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Hinge modes and surface states in second-order topological three-dimensional quantum Hall
systems induced by charge density modulation
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We consider a system of weakly coupled one-dimensional wires forming a three-dimensional stack in the
presence of a spatially periodic modulation of the chemical potential along the wires, equivalent to a charge
density wave (CDW). An external static magnetic field is applied parallel to the wire axes. We show that, for
a certain parameter regime, due to interplay between the CDW and magnetic field, the system can support a
second-order topological phase characterized by the presence of chiral quasi-1D quantum Hall effect (QHE)
hinge modes. Interestingly, we demonstrate that direction of propagation of the hinge modes depends on the
phase of the CDW and can be reversed only by electrical means without the need of changing the orientation of
the magnetic field. Furthermore, we show that the system can also support 2D chiral surface QHE states, which
can coexist with one-dimensional hinge modes, realizing a scenario of a hybrid high-order topology. Performing
two-terminal transport simulations in the linear response regime, we confirm quantized QHE resistance plateaus,
which are highly robust to disorder giving a clear signature of hinge and surface states.
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I. INTRODUCTION

Over the last decade topological phases of matter have
attracted considerable attention in condensed matter physics.
This was triggered by the discovery of the quantum Hall
effect (QHE) [1–4] with striking stability of the edge states
[5]. These findings motivated a large amount of experimental
and theoretical work on other topological systems such as
fractional QHE [6,7], topological insulators (TIs), and super-
conductors (TSCs). In d-spatial dimension, the bulk of those
systems is gapped while there exist topologically protected
gapless states on their (d − 1)-dimensional boundaries [8].
Very recently concepts of topological materials have been
generalized to a new class of d-dimensional systems which
host topologically protected edge states on (d − n) dimen-
sional boundaries, which are referred to as nth order TIs and
TSCs [9–35].

In the present work, we propose a 3D system related to
the QHE and analyze its transport properties, see Fig. 1. We
uncover striking properties such as 1D chiral hinge modes—
realizing second-order topological QHE and 2D chiral surface
QHE states—present in 3D QHE [36–44], recently discov-
ered in ZrTe5 [45]. Furthermore, the studied system can host
both types of states coexisting in the gap supporting a hybrid
scenario with mixed higher-order topology, investigated in
the context of higher-order TSCs [34,35]. Remarkably, the
direction of propagation of the hinge modes can be tuned all
electrically by changing the phase of the CDW potential. This
extraordinary feature paves the way for an all-electrical con-
trol of the propagation direction of topological hinge modes
without the need of changing the orientation of the external
magnetic field, nor does it require any spin-orbit interaction.
We expect that such an effect can be realized in systems where

the CDW is induced by electric fields in stacked 2DEGs or
stacked monolayer systems.

II. MODEL

We consider a 3D coupled-wire construction [46–58] in the
presence of a uniform magnetic field applied along the wire
axis, see Fig. 1. In addition, we include a CDW modulation

FIG. 1. (a) A 3D stack of weakly coupled wires in a magnetic
field B applied along their axis. (b) The wires (thick black lines)
aligned along the x axis and labeled by the indexes m (l) are weakly
coupled with tunnel amplitude ty, (tz ) in the y (z) direction. The
vector potential A = Byez is chosen to be in the z direction such
that the corresponding tunneling phase φ(y) = eBazy/h̄c is position
dependent, where az is the distance between neighboring wires in the
z direction. In addition, there is a CDW modulation V (x) [orange
wavy line (b)] of the chemical potential of the wires with period
λw . The sketch of (c) the hinge modes localized on the left (red)
and right (blue) surfaces and of (d) surface states localized on all
surfaces except left and right. Green areas indicated leads attached to
the system for the purpose of transport studies.
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along the wires [Fig. 1(b)]. Such CDWs may be induced
intrinsically by electron-electron interactions [45,59–61] or
by an internal superlattice structure [62,63], or extrinsically
by periodically arranged gates inducing spatial modulations of
the chemical potential [64,65]. The system is then described
by the following tight-binding Hamiltonian,

H3D =
∑
n,m,l

[
− txc†

n+1,m,l cn,m,l − tyc†
n,m+1,l cn,m,l

− tze
imφc†

n,m,l+1cn,m,l

− 1

2
(V (n) + μ)c†

n,m,l cn,m,l + H.c.

]
, (1)

where cn,m,l is the annihilation operator acting on the electron
at a site (n, m, l ) of the lattice with the lattice constants ax,y,z

in the respective directions. Here, without loss of generality,
the hopping matrix elements tx,y,z are assumed to be real. For
simplicity, we consider spinless electrons in this work. A uni-
form magnetic field is applied in the x direction, B = Bex, and
the corresponding vector potential, A = Byez, is chosen along
the z axis, yielding the orbital Peierls phase φ = eBayaz/h̄c.
The chemical potential is modulated in the presence of the
CDW as V (n) = 2U0 cos(2kwnax + ϕ) with the CDW ampli-
tude 2U0 > 0 and the period λw = π/kw. The angle ϕ is the
phase of the CDW at the left end of the wire (n = 0). Later,
to investigate transport properties of the finite 3D system, we
calculate two-terminal conductance G(E ) [resistance ρ(E ) =
1/G(E )] as a function of energy E using the Kwant package
[66].

