f (k, μ,�) 0

0 σ3H̃2
f (k, μ,−�)

]
, (45)

and we only need to focus on the irreducible block
σ3H̃2

f (k, μ,�) ≡ σ3H̃2
f (k) ≡ H̃τ (k) of Hτ (k) and the irre-

ducible block H̃f (k, μ,�) ≡ H̃f (k) of Hf (k). As we can see,
H̃τ (k) = σ3H̃2

f (k) resembles Hτ (k) = τ3H2
f (k) a lot. How-

ever, H̃f (k) no longer has the built-in particle-hole constraint.
Instead, H̃f (k) has another particle-hole symmetry σ2K ≡
U †

CK, and usually a time-reversal symmetry K as well (with
UT = 12), if εk = ε−k and � = �∗—which means that the
BdG Hamiltonian of conventional BCS superconductors usu-
ally belongs to class CI. Nonetheless, we will work with the
case εk 
= ε−k, so that the pairing potential will not vanish in
H̃2

f (k), with

H̃2
f (k) =

[
(εk − μ)2 + |�|2 �(εk − ε−k )

�∗(εk − ε−k ) (ε−k − μ)2 + |�|2
]
, (46)

and with the quadratic bosonic Hamiltonian associated with
Hτ (k) being given by

Ĥb =
∑
kσ

[(εk − μ)2 + |�|2]a†
kσ akσ

+
∑

k

[�(εk − ε−k )a†
k↑a†

−k↓ + H.c.]. (47)
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Back to the general discussion, consider next a unitary
symmetry Uf that anticommutes with τ3. It follows that U †

f τ1

is a pseudounitary matrix and U †
f τ1K ≡ T commutes with

τ3H2
f . An interesting physical observation emerges in this

case. If {Uf , τ3} = 0, one can write

Uf =
[

0 U †
C

U T
C 0

]
, UCU †

C = 1N . (48)

Then, the symmetry condition [Uf , Hf ] = 0 reads[−U †
C K∗UC −U †

C�∗U ∗
C

U T
C �UC U T

C KU ∗
C

]
=
[

K �

−�∗ −K∗

]
. (49)

Hence, these symmetries of the fermionic BdG Hamiltonian
are inherited from a particle-hole condition satisfied by the
single-particle Hamiltonian. The associated bosonic system
after squaring inherits instead a time-reversal symmetry T =
U †

f τ1K. This phenomenon is akin to the notion of symmetry
transmutation first discussed in the context of dualities [36].

Finally, fermionic symmetries Uf that neither commute nor
anticommute with τ3 are broken by the squaring procedure.
These symmetries mix K and �, and emerge because of the
specific interplay between K and �. An ensemble of BdG
Hamiltonians necessarily satisfies a particle-hole constraint
and could satisfy other classifying conditions either before or
after the symmetry reduction. We will address the interplay of
these classifying conditions with the squaring map next.

C. Topological classification

Let {Hf (k)} denote an ensemble of Bloch-BdG Hamilto-
nians. We briefly reviewed the topological classification of
these ensembles in Sec. II D. Ensembles of systems without
translation symmetry are included as the special case k = 0.
The squaring map yields an associated ensemble of effective
Bloch-BdG Hamiltonians S({Hf (k)}) = {τ3H2

f (k)}, with the
notation H2

f (k) ≡ [Hf (k)]2. We call these bosonic—in gen-
eral pseudo-Hermitian—ensembles the squared ensembles.

In this subsection we will perform a symmetry-class anal-
ysis and establish a topological classification of these squared
ensembles. As we saw in Sec. III B, unitary transformations
(as opposed to pseudounitary ones) do not have, in general,
a many-body interpretation for particle-nonconserving free-
boson systems. However, since symmetries of our squared
ensembles are inherited from those of free fermions, although
they could be pseudounitarily implemented, there exists nec-
essarily a unitary implementation. As shown in Ref. [33],
a pseudo-Hermitian matrix implemented with unitary sym-
metries (see also Refs. [32,43]), together with a real energy
gap (i.e., Lr of Ref. [33]), can be continuously deformed into
a Hermitian matrix while keeping its symmetries and gap.
Therefore, some of the classification spaces of Hermitian ma-
trices (see Table II) can be used to label our squared ensembles
once their symmetry analysis is realized.

For stable particle-nonconserving free-boson systems, we
have excluded the existence of SPT phases in Sec. IV.
Therefore, a topological classification of free bosons is only
meaningful when we talk about single-particle states (rather
than many-body ground states), i.e., SPT boundary states at

finite energy, which is the main topic of this section. An earlier
suggestion of classifying general effective BdG Hamiltoni-
ans using non-Hermitian symmetry classes can be found in
Ref. [44].

1. Squared ensembles with vanishing pairing

When the pairing potential in Hf (k) vanishes, Hτ (k) be-
comes block diagonal and we only need to focus on one block
of it, e.g., K2

f (k), which corresponds to squaring a particle-
conserving free fermion. The irreducible blocks of Hermitian
ensembles of the form {K2

f (k)} cannot possibly satisfy a
particle-hole or chiral classifying symmetry and so they must
belong to one of the three classes {A, AI, AII}. It is instructive
to track in more detail the fate of the classifying conditions.
For Hf (k) with chiral symmetry U †

S Hf (k)US = −Hf (k), after
squaring we get

U †
S H2

f (k)US = H2
f (k), (50)

which means that US is a unitary commuting symmetry of
H2

f (k). For Hf (k) with a time-reversal or particle-hole sym-

metry U †
T/CH∗

f (−k)UT/C = ±Hf (k), we have

U †
T/CH∗2

f (−k)UT/C = H2
f (k), (51)

which means that U †
T/CK is a time-reversal symmetry of

H2
f (k). These results are listed in Table IV.
Even when the pairing potential in Hf (k) does not vanish,

it is still possible that, upon squaring, the pairing potential
in τ3H2

f (k) vanishes, i.e., Kf (k)� f (k) − � f (k)K∗
f (−k) =

0. This outcome is expected, for example, for Dirac BdG
Hamiltonians because of the defining relations of the Clif-
ford algebra. More concrete examples are spinless 2 × 2 BdG
Hamiltonians Hf (k) of class BDI and spinless 2 × 2 BdG
Hamiltonians Hf (k) of class D subject to the time-reversal
symmetry of Kf (k) = K∗

f (−k). Because of Kf (k) = K∗
f (−k)

in these two examples, Kf (k)� f (k) − � f (k)K∗
f (−k) = 0 is

obviously satisfied because Kf (k) and � f (k) are scalars and
so they commute with each other. In any case, if pairing
vanishes in the squared ensemble because of the squaring
map, we need to focus on one block of Hτ (k), e.g., K2

f (k) −
� f (k)�∗

f (−k). The analysis of these blocks is included in
Table IV as well.

2. Squared ensembles with nonvanishing pairing

Now we focus on the other cases where the pairing po-
tential does not vanish in the squared ensemble. Because
of the pseudo-Hermiticity of Hτ (k) ≡ τ3H2

f (k) mentioned in
Sec. II A, i.e., τ3H†

τ (k)τ3 = Hτ (k), the (anti)commutation re-
lations between the metric τ3 and the three internal classifying
symmetries are crucial to the classification of free bosons.

Case 1: Irreducible ensemble {Hf (k)}
Let us first focus on irreducible ensembles {Hf (k)}. Be-

cause of the built-in particle-hole constraint with UC = τ1 and
UCU ∗

C = 1, the symmetry class of {Hf (k)} can only be {BDI,
D, DIII}.

Class D: For irreducible Hf (k) in class D, the only
classifying condition is the build-in particle-hole constraint
U †

C H∗
f (−k)UC = −Hf (k), with UCU ∗

C = 1 and {τ3,UC} = 0.
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TABLE IV. Particle-conserving free fermions Hf (k) under the squaring map. The left five columns correspond to free fermions, whereas
the right five columns correspond to free bosons, obtained by squaring. The three symmetries T , C, and S are denoted by 1 (−1) if they square
to 1 (−1), and by 0 if they are absent. For Hf (k) with chiral symmetry, a unitary commuting symmetry of H2

f (k) exists and, after block
diagonalization, H2

f (k) will fall into classes {A, AI, AII}.

Hf (k) T C S Classifying space H2
f (k) T C S Classifying space

A 0 0 0 C0 A 0 0 0 C0

AIII 0 0 1 C1 A unitary commuting symmetry of H2
f exists

AI 1 0 0 R0 AI 1 0 0 R0

BDI 1 1 1 R1 A unitary commuting symmetry of H2
f exists

D 0 1 0 R2 AI 1 0 0 R0

DIII −1 1 1 R3 A unitary commuting symmetry of H2
f exists

AII −1 0 0 R4 AII −1 0 0 R4

CII −1 −1 1 R5 A unitary commuting symmetry of H2
f exists

C 0 −1 0 R6 AII −1 0 0 R4

CI 1 −1 1 R7 A unitary commuting symmetry of H2
f exists

After squaring we have

U †
C H∗

τ (−k)UC = U †
Cτ3H∗2

f (−k)UC = −Hτ (k), (52)

with U †
CK the usual build-in particle-hole constraint of Hτ (k),

satisfying the skew-pseudounitary condition UCτ3U
†

C = −τ3.
If the squared ensemble has no emergent symmetries, we
can conclude that Hτ (k) also belongs to class D. Here we
have adopted the same nomenclature for pseudo-Hermitian
symmetry classes as that for Hermitian ones [see Table II
and Eq. (15)] [45]. However, we should always keep in mind
that Hτ (k) is subject to the pseudo-Hermitian condition. After
continuously deforming Hτ (k) to a Hermitian matrix [33], the
classifying space of Hτ (k) is revealed as C0.

Class BDI: In addition to the particle-hole constraint, we
have U †

T H∗
f (−k)UT = Hf (k) and UT U ∗

T = 1. Following the
discussion of Sec. V B, we need to consider two cases, either
{τ3,UT } = 0 or [τ3,UT ] = 0.

(i) {τ3,UT } = 0—In this case U †
CUT is both unitary and

pseudounitary. After squaring we have

U †
T H∗

τ (−k)UT = U †
T τ3H∗2

f (−k)UT = −Hτ (k), (53)

which means U †
TK is a particle-hole symmetry of Hτ (k).

Together with Eq. (52), we have U †
T UCHτ (k)U †

CUT = Hτ (k),
which means U †

CUT ≡ US is a unitary transformation that
commutes with Hτ (k),

U †
S Hτ (k)US = U †

S τ3H2
f (k)US = Hτ (k). (54)

One cannot draw further conclusions about this squared en-
semble without reducing away this symmetry first.

(ii) [τ3,UT ] = 0—In this case UT is both unitary and pseu-
dounitary. After squaring we have

U †
T H∗

τ (−k)UT = U †
T τ3H∗2

f (−k)UT = Hτ (k), (55)

which means U †
TK is a time-reversal symmetry of Hτ (k). If we

start from the chiral symmetry of Hf (k), i.e., U †
S Hf (k)US =

−Hf (k), because {τ3,US} = 0 we find

U †
S Hτ (k)US = U †

S τ3H2
f (k)US = −Hτ (k), (56)

which means US is also a chiral symmetry of Hτ (k). Taking
together Eqs. (52) and (55), we have Hτ (k) belonging to class
BDI, with the classifying space being R0.

