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We study possible magnetic instabilities in Dirac semimetals. We find that Dirac electrons naturally host
antiferromagnetic or spin-density wave ground states, though their specific configurations may vary depending
on a specific model, as well as chemical potential and temperature. We also discuss paramagnetic susceptibility
of Dirac semimetals. In the cases when Dirac electrons do not have orbital momentum, the magnetic properties
may be μ and T independent.
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I. INTRODUCTION

Weyl and Dirac semimetals (see Ref. [1] for a review) have
attracted significant attention during the last years. Both of
them are prominent for their band structure having effectively
gapless excitations described by Weyl and Dirac equations. In
the former case, their spectrum contains two nondegenerate
bands, and in the latter case their two bands are doubly
degenerate. Because of that, Weyl semimetals are realized
when either time-reversal or inversion symmetry is broken,
whereas Dirac semimetals are realized in the presence of both
of them.

It is known that Weyl points in Weyl semimetals [2–8] can
be viewed as monopoles of Berry curvature [9], which makes
them topologically stable. Weyl points cannot be gapped
under any local perturbations. The only way to destroy them
is via annihilation, which can happen after moving two Weyl
points of opposite charges together. In contrast, in Dirac
semimetals, the Dirac points are not protected topologically.
In type-I Dirac semimetals [10–15] (two experimentally dis-
covered examples are Na3Bi and Cd3As2), there are two Dirac
points located opposite to each other on the z axis, which are
protected by crystal rotational symmetry relative to the z axis.
At the same time, in type-II Dirac semimetal ZrTe5 [16,17]
there is a single Dirac point at the center of the Brillouin zone,
which is not protected at all: in fact the Dirac point is gapped,
but the gap can be neglected because, accidentally, it is very
small.

Dirac semimetals necessarily possess time-reversal and
inversion symmetries, which ensure double degeneracy of
their bands. Breaking one of these symmetries may lift the
degeneracy, thus splitting the Dirac point into a pair of Weyl
points. It can also lead to more complicated combinations
of Weyl points and rings [4,18]. The most natural way to
achieve it is to add an intrinsic Zeeman field into the system.
The behavior of Dirac semimetals under extrinsic magnetic
fields applied in specific directions has been extensively
studied, and, for instance, it was found that, in the simplest
model of ZrTe5, the Dirac point can split into two Weyl
points, if the Zeeman field is applied in the z direction,
or into a nodal ring if the Zeeman field is applied in the
xy plane [19].

However, it is not yet fully understood whether magneti-
zation in Dirac semimetals may happen spontaneously. Re-
cently, magnetic properties of Dirac electrons interacting with
magnetic impurities have been studied [20–23]. Magnetic
impurities are known to obey the Ruderman-Kittel-Kasuya-
Yosida interaction, which has complicated oscillating and
anisotropic structure and thus does not make it possible to
find the resulting magnetic ground state. In the works [24–26],
magnetic susceptibility of Dirac semimetals at small external
magnetic fields was studied, and a few remarkable properties
were found. In particular, it was found that the susceptibility
in Dirac semimetals is determined not only by the Fermi
surface, but by the whole Brillouin zone, and moreover it
may be independent of the Fermi energy, but dependent on
the boundary properties of the Brillouin zone.

Magnetic instabilities have also been studied in vari-
ous systems, similar to Dirac semimetals, such as three-
dimensional (3D) Fermi gas with Weyl-like spin-orbit cou-
pling [27], Dirac electrons on a surface of a topological
insulator [28–33], and particularly Weyl semimetals [34–39].
It was found that in these systems various phases can emerge,
including spin-density waves [27,29,34].

On the other hand, in the recent years a large number
of antiferromagnetic Dirac semimetals have been discovered
experimentally, which include CuMnAs [40–43], CaMnBi2
and SrMnBi2 [44,45], NdSb [46–49], and EuCd2As2 [50].
These materials are currently widely explored in the context of
possible spintronics applications [43,51–53] (see Ref. [54] for
a review). However, their electronic structure is rather com-
plicated and includes both localized and conduction electrons.
Their phase diagrams are also nontrivial.

Motivated by this knowledge, we study a simple prob-
lem of spontaneous magnetization in 3D Dirac semimetals
(which can arise either due to magnetic impurities or due
to interactions) using mean-field approximation [55,56]. A
similar approach was previously used to find preferred mag-
netic states in semiconductors with quadratic band touching
[57,58]. We find that 3D Dirac semimetals may host antifer-
romagnetic or spin-density wave ground states, depending on
their Fermi level. We observe transitions between different
magnetic ground states as functions of Fermi energy and
temperature.