With this choice of the vector potential A, the system is
translation invariant in the z direction, thus, we can intro-
duce the momentum kz via Fourier transformation cn,m,l =

1√
Nz

∑
kz

cn,m,kz e
−ilkzaz , where Nz is the number of lattice sites

in the z direction. The Hamiltonian becomes diagonal in the
kz space,

H (kz ) =
∑

n,m,kz

([ − txc†
n+1,m,kz

cn,m,kz − tyc†
n,m+1,kz

cn,m,kz + H.c.
]

− c†
n,m,kz

cn,m,kz [μ + V (n) + 2tz cos(mφ + kzaz )]
)
.

(2)

As a result, the eigenfunctions of H factorize as eikzzψkz (x, y),
with x = nax, y = may, and z = laz. From now on, we focus
on ψkz (x, y) and treat kz as a parameter.

III. INGREDIENTS: CDW MODULATED
WIRE AND 2D IQHE

The presence of a CDW along a single wire leads to an
opening of a gap in the energy spectrum and for certain values
of ϕ to the emergence of in-gap end states (see Fig. 2). We
choose 2kwax = π/2 for all plots to follow. This value is
consistent with the period of interaction-induced CDWs in
ZrTe5 material [45] that is approximately four times the lattice
constant. For this choice, the system is gapped at filling factors
1/4 and 3/4. In Fig. 2(a), we plot a part of the spectrum of a
finite wire (see also Appendix A) around the lowest gap (at
filling factor 1/4) as a function of ϕ. At the special values

FIG. 2. (a) Energy spectrum of a single wire with CDW modu-
lation as function of phase ϕ around the lowest gap at filling factor
1/4. For ϕ = 3π/4 the gap contains doubly degenerate end states
at energy E0 and for ϕ = ϕ0 two nondegenerate end states at en-
ergies E0L and E0R. (b),(c) The corresponding probability densities
|�CDW(x; E )|2 for E = E0, E0L, E0R indicate that double-degenerate
states at E0 are localized at both ends of the wire, while states at
energies E0L and E0R are localized at the left (xL) and the right
(xR) end of the wire. Here, we choose U0 = 0.9tx , Nx = 40, and
2kwax = π/2.

ϕ = −π/4, 3π/4, the system has an inversion symmetry.
For ϕ = −π/4, there are no states in the lowest energy gap,
while for ϕ = 3π/4 two degenerate end states [localized at
the both ends of the wire, see Fig. 2(b)] emerge in the gap
at energy E0 [64,65,67–76] and are weakly topologically pro-
tected by inversion symmetry [64,77,78]. If one tunes away
from ϕ = 3π/4, the in-gap states split in energy. The states
with ∂E (ϕ)/∂ϕ > 0 [∂E (ϕ)/∂ϕ < 0] are localized at the left
(right) end of the wire at xL (xR) as illustrated in Fig. 2(c).
At other values of ϕ, the system is fully gapped and there are
no bound states. On the other hand, electrons in a single 2D
yz layer and in the presence of a perpendicular magnetic field
exhibit the well-known Hofstadter spectrum [79] with chiral
edge states. For illustrative purposes, we consider the simplest
case with a resonant magnetic field value leading to φ = π/2,
corresponding to the QHE filling factor ν = 1. (However,
we emphasize that our results are valid for other values of
magnetic flux with higher QHE filling factors and for other
periods of the CDW potential as we show in Appendix B.) In
our proposal, we combine these two mechanisms, which leads
to opening of gaps and emergence of in-gap states that are
exponentially localized on the hinges of the left (x = xL, y, z)
[(1̄, 0, 0)] and right (x = xR, y, z) [(1,0,0)] surfaces, see Fig. 3.
For the choice 2kwax = π/2, the spectrum of the 3D system
is characterized by two CDW-induced gaps (at 1/4 and 3/4
filling). We take the amplitude of the CDW potential U0 to be
sufficiently large so that the 2D QHE spectrum (or at least one
of the QHE gaps) fully fits inside the CDW-induced gap. This
requires U0 � 4ty. The effects of different values of U0 on the
spectrum is discussed in Appendix B.