Class DIII: The only difference between this class and BDI
is that UT U ∗

T = −1. Hence, the analysis of how the classifying
conditions descend to the squared ensemble is the same as
above. If {τ3,UT } = 0, we again obtain Eqs. (53) and (54)
and one must block diagonalize away the unitary symmetry
US before one can proceed. If [τ3,UT ] = 0, we again obtain
Eqs. (55) and (56) and, because of UT U ∗

T = −1, we now
have Hτ (k) belonging to class DIII, with the classifying space
being R4.

These analyses of squared ensembles associated with ir-
reducible ensembles of BdG Hamiltonians are summarized
in Table V, with the right major column associated with
symmetry classes {BDI, D, DIII} of Hτ (k). Notice that the
topological classification of classes {BDI, D, DIII} of Hτ (k)
is known in the literature (see, for example, Sec. VIII A of
Ref. [33]) [45], however, as it turns out, Table V is just a
subtable of a more general Table VI and more symmetry
classes, besides {BDI, D, DIII}, of Hτ (k) could emerge when
we analyze reducible ensembles {Hf (k)}, as we do next.

Case 2: Reducible ensemble {Hf (k)}
Next we tackle the reducible ensembles {Hf (k)}. That

is, Hf (k) with unitary commuting symmetry U †Hf (k)U =
Hf (k). From the discussion of Sec. V B we have either
{τ3,U } = 0 or [τ3,U ] = 0.

(i) {τ3,U } = 0—In this case, U is both unitary and skew
pseudounitary. After squaring we have

U †Hτ (k)U = U †τ3H2
f (k)U = −Hτ (k), (57)

which means U is a chiral symmetry of Hτ (k). Together with
Eq. (52), we have U †τ1H∗

τ (−k)τ1U = Hτ (k) or, equivalently,
we have U †

C H∗
τ (−k)UC = Hτ (k) with UC ≡ τ1U . As a self-

consistency check, we can start from the non-built-in particle-
hole symmetry of Hf (k), i.e., U †

C H∗
f (−k)UC = −Hf (k), with

[τ3,UC] = 0; we have

U †
C H∗

τ (−k)UC = U †
Cτ3H∗2

f (−k)UC = Hτ (k), (58)

which means U †
CK is a time-reversal symmetry of Hτ (k), sat-

isfying the pseudounitary condition UCτ3U
†

C = τ3. Together
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TABLE V. Particle nonconserving free fermions Hf (k) under the squaring map, where Hf (k) is irreducible. The left five columns
correspond to free fermions Hf (k), whereas the right five columns correspond to free bosons Hτ (k) ≡ τ3H 2

f (k), obtained by squaring. The

three columns of fermionic symmetries T ≡ U †
T K, C ≡ U †

CK = τ1K, and S = U †
CUT = τ1UT specify their (anti)commutation relations to the

metric τ3, while the three columns of bosonic symmetries T , C, and S are inherited from free fermions, specifying their (anti)commutation
relations to the metric τ3 as well. For Hf (k) with chiral symmetry S and [τ3,S] = 0, a unitary commuting symmetry of Hτ (k) exists.

Classifying Classifying
Hf (k) T C S space Hτ (k) T C S space

{τ3,UT } = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of Hτ (k) exists.BDI {τ3,UC} = 0 R1[τ3,UT ] = 0 {τ3,U †
CUT } = 0 BDI [τ3,UT ] = 0 {τ3,UC} = 0 {τ3,U †

CUT } = 0 R0

D – {τ3,UC} = 0 – R2 D – {τ3,UC} = 0 – C0

{τ3,UT } = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of Hτ (k) exists.DIII {τ3,UC} = 0 R3[τ3,UT ] = 0 {τ3,U †
CUT } = 0 DIII [τ3,UT ] = 0 {τ3,UC} = 0 {τ3,U †

CUT } = 0 R4

with Eq. (52), we have Hτ (k) belonging to either class BDI
(if UCU ∗

C = 1), as obtained during the analysis of class BDI
in case 1, or DIII (if UCU ∗

C = −1), as obtained during the
analysis of class DIII in case 1.

(ii) [τ3,U ] = 0—In this case, U is both unitary and pseu-
dounitary. After squaring we have

U †Hτ (k)U = U †τ3H2
f (k)U = Hτ (k), (59)

with U a unitary commuting symmetry of Hτ (k). Then the
block diagonalization of Hf (k) implies that of Hτ (k), and
we only need to focus on irreducible blocks. When deal-
ing with such irreducible blocks, there will also be a set
of symmetry constraints like Eqs. (52)–(56) and (58) im-
posed on them. In the analysis of irreducible blocks below,
we refer to such equations as symmetry constraints imposed
directly on the blocks. Furthermore, since the topological
classification of non-Hermitian Bloch Hamiltonians includes
pseudo-Hermiticity with respect to an indefinite metric as
a classifying condition, as we saw in Sec. V B, the metric
appropriate for defining the block effective BdG Hamiltonian
need not be τ3 = σ3 ⊗ 1m, but can have instead the more
complicated structure τm,n in Table III. In addition, blocks
could emerge with vanishing pairing. Whether any of these
possibilities actually occur is controlled by spectral features of
the symmetry that is being block diagonalized together with
the ensemble. The symmetries of spin rotations and lattice
translations, in particular, do not induce these exotic blocks:
all blocks consist of effective BdG Hamiltonians that are
pseudo-Hermitian with respect to a “balanced” metric τ3 =
σ3 ⊗ 1m. While in the following we assume that the metric
is always of this balanced form, it is interesting to notice
that more exotic scenarios can also be realized in free-boson
systems.

Class A: For an irreducible block of Hf (k) in class A,
there are no symmetry constraints and therefore, except for
pseudo-Hermiticity, no symmetry constraints imposed on the
corresponding block of Hτ (k) either. Hence, this block of
Hτ (k) belongs to class A, with the classifying space math-
ematically [33] being C0 × C0, where each C0 independently
describes either the positive or the negative energy bands.
However, since as seen in Sec. II A the negative energy bands
cannot be occupied by bosons, one only needs to consider the
positive-energy bands. Thus, physically, the classifying space
for this block of Hτ (k) in class A should be C0. Here we

adopt this physical point of view. Accordingly, hereinafter, the
classifying space for class AI is R0 (rather than R0 × R0),
and that for class AII is R4 (rather than R4 × R4).

Class AIII: Now there is only a chiral symmetry imposed
on the block of Hf (k). Therefore, besides pseudo-Hermiticity,
analysis like Eq. (54) will lead to a unitary commuting sym-
metry imposed on the block of Hτ (k), and, similarly, analysis
like Eq. (56) will lead to a chiral symmetry imposed on the
block of Hτ (k), with the block belonging to class AIII and the
classifying space being C0.

Class AI: There is only a time-reversal symmetry im-
posed on the block of Hf (k). So, apart from pseudo-
Hermiticity, analysis like Eq. (53) will lead to a particle-
hole symmetry imposed on the block of Hτ (k), and the
block belongs to class D, with the classifying space
being C0. Similarly, besides pseudo-Hermiticity, analysis like
Eq. (55) will lead to a time-reversal symmetry imposed on the
block of Hτ (k), and the block belongs to class AI, with the
classifying space being R0.

Class BDI: Now in addition to the two possibilities with
{τ3,UC} = 0 analyzed in case 1 of class BDI, two more
possibilities with [τ3,UC] = 0 also arise. If [τ3,UC] = 0 and
{τ3,UT } = 0, analysis based on Eqs. (58) and (53) will lead
to a time-reversal symmetry and a particle-hole symmetry
imposed on the block of Hτ (k), and the block belongs to class
BDI, with the classifying space being R0. If [τ3,UC] = 0 and
[τ3,UT ] = 0, analysis based on Eqs. (58) and (55) will lead to
two time-reversal symmetries imposed on the block of Hτ (k),
and therefore a unitary commuting symmetry of the block.

Class D: Besides the possibility with {τ3,UC} = 0 an-
alyzed in case 1 of class D, one more possibility with
[τ3,UC] = 0 also arises. If [τ3,UC] = 0, analysis like Eq. (58)
will lead to a time-reversal symmetry imposed on the block of
Hτ (k), and the block belongs to class AI, with the classifying
space being R0.

Class DIII: Besides the two possibilities with {τ3,UC} =
0 analyzed in case 1 of class DIII, two more possibilities
with [τ3,UC] = 0 also arise. If [τ3,UC] = 0 and {τ3,UT } = 0,
analysis like Eqs. (58) and (53) will lead to a time-reversal
symmetry and a particle-hole symmetry imposed on the block
of Hτ (k), and the block belongs to class CI, with the classify-
ing space being R0. If [τ3,UC] = 0 and [τ3,UT ] = 0, analysis
like Eqs. (58) and (55) will lead to two time-reversal symme-
tries imposed on the block of Hτ (k), and therefore a unitary
commuting symmetry of the block.
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TABLE VI. Particle nonconserving free fermions Hf (k) under the squaring map, where Hf (k) is reducible but with irreducible blocks
H̃f (k). The left five columns correspond to free fermions H̃f (k), whereas the right five columns correspond to free bosons τ3H̃ 2

f (k) ≡ H̃τ (k),

obtained by squaring, with the balanced metric τ3 considered. The three columns of fermionic symmetries T = U †
TK, C = U †

CK, and S = U †
S

specify their (anti)commutation relations to the metric τ3, while the three columns of bosonic symmetries T , C, and S are inherited from
free fermions, specifying their (anti)commutation relations to the metric τ3 as well. For example, for class AI of H̃f (k) with T = U †

TK and
{τ3,UT } = 0, after squaring U †

TK is a particle-hole symmetry of H̃τ (k) rather than a time-reversal symmetry of H̃τ (k), so {τ3,UT } = 0 is
specified under the column of bosonic symmetry C. For H̃f (k) with chiral symmetry S(= U †

S or U †
CUT ) and [τ3,S] = 0, a unitary commuting

symmetry of H̃τ (k) exists. Note that the special case corresponding to Eqs. (57) and (58) is not listed in this table.

Classifying Classifying
H̃f (k) T C S space H̃τ (k) T C S space

A – – – C0 A – – – C0

{τ3,US} = 0 AIII – – {τ3,US} = 0 C0
AIII – – C1

[τ3,US] = 0 A unitary commuting symmetry of H̃τ (k) exists.