2469-9950/2020/102(12)/125119(11) 125119-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.125119&domain=pdf&date_stamp=2020-09-14
https://doi.org/10.1103/PhysRevB.102.125119


GRIGORY BEDNIK PHYSICAL REVIEW B 102, 125119 (2020)

Specifically, we consider two most commonly used models
of 3D Dirac semimetals: a model describing type-II Dirac
semimetal ZrTe5 with one Dirac point at the center of the
Brillouin zone, and a model describing type-I Dirac semimetal
Na3Bi with two Dirac points separated in momentum space.
We introduce magnetization fields in these models (which
may have finite momentum corresponding to spatial modu-
lation of the magnetization), compute their effective actions
up to quadratic order, and thus demonstrate that the magnetic
instabilities are spatially modulated. After this, we place these
models on a lattice and compute the effective actions for
magnetization numerically. In this way, we are able to see
at which momentum the effective actions reach a minimum,
i.e., when magnetizations become stable. We obtain that at
small chemical potentials the minimum of the effective action
is reached at the boundary of the Brillouin zone, which implies
that the magnetic ground states are antiferromagnetic. On the
other hand, as the chemical potential increases, the minimum
of the effective action shifts away from the boundary of the
Brillouin zone, and thus the magnetic ground state changes
into an incommensurate spin-density wave. Eventually, there
may happen a transition into a ferromagnetic ground state.

In addition, we compute the effective actions at finite tem-
perature. We obtain their analytical expression for the case of
zero external momentum, which provides us knowledge about
paramagnetic susceptibility of the Dirac semimetals. We find
that, typically, the paramagnetic susceptibility decreases ∝T 2.
However, in certain cases, particularly when Dirac electrons
do not have orbital momentum, the susceptibility may be μ

and T independent. Finally, we compute the effective action
numerically at finite temperatures and see that the wave
vector of the spin-density wave changes as a function of
temperature. This leads us to the conclusion that there may
exist transition between commensurate antiferromagnetic and
incommensurate spin-density wave ground states as a function
of temperature.

This paper is organized as follows. In Sec. II, we compute
the effective actions for both our models analytically at zero
temperature. In particular, in Sec. II A we focus on the case
of a Dirac semimetal with one Dirac point (i.e., type II), and
in Sec. II B we consider a Dirac semimetal with two spatially
separated Dirac points (i.e., type I). In Sec. III, we compute
paramagnetic susceptibility at finite temperatures for both
type-II and -I Dirac semimetals. We summarize our findings
and their possible implications in Sec. IV. Finally we present
our numerical results in the Appendix.

II. SPONTANEOUS MAGNETIZATION AT ZERO
TEMPERATURE

In this section we study spontaneous magnetization in two
simple models of type-II and -I Dirac semimetals. Specifi-
cally, we introduce the magnetization field, compute its ef-
fective action up to the second order over the field and its
momentum, and use it to find possible magnetic instabilities.
We start from the simplest model of a type-II Dirac semimetal
containing a single Dirac point and use it to illustrate our
method. After this, we repeat the calculations in the case
of the slightly more complicated model of a type-I Dirac

semimetal, which contains a pair of Dirac points separated in
momentum space.

A. Type-II Dirac semimetal

Here we analyze the model of a type-II Dirac semimetal,
which has a single Dirac point at the center of the Brillouin
zone. We note that an experimental example of such a Dirac
semimetal is ZrTe5. Its band structure is invariant under
time-reversal symmetry, inversion symmetry, and three mirror
symmetries. The Hamiltonian [16] can be written as

H0 =
∑
k,i

di(k)�i, (1)

where �i are five gamma matrices defined as tensor products
of Pauli matrices σ and τ acting in spin and pseudospin
spaces, namely,

�1 = −τzσz, �2 = τy, �3 = τzσx,

�4 = −τzσy, �5 = −τx.

The coefficients di have, in general, a complicated form deter-
mined by the whole structure of the Brillouin zone, but near
the Dirac point they can be approximated as linear functions
of momentum:

d1 = 0, d2 = vzkz, d3 = vyky,

d4 = vxkx, d5 = m ≈ 0. (2)

Here vx,y,z are Fermi velocities in all possible directions,
which, in general, may be different, since the crystal structure
is anisotropic, and m is a gap in the Dirac point, which, strictly
speaking, exists but can be neglected because it is very small.

In a conventional way (see, e.g., Ref. [55]), we introduce
magnetization by adding to the Hamiltonian an interaction
term:

H1 = U
∫

dx(ψ+Sψ )2. (3)

We emphasize that since electrons in ZrTe5 have spin, but do
not have an angular momentum, S is just an electron spin,
which has a simple expression Si = σi

2 .
After performing Hubbard-Stratonovich transformation, it

is possible to get rid of the quartic term (3) by introducing
magnetization field M(q), which is just a superposition of spin
matrices: M(q) = ∑

i bi(q)Si. Thus the total Hamiltonian of
our system takes the form

H = H0 + U

4

∑
q

M2 − U

2

∑
k,q

ψ+(k + q)M(q)ψ (k), (4)

which is just a sum of a free-fermion Hamiltonian, the kinetic
term for the magnetization field, and the Zeeman interaction
between them. We note that the magnetization field is assumed
to have a finite momentum q, which corresponds to its spatial
modulation.