IV. RESULTS: HINGE MODES

A. Degenerate QHE hinge modes

First we consider the case with ϕ = 3π/4 for which a sin-
gle CDW modulated wire has a spectrum with two degenerate
in-gap end states at energy E0. In this case, we find doubly
degenerate copies of the 2D QHE spectrum inside the CDW-
induced gap centered around E0 [see Fig. 3(a)]. The quasi-2D
QHE bulk states [green lines in Fig. 3(a)] are exponentially lo-
calized at the right and left surfaces of the system. One can see
two QHE gaps (ν = 1) with doubly degenerate hinge modes
Eσ

LR(kz ), where the index σ =�,�≡ −1, 1 corresponds to
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FIG. 3. (a) The spectrum of the system from Fig. 1(a) with
periodic boundary conditions in the z direction around the low-
est CDW-induced gap for ϕ = 3π/4. Two degenerate copies of
a 2D QHE spectrum are centered around E0 within two QHE
gaps. The 2D QHE bulk bands (green) and 1D hinge modes Eσ

LR

(dashed red-blue) are localized at the left and right surfaces with
σ =� (1) and σ =� (−1) denoting the propagation direction of
the hinge modes. The two-terminal resistance ρ(EF ) for clean (or-
ange) and disordered (purple) systems from Figs. 1(c) and 1(d) as
a function of Fermi energy EF with QHE plateaus at ρ = ρdis =
0.5[h/e2] for EF lying in the gaps hosting a pair of degenerate QHE
hinge modes. (b),(c) The cross sections of the QHE hinge modes
probability density |�σ

hinge(x = xL, y, kz )|2 = |�σ
hinge(x = xR, y, kz )|2.

(d) The probability density |�1(x, y)|2, |�1̄ (x, y)|2 for the QHE hinge
modes at selected kz points, 1 and 1̄, indicated in (a). Here, we
set tx = 1, ty = 0.11tx , tz = 0.09tx , U0 = 0.9tx , 2kwax = π/2 with
Nx × Ny(×Lz ) = 40 × 39(×40) lattice points (for transport) and take
a resonant magnetic field φ = 2kF ay = π/2, corresponding to filling
factor ν = 1.

the direction of propagation/circulation in the yz plane for
open boundary conditions in both the y and z directions. In
Fig. 3(a), the presence of doubly degenerate in-gap hinge
modes gives rise to quantized QHE resistance plateau at ρ =
1/G = 0.5[h/e2] for clean (orange) and disordered (purple)
systems.

The hinge modes are chiral as indicated by the probabil-
ity densities |�σ

hinge(x = xL, y, kz )|2 = |�σ
hinge(x = xR, y, kz )|2

[see Figs. 3(b) and 3(c)] and are exponentially localized at
certain corners of the xy-cross section [see Fig. 3(d)]. For
a finite-size system with open boundary conditions in all
directions, the hinge modes circulate in the same direction
on the hinges adjacent to the left and right surface of the
system [as schematically illustrated in Fig. 1(c)], in analogy
to unidirectional edge states [80–82].

B. Hinge mode regimes

In order to systematize the regimes in which hinge modes
exist, we plot the spectrum as a function of ϕ for fixed kz = 0
or π/2 in Fig. 4. The QHE gaps marked by pale orange
(green) host only one hinge mode with the counterclockwise
σ =� (clockwise σ =�) direction of propagation. The dark
orange (green) regions around ϕ = 3π/4 correspond to a sce-
nario where QHE gaps of each QHE copy overlap thus host
two hinge modes (one at the left and one at the right surface)
with the same positive (negative) σ . For ϕ = 3π/4, the QHE
gaps of each QHE copy fully overlap. If one deviates from
ϕ = 3π/4, the degeneracy of the QHE spectrum is lifted.
Each of the 2D QHE copies is now shifted in energy, either

FIG. 4. (a) Spectrum of the 3D system from Fig. 1(a) around
the CDW-induced gap as a function of ϕ for kz = 0. The interesting
part, where the QHE spectra of states localized at the left and right
surfaces cross and overlap, is marked by a gray rectangle and zoomed
in on panel (b) for kzaz = π/2. The pale orange (green) color denotes
QHE gaps with a single hinge mode characterized by counterclock-
wise σ = 1 =� (clockwise σ = −1 =�) direction of propagation.
The dark orange (green) areas denotes QHE gaps with a pair of chiral
unidirectional QHE hinge modes with σ = 1 (σ = −1) localized at
the left and right surfaces. The yellow area denotes a scenario with a
pair of in-gap hinge modes propagating in opposite directions on the
left and right surface. The solid red (blue) lines correspond to hinge
modes localized at hinges adjacent to the left (right) surface.

up or down, and corresponding states are localized at the left
or right surfaces, consistent with the picture emerging from
1D CDW-induced end states in Fig. 2. The hinge modes are
circulating again in the same directions on each surface (see
Appendix A). Moreover, further increase of ϕ leads to closing
of the QHE gaps in such a way that the gap of one of the QHE
copies overlaps in energy with the 2D QHE bulk states of the
other copy localized at the opposite surface. Interestingly,
there is a region around ϕ = ϕ0 and ϕ̄0 (marked by yellow
rectangles), where the hinge modes of opposite σ coexist (see
Fig. 5). The system hosts hinge modes propagating in opposite
directions on hinges adjacent to the left and right surface. The