{τ3,UT } = 0 D – {τ3,UT } = 0 – C0
AI – – R0

[τ3,UT ] = 0 AI [τ3,UT ] = 0 – – R0

{τ3,UT } = 0 {τ3,UC} = 0
[τ3,U †

CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

BDI
[τ3,UT ] = 0

{τ3,U †
CUT } = 0 R1 BDI

[τ3,UT ] = 0 {τ3,UC} = 0
{τ3,U †

CUT } = 0 R0{τ3,UT } = 0 [τ3,UC] = 0 [τ3,UC] = 0 {τ3,UT } = 0

[τ3,UT ] = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

{τ3,UC} = 0 D – {τ3,UC} = 0 – C0
D – – R2

[τ3,UC] = 0 AI [τ3,UC] = 0 – – R0

{τ3,UT } = 0 {τ3,UC} = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

DIII
[τ3,UT ] = 0 {τ3,U †

CUT } = 0 R3
DIII [τ3,UT ] = 0 {τ3,UC} = 0 {τ3,U †

CUT } = 0 R4

{τ3,UT } = 0 [τ3,UC] = 0 CI [τ3,UC] = 0 {τ3,UT } = 0 R0

[τ3,UT ] = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

{τ3,UT } = 0 C – {τ3,UT } = 0 – C0
AII – – R4

[τ3,UT ] = 0 AII [τ3,UT ] = 0 – – R4

{τ3,UT } = 0 {τ3,UC} = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

CII
[τ3,UT ] = 0

{τ3,U †
CUT } = 0 R5 CII

[τ3,UT ] = 0 {τ3,UC} = 0
{τ3,U †

CUT } = 0 R4{τ3,UT } = 0 [τ3,UC] = 0 [τ3,UC] = 0 {τ3,UT } = 0

[τ3,UT ] = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

{τ3,UC} = 0 C – {τ3,UC} = 0 – C0
C – – R6

[τ3,UC] = 0 AII [τ3,UC] = 0 – – R4

{τ3,UT } = 0 {τ3,UC} = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

CI
[τ3,UT ] = 0 {τ3,U †

CUT } = 0 R7
CI [τ3,UT ] = 0 {τ3,UC} = 0 {τ3,U †

CUT } = 0
R0

{τ3,UT } = 0
[τ3,UC] = 0

DIII [τ3,UC] = 0 {τ3,UT } = 0 R4

[τ3,UT ] = 0 [τ3,U †
CUT ] = 0 A unitary commuting symmetry of H̃τ (k) exists.

125127-15



QIAO-RU XU et al. PHYSICAL REVIEW B 102, 125127 (2020)

TABLE VII. Periodic table for stable free-boson systems. For d = 0 and d = 4 all the classes are topologically nontrivial, while for d = 1
and d = 5 all of them are topologically trivial.

T C S Classifying space d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A 0 0
AIII 0 1

0 C0 Z – Z – Z – Z –
D 1 0
C −1 0

AI 0 0
BDI 1 1 1 R0 Z – – – 2Z – Z2 Z2

CI −1 1

AII 0 0
DIII −1 1 1 R4 2Z – Z2 Z2 Z – – –
CII −1 1

Class AII: The only difference between this class and AI is
that UT U ∗

T = −1. If {τ3,UT } = 0, we again obtain Eq. (53)
and, since UT U ∗

T = −1, we now have the block of Hτ (k)
belonging to class C, with the classifying space being C0. If
[τ3,UT ] = 0, we again obtain Eq. (55) and, since UT U ∗

T =
−1, we now have the block belonging to class AII, with the
classifying space being R4.

Class CII: There are four possibilities. If {τ3,UC} = 0 and
{τ3,UT } = 0, because of Eqs. (52) and (53), the block of
Hτ (k) has a unitary commuting symmetry. If {τ3,UC} = 0
and [τ3,UT ] = 0, because of Eqs. (52) and (55), the block of
Hτ (k) belongs to CII, with the classifying space being R4.
If [τ3,UC] = 0 and {τ3,UT } = 0, because of Eqs. (58) and
(53), the block of Hτ (k) belongs to CII, with the classifying
space being R4. If [τ3,UC] = 0 and [τ3,UT ] = 0, Eqs. (58)
and (55) lead to a unitary commuting symmetry of the
block.

Class C: There are two possibilities. If {τ3,UC} = 0, be-
cause of Eq. (52), the block of Hτ (k) belongs to class C,
with the classifying space being C0. If [τ3,UC] = 0, because
of Eq. (58), the block of Hτ (k) belongs to class AII, with the
classifying space being R4.

Class CI: The only difference between this class and CII is
that UT U ∗

T = 1. If {τ3,UC} = 0 and {τ3,UT } = 0, because of
Eqs. (52) and (53), the block of Hτ (k) has a unitary commut-
ing symmetry. If {τ3,UC} = 0 and [τ3,UT ] = 0, because of
Eqs. (52) and (55), the block of Hτ (k) belongs to CI, with the
classifying space being R0. If [τ3,UC] = 0 and {τ3,UT } = 0,
because of Eqs. (58) and (53), the block of Hτ (k) belongs to
DIII, with the classifying space being R4. If [τ3,UC] = 0 and
[τ3,UT ] = 0, Eqs. (58) and (55) lead to a unitary commuting
symmetry of the block.

The results of the above analysis are summarized in Ta-
ble VI, based on the (anti)commutation relations between
τ3 and three internal symmetries of the irreducible blocks
of Hf (k). As we can see, the table reproduces the results
of Table V, but with additional possibilities: besides the
three symmetry classes {A, AI, AII} arising when squaring
a particle-conserving free fermion (Table IV), all the other
seven symmetry classes also appear.

As an example, if we return to the squared BCS model
examined in Sec. V B and start with Eq. (47), we see that
H̃f (k) has only the particle-hole symmetry σ2K and belongs

to class C. According to Table VI, since {σ3,UC} = 0, H̃τ (k)
will have the same particle-hole symmetry and belongs to
class C as well.

3. Assessment: The threefold way

Although for particle-nonconserving free bosons under
squaring we obtained all ten AZ symmetry classes, due to the
pseudo-Hermiticity of (the irreducible blocks of) Hτ (k), only
three classifying spaces {C0,R0,R4} appear. More specifi-
cally, we find that AZ symmetry classes with no time-reversal
symmetry correspond to the classifying space C0, classes
with T 2 = 1 correspond to R0, and classes with T 2 = −1

correspond to R4. Therefore, based on Tables IV and VI,
what emerges is a unified periodic table, Table VII, for ei-
ther particle-conserving or nonconserving free-boson systems
obtained by application of the squaring map S. Furthermore,
with simple modifications, Table VII holds for the case of
“unbalanced” metric τm,n (see Table III) as well, with the
associated symmetry classes being {A, AI, AII}. Thus we
conclude that the topological classification of free bosons
under squaring depends only on the existence of time-reversal
symmetry and reduces to the “threefold way” of Dyson [34].
As a byproduct we claim that Table VII also holds for stable
free-boson systems not arising from the squaring procedure
(see Appendix C for a simple proof).

A careful examination of Table VII suggests that the main
difference between free fermions and stable free bosons is
that all the symmetry classes of free bosons are topologically
nontrivial for d = 0 and d = 4, while all of them are topo-
logically trivial for d = 1 and d = 5. However, just like the
fermionic tenfold classification, our threefold classification
may fail when additional symmetries (other than T , C, or S)
are present. For example, the spinless Su-Schrieffer-Heeger
model [46] of a dimerized chain with nonzero chemical
potential or with next-nearest-neighbor hopping has only
time-reversal symmetry with T 2 = 1, which is topologically
trivial in one dimension according to the fermionic tenfold
classification table. However, this is not correct because the
Berry phase of the lowest band is precisely quantized to 0/π

(mod 2π ). The same is true if we square this model. The rea-
son for the nontriviality of this model either before squaring
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or after squaring is the presence of an additional (inversion)
symmetry.

D. Bosonic topological bulk invariants

We have established in Sec. IV the absence of SPT phases
in gapped free-boson systems. However, this does not imply
that these systems cannot display topologically nontrivial ex-
citations in their spectrum. Indeed, Table VII predicts that
topologically nontrivial bosonic excitations may exist. Here
we show how to characterize those excitations in terms of
topological bulk invariants and provide a numerically gauge-
invariant way of computing them. In Sec. VI C we will apply
these ideas and illustrate a bulk-boundary correspondence be-
tween a nonzero value of the bulk invariant and the existence
of localized SPT boundary (nonzero) modes.

Let us first provide a simple derivation of the bosonic
Berry phase for d � 1, following similar steps to those used to
derive the traditional Berry phase [47]. For an effective BdG
Hamiltonian Hτ (with Hb > 0), we have effective Schrödinger
equations (either time dependent or time independent) written
as

Hτ

(
k(t )

)|�±
n (t )〉 = ih̄|�̇±

n (t )〉,
Hτ (k)|ψ±

n (k)〉 = ±En(k)|ψ±
n (k)〉,

(60)

where En(k) > 0 and 〈ψ±
n (k)|τ3|ψ±

n (k)〉 = ±1. Suppose

|�±
n (t )〉 = e± 1

ih̄

∫ t
0dt ′En(k(t ′ ))eiγ ±

n (t )|ψ±
n [k(t )]〉, (61)

after plugging into Eq. (60), one obtains

γ̇ ±
n (t ) = ±i〈ψ±

n [k(t )]|τ3∇k|ψ±
n [k(t )]〉 · k̇(t ). (62)

Defining γ ±
n ≡ γ ±

n (T ) − γ ±
n (0) with k(T ) = k(0), we arrive

at the bosonic Berry phase

γ ±
n =

∮
dk · A±

n (k), (63)

where A±
n (k) ≡ ±i〈ψ±

n (k)|τ3∇k|ψ±
n (k)〉 is the bosonic Berry

connection, which is purely real.
As explained in Sec. II A, while γ +

n is associated with
bosonic states with positive energies, γ −

n is associated with
nonbosonic states with negative energies. Furthermore, since
|ψ−

n (k)〉 = τ1K|ψ+
n (k)〉, it leads to γ −

n = −γ +
n . Therefore,

γ +
n and γ −

n are not independent. Following a procedure similar
to that in Ref. [48] Appendix D, for a one-dimensional lattice
system, the bosonic Berry phase γ +

n can be evaluated in a
numerically gauge-invariant way as

γ +
n = lim

N→∞
Im ln

N∏
j=1

〈ψ+
n (k j+1)|τ3|ψ+

n (k j )〉, (64)

where |ψ+
n (kN+1)〉 ≡ |ψ+

n (k1)〉 and k j+1 ≡ 2π j/N − π .
Another topological invariant associated specifically with

free bosons (when d = 2) is the bosonic Chern number [39]

C±
n = 1

2π
◦∫∫ dk · �±

n (k), (65)

with �±
n (k) ≡ ∇k × A±

n (k) the bosonic Berry curvature. Us-
ing an argument similar to the one used above for relating
γ +

n , γ −
n , one finds C−

n = −C+
n . So C+

n and C−
n are also not

independent. The bosonic Chern number C+
n can be evaluated

in a numerically gauge-invariant way as

C+
n = lim

Nx → ∞
Ny → ∞

Im

π

Nx∑
i=1

Ny∑
j=1

ln
〈
ψ+

n

(
kx

i , ky
j

)|τ3|ψ+
n

(
kx

i , ky
j+1

)〉〈
ψ+

n

(
kx

i , ky
j+1

)|τ3|ψ+
n

(
kx

i+1, ky
j

)〉〈
ψ+

n

(
kx

i+1, ky
j

)|τ3|ψ+
n

(
kx

i , ky
j

)〉
, (66)

where kx
i+1 ≡ 2π i/Nx − π and ky

j+1 ≡ 2π j/Ny − π .

VI. THE FATE OF ZERO MODES

We are finally in a position to investigate localized ZMs of
stable, gapped free-boson systems. As we already noted, this
does not contradict our no-go Theorem 3 and its Corollary,
since these conclusions pertain to free-boson systems subject
to open BCs. We will illustrate the main ideas with several
examples of our (kernel-preserving) squaring map and address
many of the questions we posed, together with consequences
and ramifications of our work up to now. Specifically, the
following three models will be used for investigation:

(i) The squared Kitaev chain. This example exemplifies
how bosonic Majorana ZMs do exist, by virtue of the fact that
the squaring map introduces special BCs, rather than open
BCs (see no-go Theorem 3). These ZMs mimic fermionic
Majorana ZMs in localization and Hermiticity but, naturally,
the canonical anticommutation relation is replaced by the
Heisenberg commutation relation. Since free-boson systems
do not host SPT phases (no-go Theorem 2), one does not
expect them being protected. We provide numerical results

to quantify this expectation and frame our results within the
Krein stability theory summarized in Sec. II C.

(ii) The square of the Jackiw-Rebbi model, adapted for
charge-neutral fermions (essentially, the field-theory version
of the Kitaev chain). We find that half of a bosonic degree of
freedom (one “quadrature”), is trapped at the location of the
soliton, while the conjugate quadrature is pushed to infinity
and out of the physical spectrum.

(iii) The square of the Harper-Hofstadter model with flux
φ = 1/3 per plaquette and nearest-neighbor nonchiral pairing.
Here we see our no-go Theorem 3 (no surface bands around
zero energy for open BCs) at work in full force. In addition,
we calculate and compare the Chern numbers of the fermionic
model and the bosonic Chern numbers of its square.

A. The squared Kitaev chain

We consider the following dimensionless Kitaev Hamilto-
nian [8] at zero chemical potential and with an odd number of
lattice sites:

Ĥf = −
2(N−1)∑

j=1

(
c†

j c j+1 + �

t
c†

j c
†
j+1 + H.c.

)
, (67)
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where c†
j (c j) is the fermionic creation (annihilation) op-

erator, 2N − 1 is the number of lattice sites, t ∈ R is the
hopping amplitude, and � ∈ R is the pairing potential. This
system is known to host two exact ZMs exponentially local-
ized at the two ends [36], namely, two unpaired Majorana
fermions. Thus, after squaring the fermionic model sub-
ject to open BCs, the bosonic model will also host two
exact ZMs. However, unexpectedly, besides these two ex-
act ZMs, we find also two asymptotic ZMs, which we can
derive analytically using the method for diagonalizing corner-
modified banded block-Toeplitz operators developed in
Refs. [24,25].

Let us first square Hf under periodic BCs. As mentioned in
Sec. V C, for a spinless 2 × 2 BdG Hamiltonian Hf (k) of class
BDI, the pairing potential vanishes in τ3H2

f (k). Therefore,
self-adjoint ZMs of τ3H2

f must arise from special BCs that
result from the squaring map of Hf subject to open BCs.
After some calculations we find that τ3H2

f is a Hamiltonian
with next-nearest-neighbor hopping and, indeed, with an im-
purity potential at each end (by removing these impurities,
i.e., imposing open BCs on τ3H2

f , one can check that ZMs no
longer exist, consistently with no-go Theorem 3 in Sec. IV C).
Furthermore, due to the absence of nearest-neighbor hop-
ping, lattice sites labeled by odd numbers decouple from
those labeled by even numbers. Because we are focused
on ZMs, we only need to consider the bosonic many-body
Hamiltonian associated with odd lattice sites, which is a two-
impurity Hamiltonian of the form Ĥb + Ŵ , with Ĥb being the
translation-invariant bulk and Ŵ the boundary impurities. In
units of (�2 + t2)/t2 we have

Ĥb = 2
N∑

j=1

a†
j a j − cos θ

N−1∑
j=1

(a†
j a j+1 + H.c.),

Ŵ = −a†
1a1 − a†

N aN − sin θ

2
(a†

1a†
1 − a†

N a†
N + H.c.),

(68)

where a†
j (a j) is the bosonic creation (annihilation) oper-

ator, sin θ = 2�t/(�2 + t2), and cos θ = (�2 − t2)/(�2 +
t2). Without loss of generality we take θ ∈ (0, π ). In the
rest of this subsection we will work within the representation
π†Hbπ we mentioned in Sec. II A (recall Table I).

1. Bosonic Majorana ZMs

As mentioned, the effective BdG Hamiltonian Hτ =
τ3(Hb + W ) has two exact ZMs. From Ref. [36] and assuming
θ 
= π/2, we write these two exact ZMs as quadratures, in the
form

|x̂1〉 = 1

N

N∑
j=1

(sec θ − tan θ )N+1− j | j〉 ⊗
[

1
−1

]
,

| p̂1〉 = i

N

N∑
j=1

(sec θ − tan θ ) j | j〉 ⊗
[

1
1

]
,

(69)

where the normalization constant N is chosen so that
〈x̂1|τ3| p̂1〉 = i and, therefore, [x̂1, p̂1] = i, with x̂1 = 〈x̂1| τ3�̂

and p̂1 = 〈p̂1| τ3�̂ being self-adjoint (“Majorana bosons”).

That is, we have

x̂1 = 1

N

N∑
j=1

(sec θ − tan θ )N+1− j (a j + a†
j ),

p̂1 = i

N

N∑
j=1

(sec θ − tan θ ) j (a j − a†
j ). (70)

Obviously x̂1 and p̂1 are exponentially localized at sites j = N
and j = 1, respectively, which means that any bosonic ZM
constructed by their linear combination has weights at both
ends and therefore is nonlocal.

We next consider computation of the two asymptotic ZMs
mentioned previously. The strategy is to split the eigenvalue
equation Hτ |ε〉 = ε |ε〉 into two equations, the bulk equation
and the boundary equation,

PBHτ |ε〉 = εPB|ε〉, P∂Hτ |ε〉 = εP∂ |ε〉, (71)

with PB ≡ ∑N−1
j=2 | j〉 〈 j| ⊗ 12 the bulk projector and P∂ ≡

12N − PB the boundary projector. After that we need to
solve the bulk equation, whose solutions will then be used
to parametrize the solutions of the boundary equation (see
Ref. [24] for details). From Eq. (68) we have

Hb = [21N − cos θ (T + T †)] ⊗ 12,

W = |1〉〈1| ⊗ wl + |N〉〈N | ⊗ wr,
(72)

where T ≡ ∑N−1
j=1 | j〉〈 j + 1| is the left-shift operator acting

on the lattice space, wl ≡ −12 − sin θσ1, and wr ≡ −12 +
sin θσ1, respectively.

The reduced bulk Hamiltonian H (z) of τ3Hb and the asso-
ciated polynomial P(ε, z) then read

H (z) = [2 − (z + z−1) cos θ ]

[
1 0
0 −1

]
,

P(ε, z) = z2 det [H (z) − ε12].

(73)

For asymptotic ZMs we have four distinct roots z� (� =
1, . . . , 4) of the polynomial equation P(ε, z) = 0, associ-
ated with four independent solutions of the bulk equation in
Eq. (71). Thus, a linear combination of these four solutions
can parametrize the asymptotic ZMs as

|ε±〉 =
2∑

�=1

α� |z�〉 ⊗
[

1
0

]
+

4∑
�=3

α� |z�〉 ⊗
[

0
1

]
, (74)

with |z�〉 = ∑N
j=1 z j

� | j〉. This finally leads to a system of lin-
ear equations, B(ε)[α1, α2, α3, α4]T = 0, with B(ε) being the
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boundary matrix given explicitly by

B(ε) =

⎡⎢⎢⎣
cos θ − z1 cos θ − z2 −z3 sin θ −z4 sin θ

z1 sin θ z2 sin θ z3 − cos θ z4 − cos θ

zN
1 (z1 cos θ − 1) zN

2 (z2 cos θ − 1) zN
3 sin θ zN

4 sin θ

−zN
1 sin θ −zN

2 sin θ zN
3 (1 − z3 cos θ ) zN

4 (1 − z4 cos θ )

⎤⎥⎥⎦. (75)

The eigenvalues of Hτ are precisely those that ensure det B(ε) = 0. After some calculations we obtain

detB(ε) = sin2(2θ )

8
(z1 − z2)(z3 − z4)

[(
zN

1 + zN
2

)(
zN

3 + zN
4

)− 4
]− (

zN
1 − zN

2

)(
zN

3 − zN
4

)(
2 sin4 θ − 1 + cos2 θ

2
ε2

)
, (76)

which is an even function of ε, with the zeroth order term absent.

In the large-N limit we expand Eq. (76) to order O(ε6),

detB(ε) = 4N2 sin2 θ

[
ε2 − (sec θ + tan θ )2N

16N2 sin4 θ tan2 θ
ε4

]
. (77)

Indeed, we see two asymptotic ZMs with eigenvalues

ε± = ± 4N sin2 θ tan θ

(sec θ + tan θ )N
, (78)

which can be plugged into P(ε, z) = 0 to solve for z�, � =
1, . . . , 4. In the large-N limit, a nontrivial kernel vector of
B(ε±) is [α1, α2,−α1, α2]T, which leads to |ε±〉 being written
as the linear combination of |x̂1〉 and | p̂1〉 of Eq. (69), indicat-
ing the loss of diagonalizability of Hτ .

The effective BdG Hamiltonian Hτ also fails to be diago-
nalizable when θ = π/2, the so-called “sweet spot” (t = �)
of the Kitaev chain, leading to

Ĥb + Ŵ =
N−1∑
j=2

2a†
j a j + (

p2
1 + x2

N

)
, (79)

where p̂1 = i(a†
1 − a1)/

√
2 and x̂N = (a†

N + aN )/
√

2 are two
independent self-adjoint ZMs, each associated with a Jordan
block of size 2. According to Theorem (ZMs [19]) of Sec. II C,
it is clear that no canonical bosonic ZMs can be built from p̂1

and x̂N .
The above discussion on exact and asymptotic ZMs,

together with the diagonalizability of the systems, is summa-
rized in Table VIII.

TABLE VIII. ZMs counting for the Kitaev chain (with an odd
number of lattice sites) and the squared Kitaev chain. The number
of ZMs refers to the number of linearly independent quasiparticle
creation operators that commute with the many-body Hamiltonian.
The number of midgap modes refers to the sum of the number of
exact ZMs and the number of asymptotic ZMs.