FIG. 5. Same as in Fig. 3 but for ϕ = ϕ0. The two degenerate
copies of the bulk QHE spectrum from Fig. 3 are split in energies
such that each one is centered around E0R and E0L , respectively. The
part of the QHE spectrum around E0R (E0L) corresponds to states
localized on left (right) surface. Interestingly, for the chosen CDW
phase ϕ = ϕ0, in the gap around E0 we find a pair of chiral hinge
modes that propagate in the opposite directions on the left and the
right surface. We can see stable quantized resistance plateaus at ρ =
0.5[h/e2] (ρ = 1[h/e2]) for the energies lying in the gap which hosts
two (one) hinge modes for clean (orange) and disordered (purple)
system. (c) The corresponding wave function probability �1,1̄,2,2̄ for
kz momenta marked by 1, 1̄, 2, 2̄ points on panel (a).
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direction of propagation can be reversed by changing ϕ from a
region around ϕ0 to one close to ϕ̄0 without the need of chang-
ing μ. The change of propagation direction of the hinge states
is due to the sign change of the effective mass of carriers. The
overlap of the QHE gaps is maximal for ϕ = ϕ0 and ϕ̄0. The
edge states localized on the hinges adjacent to the left (right)
surfaces are marked by red (blue) solid lines. Further increase
of ϕ away from ϕ = 3π/4 leads to the separation in energy
of these two QHE copies. We also checked numerically that
hinge modes are robust against moderate static disorder (as
shown in Appendix B), however, we note that for the special
case of ϕ = 3π/4 the disorder lifts the degeneracy of the
hinge modes on the left and right surfaces. Importantly, we
note that the gaps hosting hinge modes are true bulk gaps and
are opened for arbitrary large system size (Nx, Ny, Nz → ∞).

V. 2D QHE SURFACE STATES: 3D QHE
AND HYBRID SCENARIO

Another striking feature of the proposed setup is the fact
that it can support a 3D QHE with 2D chiral surface states.
This effect looks rather similar to one observed in recent
experiments [45] in which an interplay of interaction-induced
CDW and magnetic field lead to 3D QHE. Here, we also
discuss a hybrid scenario with mixed high-order topology
[34], in which the 2D QHE chiral surface states can coexist
in the gap with the 1D QHE hinge modes.

A. Bulk system

Let us first consider a case where gaps hosting 2D QHE
surface states supporting 3D QHE are opened for arbitrary
large Nx (true bulk system). We demonstrate such a sce-
nario in Fig. 6. One can see two gaps (marked by yellow
area) hosting 2D QHE chiral surface states (green) Eσ

surf (kz )
with σ =�,�. We choose system parameters (ty = 0.31, tz =
0.21, U0 = 0.9tx, 2kwax = π/2) so the “upper” gap hosts 2D
surface states E�

surf (kz ) and doubly degenerate hinge modes
E�

LK (kz ) (red-blue) which propagates in the opposite direction.
In this regime system realizes hybrid high-order topology.
For the chosen parameters (2kwax = π/2 and φ = π/2) one
can easily diagonalize the Hamiltonian with periodic bound-
ary conditions being imposed in all three spatial dimensions
(see Appendix C for details). This allows us to calculate the
spectrum E (k) for the 3D bulk system from Fig. 1 along high
symmetry points in the 3D Brillouin zone [see brown curve
in Fig. 6(a)] from which one can clearly see that the bulk 3D
QHE gaps are independent of the system size. The presence of
in-gap modes manifests in quantized QHE resistance plateaus
at ρ = 1/11[h/e2] (ρ = 1/9[h/e2]) for Fermi energy lying in
the gaps which hosts both surface states and hinge modes
(only surface states). Since in the hybrid scenario surface
states and hinge modes propagates in the opposite directions
this allows for backscattering at the hinges for disordered
system. Thus in disordered hybrid regime the corresponding
conductance is reduced and the QHE plateau is not perfectly
flat [see Gdis1 and Gdis2 plots in Fig. 6(c)]. For the Fermi
energies EF lying in the gap hosting only surface states, the
conductance plateau is perfectly flat even in the presence of
strong disorder [see Gdis1 and Gdis2 plots in Fig. 6(c′)].

FIG. 6. (a) Spectrum of the 3D system from Fig. 1(a) with the
periodic boundary conditions in the z direction around the lowest in
energy 3D QHE gaps (yellow area) as a function of kz for ϕ = 3π/4.
The parameters have been chosen so that the lower in energy gap
hosts exclusively chiral QHE surface states E�

surf (kz ) propagating in
clockwise direction, while the upper gap hosts chiral QHE surface
states E�

surf (kz ) propagating in counterclockwise direction and pair
of degenerate hinge modes E�

LK (kz ) propagating in clockwise direc-
tion realizing hybrid high-order topology. The spectrum of the 3D
system E(k) along high symmetry k points in 3D Brillouin zone
(upper horizontal axis) with periodic boundary conditions in all the
directions (brown) demonstrates the bulk character of the 3D QHE
gaps. On panel (b), we plot two terminal resistance ρ(EF ) for clean
(orange line) and disordered system ρdis(EF ) and ρdis2 (EF ) (purple
and blue). One can clearly see quantized QHE resistance plateaus
at ρ = 1/11[h/e2] (ρ = 1/9[h/e2]) for Fermi energies EF lying in
the upper (lower) gap. (c) Interestingly, in the presence of disor-
der for in-gap energies, conductance is reduced and not perfectly
quantized for hybrid scenario with coexisting counterpropagating
surface and hinge modes. (c′) This is not the case for EF lying in the
lower gap which hosts only surface modes and results in perfectly
quantized conductance at G(EF ) = Gdis1 = Gdis2 = 9[e2/h] even in
the presence of strong disorder. Here, we set ty = 0.31, tz = 0.21,
U0 = 0.9tx , 2kwax = π/2 with Nx × Ny(×Nz ) = 40 × 39(×40) lat-
tice points (for transport simulations) and take the resonant value for
the magnetic field φ = π/2.

B. Finite size system: Finite number of coupled layers

On the other hand one can imagine a system composed
only of a finite number of coupled yz layers stacked in the x
direction. In such a case for certain regime of system param-
eters one can interestingly notice series of small gaps around
the upper edge of the CDW induced gap [see Fig. 3(a) and
Appendix A]. Such gaps are opened by an interplay between
magnetic field and CDW and also finite size effects (finite
Nx—finite number of coupled yz layers) [83–85]. Moreover
these gaps hosts 2D QHE chiral surface states supporting
3D QHE. Here we can also achieve hybrid high order topol-
ogy, e.g., by pushing the 3D bulk spectrum into 2D QHE
spectrum by reducing U0 or vice versa by pushing the 2D
QHE spectrum into 3D bulk spectrum by increasing ty (see
Appendix B for details). In Fig. 7, we show a part of the
spectrum of the 3D system in which one can see a pair of
the chiral QHE surface states localized at the front (x, yF , z)
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FIG. 7. (a) Same as in Fig. 3(a) but for smaller U0 = 0.7t .
(b) The zoomed-in part of the spectrum [marked by orange rect-
angle on (a)] contains the gap in which doubly degenerate chiral
QHE hinge modes Eh, LR(kz ) and nondegenerate QHE chiral sur-
face states Esurf(kz ) coexist. The resistance with quantized plateaus
at ρ = ρdis = 1/3[h/e2] for clean (orange) and disordered (purple)
systems and for the system with ‘truncated’ leads [green lines on (c)]
so that only surface modes contribute to transport with resistance
plateau at ρ̃ = 1[h/e2] (blue). (c) The corresponding probability
density |�j (x, y, kfixed

z )|2 for fixed kz denoted by j = 1, 1̄, 2, 2̄ which
shows chiral character of the states. (d) Zoom of the plateau region
from (b) with conductance which shows how the presence of disorder
affects conductance Gdis ≈ 3[e2/h] in a hybrid regime.

and back (x, yB, z) surfaces and propagating in the z direction.
[For the open boundary conditions along the z axis, the 2D
QHE chiral surface states are circulating on all surfaces except
the left and right one as sketched in Fig. 1(d).] Interestingly,
we can also find coexisting pairs of doubly degenerate chiral

QHE hinge modes localized at the corners of the finite xy
plane and propagating in the z direction. For clean systems
(without disorder) coexisting states result in resistance plateau
at ρ = 1/3[h/e2] [see orange line in Fig. 7(b)]. Since the
hinge modes propagate in the opposite direction to the sur-
face states one can expect backscattering at the corners in
the presence of disorder which results in resistance plateaus
ρdis not being perfectly flat [conductance Gdis is reduced see
Fig. 7(d)], which is not the case for gaps hosting exclusively
hinge or surface modes. To distinguish between the two types
of states we propose a setup with leads not covering corners
as marked by green lines in Fig. 7(c). The corresponding
resistance is equal to ρ̃ = 1[h/e2] since only one surface state
gives contribution to the conductance with no contribution
from hinge modes. For the gap hosting only hinge modes the
corresponding conductance is zero.

VI. SUMMARY

We have proposed a system which can support second-
order topological QHE phases with hinge modes, 3D QHE
with surface states, and a hybrid topology with both types of
states. Quite remarkably, the direction of propagation of the
hinge modes can be switched all electrically by tuning the
phase of the CDW. We found clear and robust signatures of
hinge and surface states in transport studies which show quan-
tized resistance plateaus. This prediction is directly amenable
to experimental tests. We propose that our predictions can be
tested in semiconducting nanowires with CDW modulations,
heterostructures forming a superlattice of 2DEGs with electri-
cally tunable chemical potentials [62,63], organic conductors
[86], systems with intrinsic CDW order, e.g., ZrTe5 [45],