System Size Diagonalizable ZMs Midgap modes

Finite Yes 2 2
Hf Semi-infinite Yes 1 1

Yes, if |�/t | 
= 1 4Finite 2
τ3H 2

f No, if |�/t | = 1 2
Semi-infinite No 1 1

2. Sensitivity of ZMs to perturbations

In this section we investigate the sensitivity of ZMs to per-
turbations that preserve the stability of the free-boson system
and contrast to perturbations that do not.

a. Stability-preserving perturbations. We first consider a
boundary perturbation of the form

Ŵs = (s − 1)Ŵ , s ∈ [0, 1]. (80)

By adding Ŵs to Eq. (68), since Hb + sW � 0 for all s, one
obtains a stable family of free-boson systems that interpolates
between open BCs (s = 0), which forbid ZMs, and impurity
BCs (s = 1), which elicit exact bosonic Majorana ZMs. It is
instructive to investigate how bosonic Majorana ZMs split as
a function of the system size N for different s’s. Analytically,
at the sweet spot �/t = 1, ZMs split into ±2

√
1 − s, with

no N dependence because of the decoupling between the
boundary and the bulk. We plot the numerically determined
minimal-modulus eigenvalue of τ3(Hb + sW ) for �/t = 0.5
in Fig. 1(a) and find opposite behaviors for small and large
s’s. For small s’s we see that the splitting of bosonic Majorana
ZMs away from zero energy anomalously increases (rather
than decreasing) as N grows, which is not the case for pro-
tected fermionic Majorana ZMs.

As a second example we keep the impurity BCs intact and
perturb instead the bulk with the on-site disorder

D̂b =
N∑

j=1

μ ja
†
j a j, (81)

where μ j’s are uniformly sampled in the interval [0, μmax].
We plot the numerically obtained minimal-modulus eigen-
value of τ3(Hb + W + Db) as a function of μmax and N in
Fig. 1(b). We see that the splitting of ZMs increases mono-
tonically as a function of μmax and is independent of the
system size. For comparison, we also plot in Fig. 1(c) the
minimal-modulus eigenvalue of Hf + D f , i.e., the fermionic
Kitaev chain subject to the on-site disorder

D̂ f =
2N−1∑

j=1

μ jc
†
j c j, (82)

with μ j’s also uniformly sampled in the interval [0, μmax].
Unlike the bosonic case, the splitting of the Majorana ZMs
is not monotonic as a function of μmax and is sensitive to the
system size. Moreover, the splitting is a couple of orders of
magnitude smaller than the bosonic one.
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FIG. 1. The minimal-modulus eigenvalue of (a) τ3(Hb + sW ) as
a function of the system size N for various impurity strength s’s;
(b) τ3(Hb + W + Db) as a function of μmax for various N’s [the
inset is a log-log plot for N = 5, with a linear fitting ln(Min|ε|) =
0.58 ln μmax − 0.34]; and (c) Hf + Df as a function of μmax for
various N’s. Both (b) and (c) employ randomly distributed disorder
μ j ∈ [0, μmax], averaged over 1000 samples. �/t = 0.5 for (a), (b),
and (c).

b. Stability-nonpreserving perturbations. We again con-
sider the bulk disorder in Eq. (81) with the ideal impurity BCs
intact, but now with μ j’s uniformly sampled in the interval
[−μmax, μmax]. As a consequence, the disorder may render the
system unstable because of the violation of positive semidef-
initeness of Hb + W + Db. Furthermore, because ZMs of the
unperturbed effective BdG Hamiltonian have different Krein
signatures, as explained in Sec. II C, there exists arbitrarily
small perturbations that split ZMs into the complex plane.
This is numerically confirmed in Fig. 2(a). We further plot
the maximal imaginary part of eigenvalues of the perturbed
effective BdG Hamiltonian as a function of �/t for various
system sizes N’s in Fig. 2(b). Both Figs. 2(a) and 2(b) suggest
that ZMs are especially fragile around the sweet spot �/t = 1.

B. Localized ZM in a bosonic field theory

We consider next a field-theoretic example of the squaring
procedure closely related to the Kitaev chain: we square the
celebrated Jackiw-Rebbi model of charge fractionalization
[49] on the infinite real line. The model can be succinctly de-
scribed in terms of the Dirac equation in one spatial dimension
x,

iγ ν∂νψ − gV (φc)ψ = 0, (83)

where V (φc) = φc, ν = 0, 1, ∂0 ≡ ∂t , g, λ > 0, and

φc(x) = tanh(λx). (84)

FIG. 2. (a) The maximal imaginary part of eigenvalues of
τ3(Hb + W + Db) as a function of �/t for various disorder strength
μmax’s, but with fixed system size N = 5. (b) The maximal imag-
inary part of eigenvalues of τ3(Hb + W + Db) as a function of
�/t for various N’s, but with fixed μmax = 10−3. Both (a) and
(b) are with randomly distributed disorder μ j ∈ [−μmax, μmax] av-
eraged over 1000 samples. When �/t = 1, we find analytically that
Max(Im ε) = (8

√
2/15) μ1/2

max + O(μ3/2
max).

The stationary solutions are of the form ψε (x, t ) = e−iεtψε (x),
with −iγ 0γ 1∂xψε (x) + γ 0gV (φc)ψε (x) = εψε (x). Hence,
the Dirac Hamiltonian is

HD ≡ γ 0γ 1 p + γ 0gV (φc), (85)

with p = −i∂x. The choice of gamma matrices γ 0 = σ3 and
γ 1 = iσ2 puts this Dirac Hamiltonian in Nambu form,

HD =
[

gV (φc) p

p −gV (φc)

]
, (86)

satisfying CHDC = −HD in terms of C ≡ σ1K.
There are two ZMs, ψ+

0 (x) and ψ−
0 (x). They are related by

charge conjugation ψ−
0 (x) = Cψ+

0 (x), with

ψ+
0 (x) = cosh

[ g

λ
ln[cosh(λx)]

][1
0

]
− i sinh

[ g

λ
ln[cosh(λx)]

][0
1

]
. (87)

They can be combined into a spatially localized ZM

ψ+
0 (x) + iψ−

0 (x) = [cosh(λx)]−g/λ

[
1
i

]
, (88)

whereas the linearly independent combination ψ+
0 − iψ−

0 di-
verges as x → ±∞.

At this point our work separates from Ref. [49]. Let us
second quantize the model as

Ĥf ≡ 1

2

∫
�̂(x)†HD(x)�̂(x) (89)

in terms of the Nambu array �̂(x) = [c(x) c†(x)]T, with
{c (x), c†(y)} = δ(x − y) and {c(x), c(y)} = 0. This Hamilto-
nian describes spinless, electrically neutral fermions in a static
background potential, the soliton of Eq. (84). The charge
fractionalization of the original model [49] is replaced by
fermion-number fractionalization in our model. One can think
of this model as a field-theory version of the Kitaev chain.
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A normal mode of Ĥf is an operator of the form

ψ̂ε (t ) ≡
∫

[u∗(x, t )c(x) + v∗(x, t )c†(x)] dx, (90)

with ψε (x, t ) ≡ [u(x, t ) v(x, t )]T a stationary solution of
Eq. (83). It is immediate to check that

{ψ̂ε (t ), ψ̂†
ε (t )} =

∫
[|u(x, t )|2 + |v(x, t )|2] dx. (91)

Therefore, if one takes

ψ0(x, t ) = e−iπ/4 ψ+
0 (x) + iψ−

0 (x)

2N 1/2

= [cosh(λx)]−g/λ

2N 1/2
e−iπ/4

[
1
i

]
, (92)

with N−1 = 2π1/2�[g/2λ]
λ�[(g+λ)/2λ] and � being the Euler’s Gamma func-

tion, one finds that ψ̂0(t ) = ψ̂0 is independent of time because
ε = 0 and {ψ̂0, ψ̂

†
0 } = 1,ψ̂0

† = ψ̂0. Since this is the only ZM
and ψ̂0 and ψ̂

†
0 are linearly dependent, there is only half of

a fermionic degree of freedom trapped at x = 0: a single
Majorana fermion in the sense of Kitaev [8]. The other half
is carried by the unnormalizable ZM ψ+

0 − iψ−
0 and so it has

been pushed to infinity. This point of view is nicely bolstered
by solving the model subject to open BCs [50].

We now proceed to investigate the associated free-boson
theory. The square of HD is

H2
D = 12{p2 + [g tanh(λx)]2} − σ2gλ sech2(λx), (93)

with H2
D satisfying CH2

DC = H2
D. Unlike the Dirac Hamilto-

nian of Sec. V A, Ĥb describes an explicitly particle noncon-
serving free-boson system. The second-quantized Hamilto-
nian is Ĥb = 1

2

∫
�̂†(x)H2

D�̂(x) dx, in terms of the bosonic
Nambu array �̂(x) = [a(x) a†(x)]T, with [a(x), a†(y)] =
δ(x − y) and [a(x), a(y)] = 0. The Hamiltonian density
1
2 �̂†(x)H2

D�̂(x) is the sum of three contributions, namely,

T̂ (x) = 1

2
[a†(x)p2a(x) + a(x)p2a†(x)],

Û (x) = 1

2
[g tanh(λx)]2[a†(x)a(x) + a(x)a†(x)],

�̂(x) = igλ

2
sech2(λx)[a†(x)a†(x) − a(x)a(x)].

Notice that both the potential energy and the pairing potential
are exponentially localized around x = 0.

A normal mode of Ĥb is an operator

φ̂ε (t ) ≡
∫

[u∗(x, t )a(x) − v∗(x, t )a†(x)] dx

that satisfies certain conditions. In terms of φ(x, t ) =
[u(x, t ) v(x, t )]T, one can then check that

[φ̂ε (t ), φ̂†
ε (t )] =

∫
φ†(x, t )σ3φ(x, t ) dx. (94)

Moreover, the following properties hold:
(i) If ∂tφ(x, t ) = iσ3H2

D(x)φ(x, t ), then φ̂ε (t ) satisfies
Heisenberg’s equation of motion.

(ii) If φ(x) is an eigenfunction of σ3H2
D(x) with eigenvalue

ε, then φ̂ε (t ) = e−iεt φ̂ε (0).
By construction, both ψ±

0 (x) are formally eigenfunctions
of σ3H2

D(x) with eigenvalue ε = 0. However, the combination
ψ+

0 − iψ−
0 that diverges as x → ±∞ is badly behaved to be

considered an eigenvector even in a generalized sense. Hence,
one can take the view that there is only one eigenvector with
zero eigenvalue, the localized one. The associated self-adjoint
bosonic ZM is

φ̂0 = e−iπ/4

2N 1/2

∫
[cosh(λx)]−g/λ[a(x) + ia†(x)] dx. (95)

Since φ̂
†
0 = φ̂0, it follows that [φ̂0, φ̂

†
0] = 0 and one can again

take the view that the bosonic theory traps half of a bosonic
degree of freedom (a “quadrature”) at the origin, while the
other quadrature is pushed to infinity. Our analysis of the
squared Kitaev chain suggests that a soliton-antisoliton pair
will split a single bosonic degree of freedom into two quadra-
tures, one localized at the center of the soliton and the other
localized at the center of the antisoliton. We are not aware of
a previous description in the literature of this phenomenon for
bosons.

C. The squared Harper-Hofstadter-pairing model

As a final example, we now apply our squaring map to
the spinless d = 2 Harper-Hofstadter Hamiltonian with ad-
ditional pairing terms. Time-reversal symmetry is broken in
the Harper-Hofstadter model [51,52]. After introducing pair-
ing terms, the model belongs to class D of the Hermitian
classification. Upon squaring, the effective BdG Hamiltonian
belongs to class D of pseudo-Hermitian symmetry classes (see
Table V) and, according to Table VII, is classified by an inte-
ger Z, the bosonic Chern number [see Eq. (65) in Sec. V D].

We start with the following fermionic tight-binding Hamil-
tonian subject to open BCs:

Ĥf = −
Lx∑

m=1

Ly∑
n=1

μc†
m,ncm,n

+
Lx−1∑
m=1

Ly∑
n=1

(
txc†

m+1,ncm,n + �xc†
m+1,nc†

m,n + H.c.
)

+
Lx∑

m=1

Ly−1∑
n=1

(
tyei2πφmc†

m,n+1cm,n + �yc†
m,n+1c†

m,n + H.c.
)
,

(96)

where Lx (Ly) is the number of lattice sites along the x (y)
direction, μ is the on-site energy, c†

m,n (cm,n) is the fermionic
creation (annihilation) operator at site (m, n), tx (ty) is the
nearest-neighbor hopping amplitude along the x (y) direction,
�x (�y) is the pairing potential along the x (y) direction, and
φ is the magnetic flux per plaquette in units of flux quanta h/e.
Imposing periodic BCs in the y direction and assuming tx =
ty = −t , �x = �y = �, φ = 1/3, we have Ĥf = ∑

ky
Ĥ f (ky),
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FIG. 3. Single-particle energy spectra of (a) the fermionic Harper-Hofstadter-pairing model subject to open BCs along the x direction;
(b) the squared Harper-Hofstadter-pairing model subject to impurity BCs along the x direction; and (c) the squared Harper-Hofstadter-pairing
model subject to open BCs along the x direction. The parameters are μ/t = −1.7, �/t = −0.1, φ = 1/3, and Lx = Ly = 120. Note that for
visual clarity only spectra around zero energy are plotted in (b) and (c).

with Ĥf (ky) in units of t as

Ĥf (ky) = −
Lx∑

m=1

{[
2 cos

(
ky − 2πm

3

)
+ μ

t

]
c†

m,ky
cm,ky

+
[

i
�

t
sin kyc†

m,ky
c†

m,−ky
+ H.c.

]}

−
Lx−1∑
m=1

[
c†

m+1,ky
cm,ky

− �

t
c†

m+1,ky
c†

m,−ky
+ H.c.

]
.

(97)

Thus we have an effective one-dimensional fermionic many-
body Hamiltonian Ĥf (ky). By numerical diagonalization of
the BdG Hamiltonian Hf (ky), we obtain the single-particle
energy spectra plotted in Fig. 3(a). Apart from midgap edge
states at finite energies, there are localized Majorana ZMs

as well. Specifically, there are two chiral propagating ZMs
at each edge of the cylinder, of opposite directions. This is
consistent with numerical evaluations of the fermionic Chern
numbers of the lowest three negative energy bands under peri-
odic BCs: that is, we find (C−

3 , C−
2 , C−

1 ) = (−1, 2, 1), where
C−

3 is the Chern number of the lowest negative energy band.
Due to the bulk-boundary correspondence, a nonvanishing
sum of these three Chern numbers C−

3 + C−
2 + C−

1 = 2 corre-
sponds to topologically nontrivial ZMs, namely, topologically
protected Majorana fermions localized at the boundaries.
However, for free-boson systems, the sum of the bosonic
Chern numbers of negative energy bands must vanish [39]
and ZMs cannot exist subject to open BCs according to no-go
Theorem 3 in Sec. IV C.

Let us square the BdG Hamiltonian Hf (ky), which leads
to a quadratic bosonic Hamiltonian of the form Ĥb(ky) + Ŵ ,
with

Ĥb(ky) =
Lx∑

m=1

μ(ky)a†
m,ky

am,ky
+

Lx−1∑
m=1

[
t1(ky)a†

m+1,ky
am,ky

+ H.c.
]+

Lx−2∑
m=1

[
t2a†

m+2,ky
am,ky

+ H.c.
]

+
Lx∑

m=1

[
�0(ky)a†

m,ky
a†

m,−ky
+ H.c.

]+
Lx−1∑
m=1

[
�1(ky)a†

m+1,ky
a†

m,−ky
+ H.c.

]
, (98)

where

⎧⎪⎪⎨⎪⎪⎩
μ(ky) ≡ [

2 cos
(
ky − 2πm

3

)+ μ

t

]2 + 4 �2

t2 sin2 ky + 2
(
1 + �2

t2

)
,

t1(ky) ≡ −2
[

cos
(
ky − 2π (m+2)

3

)− 2i �2

t2 sin ky − μ

t

]
, t2 ≡ 1 − �2

t2 ,

�0(ky) ≡ 4i �
t sin 2πm

3 sin2 ky, �1(ky) ≡ 4 �
t sin 2π (m+2)

3 sin
(
ky − π

3

)
,

Ŵ = −
(

1 + �2

t2

)[
a†

1,ky
a1,ky

+ a†
Lx,ky

aLx,ky

]−
[
�

t

[
a†

1,ky
a†

1,−ky
− a†

Lx,ky
a†

Lx,−ky

]+ H.c.

]
. (99)
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TABLE IX. Chern numbers of the Harper-Hofstadter-pairing
model Hf (k) and the squared free-boson model τ3H 2

f (k). The
bosonic Chern number is numerically evaluated based on Eq. (66).
The parameters are μ/t = −1.7, �/t = −0.1, φ = 1/3.

C−
3 C−

2 C−
1 C−

3 + C−
2 + C−

1

Hf (k) −1 2 1 2
τ3H 2

f (k) −1 2 −1 0

Then the effective BdG Hamiltonian is Hτ (ky) = τ3[Hb(ky) +
W ], with the single-particle spectra around zero energy plotted
in Fig. 3(b). Unlike in Fig. 3(a) for fermions, the bosonic
positive bands are disconnected from the negative bands. This
feature is a peculiarity of this model. For example, if one
consider the free-boson model associated with the square of
the chiral p + ip superconductor [7], one would find bosonic
surface bands that cross zero energy for appropriate BCs.
What these two free-boson models have in common is that the
total Chern number of the negative bands vanishes, as must
be the case in general for the bosonic Chern number [39]. In
Table IX we compare the Chern numbers of the fermionic and
its associated bosonic models. For the bosonic descendant of
the Harper-Hofstadter-pairing model, the bosonic Chern num-
bers of the lowest three negative bands are (C−

3 , C−
2 , C−

1 ) =
(−1, 2, −1), with the original fermionic Chern number C−

1 =
1 changed to C−

1 = −1 for the bosonic model. This dramati-
cally alters the topological properties of ZMs as the sum of
the three bosonic Chern numbers vanishes, meaning that ZMs
in the band gap are not topologically mandated.

The appearance of both ZMs and edge states around zero
energy in our model is due to the special BCs generated
by the squaring procedure, i.e., the boundary impurity term
Ŵ . To see this, we remove Ŵ and diagonalize Hτ (ky) =
τ3Hb(ky) subject to open BCs. The single-particle energy
spectra around zero energy is plotted in Fig. 3(c): this shows
no ZMs, while surface bands in other gaps survive. Thus,
topologically nontrivial stable free-boson systems are systems
with topologically nontrivial single-particle states at finite
energies but topologically trivial many-body ground states, in
agreement with the general no-go theorems we discussed in
Sec. IV.

VII. CONCLUSIONS AND OUTLOOK

Many-boson systems display amazing coherent behavior
and correlations, such as Bose-Einstein condensation and
fragmentation. At the mean-field level description, however,
topology seems to provide a limited-scope principle for the or-
ganization of low-energy, stable bosonic matter. In this paper,
following steps analogous to those in the fermionic tenfold
way, with identical classifying symmetry constraints together
with the pseudo-Hermiticity, we have presented a topolog-
ical classification of stable free-boson systems by means
of a kernel-preserving squaring map, leading to an elegant
threefold way. This topological classification bears great re-
semblance with standard Dyson symmetry classes because, as
shown, out of three classifying symmetries only time-reversal
symmetry is of fundamental importance for canonical bosons.

Moreover, we proved three no-go theorems applicable to
arbitrary stable gapped free-boson systems, even those that
are not derived from our squaring map. Our first theorem
establishes the even parity of bosonic ground states, with the
immediate consequence of lack of parity switches. Consis-
tently, our second theorem dictates the absence of nontrivial
SPT phases of stable free-boson systems. By the Gell-Mann-
Low theorem and our no-go Theorem 2, one can conclude that
there also exist no nontrivial SPT phases of weakly interacting
bosons. Therefore, SPT phases of bosons can only be strongly
correlated phases of matter, beyond the reach of perturbative
approaches. Our third theorem puts the last nail in the coffin,
by asserting that not only bosonic ZMs, but also midgap states
around zero energy are forbidden when the system is subject
to open BCs. These results can be traced back to a condition
that bosonic Hamiltonians need to satisfy in order to be stable
(positive semidefiniteness). There is no counterpart of this
condition for fermions.

In spite of these no-go results, we utilized our squaring-the-
fermion map for generating a wealth of examples of localized
bosonic ZMs and surface bands in the zero gap coexisting
with a fully gapped bulk. The key is to notice that the square
of a fermionic BdG Hamiltonian satisfies the particle-hole
constraint associated with bosonic effective BdG Hamiltoni-
ans. The localized ZMs and surface bands obtained by this
method share, with due allowance for the change in statistics,
every exotic property of their fermionic counterpart with two
exceptions: the resulting BCs cannot be open, and, consis-
tently with our no-go results, there generically is no protection
mechanism at play. We investigated this last point numerically
in considerable detail for the squared Kitaev chain. Besides
two exact bosonic Majorana ZMs inherited from Majorana
fermions, we found a pair of unexpected asymptotic ZMs
localized at the two ends, which coalesce with those two
exact bosonic Majorana ZMs in the thermodynamic limit. We
have also shown how to generate new bosonic field theories
out of our squaring map, in particular, we derived a squared
Jackiw-Rebbi field theory with bosonic solitons. Finally, we
presented the squared Harper-Hofstadter model with pairing
to illustrate the interplay between bosonic topological invari-
ants and midgap states.