FIG. 8. (a) Spectrum of the 3D system from Fig. 1(a) from the main text with the periodic boundary conditions in the z direction around
the lowest in energy CDW induced gap as a function of kz for ϕ = −π/4. The zoom of upper edge of CDW gap is plotted in panel (b) and
further zoom of one of the gaps in (b′). The color maps (c,d) shows probability density |�surface(x = xM , y, kz )|2 for the first and second QHE
surface mode hosted in the gap marked by the brown rectangle and further zoomed in (b′). The probability density |�surface(x, y, kfixed

z )|2 for the
first (η = 1) and second mode (η = 2) of the QHE chiral surface states [selected kfixed

z points: 1, 1̄, 2, 2̄ from panels (b), (b′) is represented on
panel (e)]. Here, we set ty = 0.11, tz = 0.09, U0 = 0.9tx , 2kwax = π/2 with Nx × Ny = 40 × 39 lattice points and take the resonant value for
the magnetic field φ = π/2.
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FIG. 9. Spectrum of the 3D system from Fig. 1(a) of the main
text with periodic boundary conditions in the z direction around the
energetically lowest CDW-induced gap as a function of kz for ϕ =
3π/4: (a) without disorder and (b) in the presence of onsite static
disorder corresponding to a uniformly fluctuating chemical potential
in the range of the QHE gap |δμn,m| � 0.09 = |tz|. Despite the fact
that the bulk gap gets smaller, the hinge modes are clearly present in
the spectrum.

as well as optical lattices [87–89] or photonic crystals [90].
Finally, we expect that the CDW mechanism uncovered here
will also give rise to hinge modes in other 3D topological
systems composed of stacked CDW-modulated layers.
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FIG. 10. Spectrum of the 3D system from Fig. 1(a) of the main
text with periodic boundary conditions in the z direction around
the energetically lowest CDW-induced gap as a function of kz for
(a) ϕ = 3π/4 and (b) ϕ = 3π/4 + δϕ. One can clearly see in panel
(b) that by moving away from ϕ = 3π/4, e.g., for ϕ = 3π/4 + δϕ,
the degeneracy of the two QHE spectrum copies is lifted, which
results in splitting in energy of the hinge modes and bulk bands
belonging to two different surfaces. Now, the QHE gaps are reduced
and host two hinge modes localized on the left (red curve) and right
(blue curve) surfaces which corresponds to the regimes marked by
dark green and orange on Fig. 4(b) of the main text.

FIG. 11. Cross section of the spectrum of the 3D system from
Fig. 1(a) of the main text with periodic boundary conditions in the
z direction as a function of (a) U0 and (b) ty for fixed ϕ = 3π/4,
kz = π/2, tz = 0.09, and (a) ty = 0.11, (b) U0 = 0.9. The interesting
regimes are marked schematically by ovals. For U0 � 0.8, the part of
the spectrum with hinge modes is well separated from one with QHE
surface states. If U0 is decreased, the 2D QHE spectrum with the
QHE gap hosting quasi-1D hinge modes is pushed into the 3D bulk
states and starts to overlap with gaps hosting 2D QHE chiral surface
states. In such a regime, the scenario with a hybrid topology is real-
ized. Further decrease of U0 below U0 � 0.4 leads to an emergence of
another region with mixed higher-order topology. On the other hand,
when |ty| is increased, the QHE hinge modes start to hybridize with
the QHE surface states. However, in this case, the bulk states mask
them, making them undetectable in transport experiments.

Swiss National Science Foundation, and NCCR QSIT. This
project received funding from the European Unions Horizon
2020 research and innovation program (ERC Starting Grant,
Grant agreement No. 757725). The calculations were per-
formed on PL-Grid Infrastructure.

APPENDIX A: CHIRAL SURFACE STATES IN 3D CDW
MODULATED QHE SYSTEM

Finite system in the x direction: Finite number
of coupled layers

In this section, we focus on the special case with ϕ =
−π/4. For this choice of parameter, there are no states in
the CDW gap. However, interestingly, we can notice [see
Fig. 8(b)] that the part of the spectrum around the upper edge
of the CDW-induced gap (marked with the orange rectangu-
lar) contains gaps that host chiral 2D QHE surface states. This
happens also for other values of ϕ. Such 2D QHE surface
states are propagating in “+z” and “−z” direction and are
localized, respectively, on the front (x, y = yF , z) and back
(x, y = yB, z) surfaces [see Fig. 8(e)]. We observe a series of
small gaps in which one can find from one up to four 2D QHE
chiral surface states. This gaps are opened due to the interplay
of the CDW and the magnetic field as well as finite size effects
in the x direction play a role [83–85,91]. We assume that
the system is composed of Nx = 40 coupled layers and find
numerically that there are gaps hosting QHE surface states.
However, for larger Nx, such gaps eventually get closed and
QHE surface modes are masked by the bulk states reminding
a behavior of bound states in continuum [92,93]. This makes
them undetectable in transport experiments. The size of these
gaps does not depend on the CDW phase ϕ, however, their
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FIG. 12. Spectrum of the 3D system from Fig. 1(a) of the main text with periodic boundary conditions in the z direction around the
energetically lowest CDW-induced gap as a function of kz for ϕ = 3π/4 (a) for isotropic hopping in the yz plane with ty = tz = 0.11, (b) for a
slightly anisotropic case like in the main text with ty = 0.11, tz = 0.09, and (c) for a highly anisotropic case with ty = tz/2 = 0.055. The lower
panels (a′)–(c′) show the zoomed-in part of the spectrum with the 3D QHE gaps hosting nondegenerate 2D QHE chiral surface states. One can
clearly see that decreasing tz results in flattening of the bulk bands and in reducing the size of the gaps. Moreover, for |ty| � |tz|, (c) the chiral
QHE hinge modes and (c′) chiral QHE surface states have a cosinelike shape.