Our no-go Theorem 1, which establishes that gapped stable
free-bosonic ground states always display even parity, is at
odds with the equivalent free-fermionic situation. The change
in fermion parity between equilibrium phases is an indicator
of the transition between gapped topologically distinct vacua,
and this fermion parity switch is the invariant that finds ex-
tension in particle-conserving interacting fermionic systems
[14,15]. In hindsight, what a topologically nontrivial inter-
acting bosonic vacuum represents, constitutes a fundamental
question. But it is perhaps equally fundamental to establish
whether interactions may induce a ground-state topological
transition between parity-distinct gapped bosonic phases. In
Ref. [53], an exactly solvable p-wave pairing model for two
bosonic species was introduced that shares some common-
alities with the p + ip fermionic model. Contrary to the
latter, in the bosonic case the transition separates a gap-
less, fragmented singlet pair Bose-Einstein condensate from
a pair Bose gapped superfluid. This raises the concern that
boson parity switches may be fundamentally nonexistent in

125127-23



QIAO-RU XU et al. PHYSICAL REVIEW B 102, 125127 (2020)

interacting bosonic systems, since a gapless Bose-Einstein
condensate may intervene. One would like to find interact-
ing bosonic models with topologically inequivalent gapped
phases. This is an open question for future studies.
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APPENDIX A: PROOF OF THE THEOREM IN SEC. II C

As in the main text, Hτ = τ3Hb denotes the effective
BdG Hamiltonian of a many-body free-boson system with N
single-particle states and Hb � 0. We write N0 ≡ dim ker Hτ

and let m � N0 be the number of size-two Jordan blocks
(necessarily at zero frequency as a consequence of positive
semidefiniteness [20]) in the Jordan normal form of Hτ .
Similarly, we write 2n ≡ N0 − m for the (necessarily even)
number of size-one Jordan blocks. Note that there are then
2N ′ ≡ 2N − 2n − 2m nonzero eigenvalues εν of Hτ . We first
establish the following:

Lemma 1. The 2n kernel vectors of Hτ corresponding
to Jordan blocks of size one denoted by |φ±

0, j〉 with j =
1, . . . , n, can be taken to satisfy 〈φ±

0, j |τ3|φ±
0,�〉 = ±δ j� and

〈φ±
0, j |τ3|φ∓

0,�〉 = 0. The remaining m kernel vectors, which we
will denote by |ρ0, j〉, can be chosen to be τ3 orthogonal to
the vectors |φ±

0,�〉 and satisfy 〈ρ0, j |τ3|ρ0,�〉 = 0 for all j, � ∈
{1, . . . , m}. Furthermore, we can find m generalized eigenvec-
tors |χ0, j〉 satisfying Hτ |χ0, j〉 = |ρ0, j〉 and 〈χ0, j |τ3|χ0,�〉 = 0
and 〈χ0, j |τ3|ρ0,�〉 = t jδ j,�, with t j either 1 or −1, for all j, � ∈
{1, . . . , m} that are τ3 orthogonal to the vectors |φ±

0, j〉.
Proof. Theorem 5.1.1 in Ref. [20] says there exists a ma-

trix S that induces the transformation Hτ = S−1JS with

J = diag(E,−E, 0, . . . , 0, J0, . . . , J0),

where E ≡ diag(ε1, . . . , εN ′ ), 0 appears 2n times and J0 ≡
[0 1
0 0] appears m times, and τ3 = S†PS with

P = diag(1N ′,−1N ′ , P0),

P0 = diag(s1, . . . , s2n, t1σ1, . . . , tmσ1),

where the s�’s and t�’s are either 1 or −1. Furthermore,
Theorem A.1.1 in Ref. [20] tells us that P and τ3 have the
same number of positive and negative eigenvalues. Clearly
the eigenvalues of P are ±1 and so they must each have

multiplicity N . We see that N ′ of the +1 (−1) eigenvalues
are accounted for in the first (second) N ′ diagonal elements
of P. We also have m of them originating from the t�σ1

factors in P0. The remaining number of +1 (−1) eigenvalues
is N − N ′ − m. Recalling that N = N ′ + m + n, we conclude
that n of the s�’s are +1 and the remaining are −1. Without
loss of generality (by rearranging the Jordan normal form as
necessary), we can take s j = 1 for j = 1, . . . , n and s j = −1
for j = n + 1, . . . , 2n. Now define

|φ+
0, j〉 ≡ S−1|2N ′ + j〉, |φ−

0, j〉 ≡ S−1|2N ′ + n + j〉,
for j = 1, . . . , n. Clearly Hτ |φ±

0, j〉 = 0 and by virtue of
the relation τ3 = S†PS we have 〈φ±

0, j |τ3|φ±
0,�〉 = ±δ j� and

〈φ±
0, j |τ3|φ∓

0,�〉 = 0.
In the same vein we can take

|ρ0, j〉 ≡ S−1|2N ′ + 2n + 2 j − 1〉,
|χ0, j〉 ≡ S−1|2N ′ + 2n + 2 j〉,

which can be checked to satisfy claimed properties. �
Now we restate Theorem of Sec. II C and give a proof.
Theorem (ZMs [19]). For the effective BdG Hamiltonian

Hτ = τ3Hb, let 2n and m be the number of linearly inde-
pendent zero eigenvectors associated with Jordan chains of
length one and two, respectively. Then there are n pairs of
canonical boson b0, j, b†

0, j that commute with the many-body

Hamiltonian Ĥb and all other normal modes of the system. In
addition, there exist m pairs of Hermitian operators P0, j, Q0, j

that also commute with all other normal modes of the system
and obey [Q0, j, P0,�] = iδ j�, [Ĥb, P0, j] = 0, and [Ĥb, Q0, j] =
(i/μ j )P0, j , with μ j > 0.

Proof. Let D0 be the span of the eigenvectors |φ±
0, j〉 speci-

fied in Lemma 1. In order to construct these bosonic ZMs, we
need a basis {|ψ±

0, j〉}n
j=1 for D0 satisfying

〈ψ±
0, j |τ3|ψ±

0,�〉 = ±δ j�,

〈ψ±
0, j |τ3|ψ∓

0,�〉 = 0,

|ψ−
0, j〉 = C |ψ+

0,�〉 ,

(A1)

where C ≡ τ1K. With such a basis, we can construct the n
pairs (b0, j, b†

0, j ) in a way identical to Eq. (9).
It is not a priori true that the basis {|φ±

0, j〉} in Lemma 1
satisfies the third condition. Thus we define

|ψ+
0, j〉 =

n∑
�=1

α j�|φ+
�,0〉,

where α j� ∈ C. In order to ensure that 〈ψ+
0, j |τ3|ψ+

0,�〉 = δ j� the
matrix α with elements given by α j� must be unitary. Thus, out
of the original 2n2 real parameters (two for each α j�), we are
left with n2 free. Now, we wish to impose the condition

Oj� ≡ 〈ψ+
0, j |τ3C|ψ+

0,�〉 = 0, (A2)

for all j and �. Because of Oj� = −O� j , Eq. (A2) imposes
n(n − 1)/2 independent conditions. Taking the real and imag-
inary parts of Oj� = 0 yields n(n − 1) equations that must be
satisfied. Given we have n2 free parameters, we have enough
freedom to ensure Oj� = 0 for all j and �. The remaining
n free real parameters can be associated with the arbitrary
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phases of each |ψ+
0, j〉. After choosing α j� appropriately, we

define |ψ−
0, j〉 ≡ C |ψ+

0,�〉. Then the three conditions in Eq. (A1)
are satisfied.

Moving to the higher order Jordan blocks, we wish to
construct a set of m eigenvectors |P0, j〉 and m generalized
eigenvectors |Q0, j〉 of Hτ satisfying

Hτ |P0, j〉 = 0, (A3)

Hτ |Q0, j〉 = − i

μ j
|P0, j〉, (A4)

〈Q0, j |τ3|ψ±
0,�〉 = 〈P0, j |τ3|ψ±

0,�〉 = 0, (A5)

〈P0, j |τ3|P0,�〉 = 0, (A6)

〈Q0, j |τ3|Q0,�〉 = 0, (A7)

〈Q0, j |τ3|P0,�〉 = iδ j�, (A8)

C |P0, j〉 = −|P0, j〉, (A9)

C |Q0, j〉 = −|Q0, j〉. (A10)

We claim that P0, j = 〈P0, j | τ3�̂ and Q0, j = 〈Q0, j | τ3�̂ provide
the desired Hermitian operators.

We begin by letting |ρ0, j〉 and |χ0, j〉 denote the vectors
defined in Lemma 1 and define

|P0, j〉 =
m∑

�=1

β j�|ρ0,�〉,

|Q0, j〉 = −i

μ j

m∑
�=1

β j� |χ0,�〉 +
m∑

�=1

γ j�|ρ0,�〉,

with μ−1
j ≡ 〈Q0, j |Hτ |Q0, j〉 > 0, β j�, γ j� ∈ C. By construc-

tion, conditions (A3), (A4), and (A6) are satisfied. Further-
more, condition (A5) is satisfied when the plus sign is chosen.
This fact paired with conditions (A9) and (A10) will ensure
that the minus sign portion of condition (A5) will be sat-
isfied. Thus, we will show that conditions (A9) and (A10)
can be satisfied first. Moving forward, condition (A8) im-
poses m(m + 1)/2 constraints on the 2m2 free parameters
β j�, γ j�. Condition (A9) imposes m more constraints. This
leaves us with 3m(m − 1)/2 � 0 free parameters. Now, if the
vectors |Q0, j〉 satisfy (A10), then they will satisfy condition
(A8) for j = �. Noting that, by virtue of the charge conju-
gation properties of the vector |ψ±

0, j〉, the span of the vectors
{|Q0, j〉 , |P0, j〉}m

j=1 is invariant under the action of C. Thus, we
can write

C |Q0, j〉 =
m∑

�=1

(z j� |Q0,�〉 + w j� |P0,�〉),

with z j�,w j� ∈ C. Projecting with 〈P0,k| τ3, and noting that
for any vectors |v〉 and |w〉 we have 〈v|C|w〉 = 〈w|C|v〉 and
τ3C = −Cτ3, we obtain iδ jk = −iz jk . Thus

C |Q0, j〉 = − |Q0, j〉 +
m∑

�=1

w j�|P0,�〉.

To ensure C |Q0, j〉 = − |Q0, j〉 we can shift |Q0, j〉 by the ap-
propriate linear combination of the vectors |P0,�〉 to make
the second term vanish. This imposes no more constraints

and preserves the already satisfied conditions. By impos-
ing condition (A7) for j 
= � we obtain m(m − 1)/2 more
constraints. Altogether we still retain 3m(m − 1)/2 − m(m −
1)/2 = m(m − 1) � 0 free parameters. Thus, all eight condi-
tions can be satisfied by the appropriate choice of constants
β j� and γ j�. �

APPENDIX B: SYMMETRY REDUCTION

Let {Hf } denote an ensemble of BdG Hamiltonians that
commute with Q f , where

Hf = |↑〉〈↑| ⊗ K + |↑〉〈↓| ⊗ �

− |↓〉〈↑| ⊗ �∗ − |↓〉〈↓| ⊗ K∗

is written in terms of eigenvectors |↑〉 ≡ [1
0], |↓〉 ≡ [0

1] of σ3.
We are interested in the symmetry reduction of the squared
ensemble {τ3H2

f }, induced by a symmetry Q f that commutes
with τ3. The eigenvalues of Q f are determined by the eigen-
values of the Hermitian operator q defined in Eq. (42), the
spectrum of which we denote as σ (q). The blocks of the
squared ensemble consists of reduced effective BdG Hamil-
tonians with respect to a reduced metric. It is important for
classification purposes to understand the general structure of
both the reduced metric and the reduced effective BdG Hamil-
tonian. There are three distinct cases to analyze.

Case 1: κ ∈ σ (q) and −κ /∈ σ (q). Let |κ, ν〉, ν = 1, . . . , m,
denote a complete set of orthonormal eigenvectors of q for
the eigenvalue κ , written in the mode basis of the original
many-boson Hamiltonian. Since, by assumption, −κ is not
an eigenvalue of q, the eigenvectors of Q f associated with
κ are |↑〉|κ, ν〉 and the eigenvectors associated with −κ are
|↓〉|κ, ν〉∗, with |κ, ν〉∗ ≡ K|κ, ν〉. The associated canonical
fermions, partially labeled by the conserved quantum number
κ , are

c†
κ,ν ≡ �̂†|↑〉|κ, ν〉 = ψ̂†|κ, ν〉, (B1)

cκ,ν ≡ �̂†|↓〉|κ, ν〉∗ = ψ̂T|κ, ν〉∗ = 〈κ, ν|ψ̂. (B2)

There is one and only one block of Ĥf featuring these
degrees of freedom. To compute it, let

Pκ = |↑〉〈↑| ⊗
m∑

ν=1

|κ, ν〉〈κ, ν| + |↓〉〈↓| ⊗
m∑

ν=1

|κ, ν〉∗〈κ, ν|∗

denote the projector onto the eigenstates of Q f associated with
±κ . Then, the many-body block is

Ĥf ,κ = 1
2 �̂†PκHf Pκ�̂ = �̂†

κ Hf ,κ �̂κ ,

in terms of the Nambu array

�̂†
κ = [c†

κ,1 · · · c†
κ,m cκ,1 · · · cκ,m].

By construction, Hf ,κ = [ Kκ �κ

−�∗
κ −K∗

κ
]. However,

[�κ ]νν ′ = 〈κ, ν|�|κ, ν ′〉∗ = 0

because [Hf , Q f ] = 0 and κ 
= −κ by assumption (notice that
complex conjugation affects only the nearest vector to the
left). Hence, the many-body block is

Ĥf ,κ = ψ̂†
κ Kκ ψ̂κ , ψ̂†

κ = [c†
κ,1 · · · c†

κ,m],
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and we see that the number of κ fermions is conserved. Fi-
nally, the squaring map S yields the free-boson system

Ĥb,κ ≡ 1
2 �̂†

κH2
f ,κ �̂κ = φ̂†

κK2
κ φ̂κ ,

in terms of canonical bosons a†
κ,ν ≡ φ̂†|κ, ν〉.

Case 2: 0 ∈ σ (q). Let |0, ν〉, ν = 1, . . . , m, denote a com-
plete orthonormal set of eigenvectors of q belonging to zero
eigenvalue. The associated fermionic degrees of freedom are
just as in Eq. (B1), simply set κ = 0. Proceeding as before we
obtain the many-body block Ĥf ,0 = 1

2 �̂
†
0 Hf ,0�̂0, where the

single-particle and pairing blocks of Hf ,0 are

[K0]νν ′ = 〈0, ν|K|0, ν ′〉 = [K0]∗ν ′ν,

[�0]νν ′ = 〈0, ν|�|0, ν ′〉∗ = −[�0]ν ′ν .

Unlike the previous case, the pairing term need not vanish
because 0 = −0. By comparison with case 3 below, zero
eigenvalue is also special because no further reduction of
the single-particle block Ĥf ,0 is possible. The squaring map
induces the block transformation τ3H2

f ,0 in terms of τ3 =
σ3 ⊗ 1m.

Case 3: κ,−κ ∈ σ (q) and κ 
= 0. This is the most elaborate
case and, together with case 2, it comprises familiar sym-
metries like spin rotations and lattice translations. Let |κ, ν〉,
ν = 1, . . . , m, and |−κ, ν̄〉, ν̄ = 1, . . . , n, denote complete
orthonormal sets of eigenvectors of q associated with the
indicated eigenvalues. Notice that we do not assume identical
degeneracy for κ and −κ . They do coincide for spin and
crystal momenta but that need not be the case in general. As
we will see, the case m 
= n introduces exotic features into the
bosonic problem. Now, κ,−κ are also eigenvalues of Q f . The
corresponding complete sets of orthonormal eigenvectors are
|↑〉|κ, ν〉, |↓〉| − κ, ν̄〉∗, and |↑〉| − κ, ν̄〉, |↓〉|κ, ν〉∗, respec-
tively. The fermionic degrees of freedom are

c†
κ,ν ≡ ψ̂†|κ, ν〉, c†

−κ,ν̄ ≡ ψ̂†| − κ, ν̄〉.
The many-body block can be calculated as before in terms

of a projector P±κ onto the subspace associated with the
eigenvalues ±κ of Q f . The resulting many-body block can
be characterized as Ĥf ,±κ = 1

2 �̂
†
±κHf ,±κ�̂±κ in terms of the

Nambu array

�̂
†
±κ ≡ [c†

κ,1 · · · c†
κ,m c†

−κ,1 · · · c†
−κ,n cκ,1 · · · cκ,m c−κ,1 · · · c−κ,n]

and the BdG Hamiltonian

Hf ,±κ =

⎡⎢⎢⎣
K1 0 0 �1

0 K2 �2 0
0 −�∗

1 −K∗
1 0

−�∗
2 0 0 −K∗

2

⎤⎥⎥⎦,

with K1 and K2 Hermitian m × m and n × n matrices, respec-
tively, and �1 = −�T

2 an m × n rectangular matrix. Explicit
expressions are (the conjugation operation acts only on the bra
or ket directly to the left of it)

[K1]νν ′ = 〈κ, ν|K|κ, ν ′〉, [K2]ν̄ν̄ ′ = 〈−κ, ν̄|∗K| − κ, ν̄ ′〉∗,
[�1]νν̄ = 〈κ, ν|�| − κ, ν̄〉∗ = −[�2]ν̄ν .

Note that the single-particle Hamiltonian Hf ,±κ is “re-
ducible” but the many-body block is not. So we have

Ĥf ,±κ = �̃
†
±κH±κ�̃±κ − (tr K1 − tr K2)

in terms of the generic Hermitian matrix

H±κ =
[

K1 �1

−�∗
2 −K∗

2

]
(B3)

and the (not Nambu!) array

�̃
†
±κ = [c†

κ,1 · · · c†
κ,m c−κ,1 · · · c−κ,n].

This form of the many-body block makes it clear that it com-
mutes with the charge

N̂±κ =
m∑

ν=1

c†
κ,νcκ,ν −

n∑
ν̄=1

c†
−κ,ν̄c−κ,ν̄ .

The free-boson system induced by the squaring map S,

Ĥb,±κ = 1
2 �̂

†
±κH2

f ,±κ�̂±κ

= �̃
†
±κH2

±κ�̃±κ + (trK1 − trK2),

is then written in terms of the (not Nambu!) array

�̃
†
±κ = [a†

κ,1 · · · a†
κ,m a−κ,1 · · · a−κ,n],

of canonical bosons a†
κ,ν = φ̂†|κ, ν〉, a−κ,ν̄ = 〈−κ, ν̄|φ̂, and

the generic Hermitian H±κ of Eq. (B3). Notice that

[�̃±κ , �̃
†
±κ ] = τm,n, τm,n ≡

[
1m 0
0 −1n

]
.

Hence, the irreducible effective BdG Hamiltonian is
τm,nH2

f ,±κ , which is τm,n pseudo-Hermitian. The pseudouni-
tary transformations associated with Gaussian isometries of
the array �̃±κ satisfy Uτm,nU † = τm,n. The case m = n is
certainly well understood, as we have seen. The geometric
and algebraic features of the case m 
= n are treated in the
mathematical literature under the heading of “indefinite linear
algebra,: see Ref. [20].

APPENDIX C: ON GENERAL STABLE
BOSONIC ENSEMBLES

We begin with the observation (see Table VI) that the
time-reversal symmetry of τ3H̃2

f (k) always commutes with

τ3, while both particle-hole and chiral symmetries of τ3H̃2
f (k)

always anticommute with τ3. To see that Table VII also
holds for ensembles of stable free-boson systems not arising
from the squaring procedure, we need to show that the time-
reversal symmetry of H̃τ (k) ≡ τ3H̃b(k) [with H̃†

b (k) = H̃b(k),
H̃b(k) > 0] cannot anticommute with τ3, and particle-hole or
chiral symmetries cannot commute with τ3. We show that this
is the case by contradiction.

(a) Suppose that the time-reversal symmetry U †
TK,

U †
T H̃∗

τ (−k)UT = H̃τ (k) anticommutes with τ3, i.e.,
{τ3,UT } = 0. Then we have U †

T H̃∗
b (−k)UT = −H̃b(k),

which translates into a particle-hole symmetry of H̃b(k), thus
violating the stability condition H̃b(k) > 0.

(b) Suppose that the particle-hole symmetry U †
CK,

U †
C H̃∗

τ (−k)UC = −H̃τ (k) commutes with τ3, i.e., [τ3,UC] =
0. Then we have U †

C H̃∗
b (−k)UC = −H̃b(k), which also trans-

lates into a particle-hole symmetry of H̃b(k), thus violating
the stability condition H̃b(k) > 0.
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(c) Suppose that the chiral symmetry U †
S , U †

S H̃τ (k)US =
−H̃τ (k) commutes with τ3, i.e., [τ3,US] = 0. Then we have
U †

S H̃b(k)US = −H̃b(k), which translates into a chiral symme-
try of H̃b(k), thus violating the stability condition H̃b(k) > 0.

Thus, we expect that our Table VII also holds for generic
stable free-boson systems with metric τ3. For the “un-
balanced” metric τm,n (see Table III), only time-reversal
symmetry is possible, and with simple modifications, the rea-
soning (a) above is still valid.

A simple argument points to the importance of the
stability condition in establishing the threefold way clas-
sification. Let {Hτ (k) = τ3Hb(k)} denote an ensemble of

effective Bloch BdG Hamiltonians with Hb(k) > 0, but arbi-
trary otherwise. By block diagonalizing the linear Gaussian
many-body symmetries of the ensemble, one obtains a family
of subensembles {H (i)

τ (k)} and associated metrics τ (i)
m,n. This

characterization of the subensembles relies heavily on the
assumption Hb(k) > 0 which guarantees that the quasiparti-
cles of Hb(k) are canonical bosons. Moreover, because it is
true of the parent ensemble, the Hermitian Bloch Hamiltoni-
ans τ (i)

m,nH (i)
τ (k) satisfy τ (i)

m,nH (i)
τ (k) > 0 necessarily. Hence, if

irreducible, the Hermitian ensembles {τ (i)
m,nH (i)

τ (k)} can only
be of class A, AI, or AII according to the usual tenfold
way.
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