FIG. 13. (a)–(d) The same as in Figs. 2(a), 2(b) and 2(d) of the main text but for a different periodicity of the CDW potential, i.e.,
kw = π/5ax . In this case, the system has an inversion symmetry for ϕ = 4π/5 and supports doubly degenerate hinge modes in the same way
as we presented in Figs. 3(a) and 3(d) of the main text.
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FIG. 14. Spectrum of the 3D system shown in Fig. 1(a) of the
main text with periodic boundary conditions in the z direction around
the energetically lowest CDW-induced gap as a function of kz for ϕ =
3π/4—same as Fig. 3(a) of the main text but for the filling factor
ν = 2 with φ = π/4. The corresponding doubly degenerate hinge
modes Eσ

LR(kz ) are marked by the red/blue dashed lines.

position does. In the area between the gaps, the surface QHE
states hybridize with the 3D bulk states. From Figs. 8(c) and
8(d), one can conclude that surface modes are chiral, i.e., for
the case of periodic boundary conditions in the z direction,
the 2D QHE states with ∂E (kz )/∂kz > 0 [∂E (kz )/∂kz < 0] are
localized at the front (back) surface.

APPENDIX B: STABILITY

Here, we study the stability of the hinge modes in the
presence of disorder. We also demonstrate that the hinge
modes are present in the spectrum for a wide range of system
parameters.

1. Disorder

First, we investigate the effects of disorder on the stability
of the hinge modes. Again, we consider static disorder—
random onsite fluctuations in the chemical potential of the
order of the QHE gap size: |δμn,m| � 0.09 = |tz|. In the
presented case, for computational purposes, disorder is trans-
lationally invariant in the z direction, δμn,m(kz ) = δμn,m. One
can see (Fig. 9) that bulk bands are strongly affected and
the QHE gaps are reduced with respect to the clean system,
however, there is still a region of kz values for which hinge
modes exist in the gap. One can also notice that disorder
lifts the accidental degeneracy between left and right surfaces.
Interestingly, the hinge modes are quite stable even though
they exist in gaps much smaller than the fluctuations of the
chemical potential.

2. Chiral hinge modes: Lifting degeneracy between
right and left surfaces

Here, we show an example of a regime where there are two
nondegenerate hinge modes in the gap (see Fig. 10). This sce-
nario is realized for ϕ around ϕ = 3π/4, i.e., ϕ = 3π/4 + δϕ

FIG. 15. Spectrum of the 1D CDW modulated wire with peri-
odic boundary conditions described by Hamiltonian H1D

CDW. (a) The
spectrum E (kx, ϕ) as a function of CDW phase ϕ for fixed kx = 0
(brown line) and kx = π (green line). (b) The spectrum E (kx, ϕ)
as a function of CDW phase ϕ for fixed ϕ = 0 (brown line) and
ϕ = π/4 (green line). For comparison, we also plot the spectrum
of the finite-size system (see Fig. 2 main text) in panel (a) and
marked it by black lines with end states denoted by thick ones. We
can see perfect agreement between the gaps and position of the bulk
states in the open and closed systems. The parameters are the same
as in the main text, tx = 1, U0 = 0.9, kw = π/4, and Nx = 40. We
checked numerically for the finite size system that the increase of
Nx leads to the increase of the number of bulk bands which lay
in energy between E (kx = π, ϕ) and E (kx = π, ϕ) bands obtained
for the periodic system. However, the size of the CDW induced gap
remains unchanged.

[in the region marked by the dark green and orange in Fig. 4(b)
of the main text]. In this case, the degeneracy is lifted, the
QHE gap is reduced, and hinge modes that are localized on
the left and the right surfaces are split in energy. Furthermore,
there are two more gaps that emerge in the spectrum which
host a single QHE hinge mode on one of the surfaces [see pale
orange and green areas in Fig. 4(b) of the main text] (Fig. 10).

3. Spectrum dependence on U0 and ty

We can see that for U0 � 0.8 the part of the spectrum
with QHE hinge states is well separated from QHE surface
states. By decreasing U0, one can see that the upper QHE
gap with quasi-1D hinge states starts to overlap with gaps
hosting 2D QHE surface states. In this case, the scenario
with hybrid topology is realized. Further decrease of U0 be-
low U0 � 0.4 leads to the emergence of another region with
mixed high order topology. In the left panel of Fig. 11, we
explore the spectrum as a function of ty with other parameters
being fixed: ϕ = 3π/4, kz = π/2, tz = 0.09, and U0 = 0.9.
As |ty| is increased, QHE hinge states starts to hybridize with
the QHE surface states. However, in this case, the 3D bulk
states mask both states, making them undetectable in transport
experiments.

4. Isotropic and anisotropic system in the yz plane

Here, we analyze effects of anisotropy in the hopping
amplitude in the yz plane. To be specific, we consider the
case with ty = tz = 0.11; ty = 0.11, tz = 0.09, and ty = tz/2 =
0.055. We can notice that decreasing tz with respect to ty
causes flattening of the bulk bands. The dispersion relation
of the hinge modes in the strongly anisotropic limit has a

125126-8



HINGE MODES AND SURFACE STATES IN … PHYSICAL REVIEW B 102, 125126 (2020)

cosinelike shape (see Fig. 12), which can be derived from the
linearized model [60,94].

5. Different periodicity of the CDW: kw = π/5ax

The single CDW-modulated wire supports end states for
different values of the period. Here, we consider an example
with 2kwax = 2π/5, for which one obtains a pair of degen-
erate end states for the CDW phase equal to ϕ = 4π/5, see
Figs. 13(a)–13(c). In this case, for the 3D CDW-modulated
system shown in Fig. 1 of the main text, one observes a similar
behavior of the hinge modes [see Figs. 13(d) and 13(e)] as ob-
tained before in the main text for 2kwax = π/2 and ϕ = 3π/4
[see Figs. 3(a) and 3(d) of the main text].

6. Higher QHE filling factors

As one can expect the hinge modes with higher QHE filling
factors ν can be supported in our model. Here we show the
example for ν = 2 for which there are two hinge modes per
surface, see Fig. 14.

APPENDIX C: BAND STRUCTURE OF INFINITE SYSTEM

For chosen in the main text periodicity of the CDW poten-
tial kw = π/4, the effective unit cell contains four different
sites denoted by index σ = 1, 2, 3, 4, with corresponding cre-
ation operators of particle in the nth unit cell denoted by c†

n,σ .
The Hamiltonian of the single 1D CDW modulated wire in
momentum space can be found by applying Fourier transform:
cn,σ = 1√

Nx

∑
kx

ckx,σ e−inaxkx , which gives:

H1D
CDW =

∑
kx

�†

⎛
⎜⎜⎜⎝

−μ − 2U0 cos(0 + ϕ) −tx 0 −txeiaxkx

−tx −μ − 2U0 cos(π/2 + ϕ) −tx 0

0 −tx −μ − 2U0 cos(π + ϕ) −tx
−txe−iaxkx 0 −tx −μ − 2U0 cos(3π/2 + ϕ)

⎞
⎟⎟⎟⎠�

(C1)

with � = (ckx,1, ckx,2, ckx,3, ckx,4)T . In Fig. 15, we show the band structure of such a wire in the momentum space as a function
of the CDW phase φ and momentum kx. The spectrum consists of four bands. As expected, the bulk gaps are the same as found
before in the finite-size modeling.

In order to distinguish which gaps in the spectrum of a finite 3D system are opened by finite-size effects and which are
opened by combination of CDW and magnetic field we consider Hamiltonians in the momentum space that correspond to the
infinite-size limit. Such Hamiltonians for given parameters 2kwax = π/2 and φ = π/2 can be obtained by introducing the unit
cell composed of four sites in the x direction and four sites in the y direction and by applying Fourier transforms:

H3D
kx,ky,kz

=
∑

kx

�
†
kx,ky,kz

⎛
⎜⎜⎜⎜⎝

H (1)
kx,kz

Ty 0 Tyeiayky

Ty H (2)
kx,kz

Ty 0

0 Ty H (3)
kx,kz

Ty

Tye−iayky 0 Ty H (4)
kx,kz

⎞
⎟⎟⎟⎟⎠�kx,ky,kz , (C2)

with

H (m)
kx,kz

=

⎛
⎜⎜⎜⎜⎝

H (m)
1 (kz, ϕ) −tx 0 −txeiaxkx

−tx H (m)
2 (kz, ϕ) −tx 0

0 −tx H (m)
3 (kz, ϕ) −tx

−txe−iaxkx 0 −tx H (m)
4 (kz, ϕ)

⎞
⎟⎟⎟⎟⎠, Ty =

⎛
⎜⎜⎜⎝

−ty 0 0 0

0 −ty 0 0

0 0 −ty 0

0 0 Ty −ty

⎞
⎟⎟⎟⎠, (C3)

where

H (m)
n (kz, ϕ) = −μ − 2U0 cos(nπ/2 + ϕ) − 2tz cos(mπ/2 + kzaz ).

The corresponding energy spectrum E (k) is presented in the main text [see Fig. 6(a)], demonstrating the 3D bulk character of
energy gaps.
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