The effective action for the magnetization field is obtained
by writing the partition function for a system with the total
Hamiltonian (4) as a path integral and integrating the fermions
out. The leading correction to the magnetization kinetic term
M2 can be written in terms of the fermionic Green’s function
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G(w, k) = [iw − H0(k)]−1 as

S = 1

β

∑
w,k,q

trG(w, k)M(−q)G(w, k + q)M(q). (5)

Here, k is an internal momentum, and q is the exter-
nal momentum, corresponding to the spatial modulation of
the magnetization. We note that, in this section, we are

primarily interested in a possible spontaneous magnetization,
but, strictly speaking, the same Eq. (5) describes momentum-
dependent spin susceptibility χi j (q) = − ∂2δS2

∂bi∂b j
.

After using the explicit expressions for M and G,
performing Matsubara summation, and taking the limit
of zero external Matsubara frequency, Eq. (5) takes
the form

S =
∑

k

{
trM2

2(d2+ − d2−)
[d+nF (d+ − μ) − d+nF (−d+ − μ) − d−nF (d− − μ) + d−nF (−d− − μ)]

+ tr(d+�)M(d−�)M

2(d2+ − d2−)

[
nF (d+ − μ)

d+
− nF (−d+ − μ)

d+
−nF (d− − μ)

d−
+ nF (−d− − μ)

d−

]}
, (6)

where for shortness we have introduced d± = d (k ± q
2 ).

We proceed further by expanding Eq. (6) in powers of
the external momentum q. More specifically, we have to
expand d± and nF (d± − μ), nF (−d± − μ) in powers of q. As
a result, the effective action (6) becomes rewritten as a sum of
the contributions proportional to nF (±d − μ) and its deriva-
tives ∂mnF (±d−μ)

∂md , respectively. The former contribution can be
viewed as a momentum k summation over all filled states and
thus labeled as interband, whereas the latter can be viewed as
a summation over states at the Fermi surface and thus labeled
as intraband. We note that the fact that magnetization contains
the contribution from outside of the Fermi surface is a special
property of Dirac semimetals. We explain this peculiarity by
the fact that, in Dirac semimetals, different bands approach
very closely each other near the Dirac points, which is in
contrast to conventional metals, where a band containing
the Fermi surface is assumed to be well separated from the
others.

Now let us write explicitly the terms, which appear after
we expand the effective action (6) up to the zeroth order
over the external momentum q. Since at zero temperature the
derivative of Fermi distribution is just a minus delta function,
∂nF (d−μ)

∂d = −δ(d − μ), we can remove the momentum inte-
gral in the intraband contribution and thus write the effective
action as

S(0) = 1

2π2vxvyvz

∫
dk

{
−2kb2

⊥
3

− 4kb2
z

3

}
θ (k − μ)

+ 1

2π2

{
−4μ2b2

⊥
3

− 2μ2b2
z

3

}
. (7)

Interestingly, we find that the “bulk” contribution to the ef-
fective action is divergent at large k. However, this divergence
is resolved very easily: we were assuming that the dispersion
is linear everywhere and unlimited, whereas in a real material
the range of momenta is limited by the size of the Brillouin
zone, and furthermore the dispersion becomes nonlinear far
away from the Dirac point. Thus, we can view the integral
entering Eq. (7) as large, but finite, and limited by nonlineari-
ties in d and the size of the Brillouin zone. We can also track
evolution of the effective action S(0) with change of chemical
potential μ. When the Fermi level is aligned with the Dirac

points, i.e., at μ = 0, the effective action, and consequently
the magnetic susceptibility, is solely determined by the bulk of
the Brillouin zone. In this special case, the z component of the
magnetic field enters with the coefficient of larger magnitude,
than b⊥, and thus we can infer that magnetic susceptibility in
the z direction χzz is larger than in the perpendicular direction
(e.g., χxx).

However, the contribution to S(0) from the Fermi surface
“competes” against the contribution from the bulk. Indeed, the
Fermi surface gives larger contribution to the perpendicular
component of the susceptibility than to its zz component.
Thus, at sufficiently large Fermi energies, it is possible that
the contribution from the Fermi surface is larger than from the
bulk of the Brillouin zone, and, as a result, the susceptibility
in the perpendicular direction is larger than along the z axis,
oppositely to the case of small Fermi energy.

It is of interest to compute the change of effective action
over the chemical potential explicitly. In the approximation of
linear dispersion, it has the following expression:

�S(0)
∣∣μ
0 = − μ2b2

⊥
2π2vxvyvz

.

This equation tells us that the variation of the effective action
due to finite chemical potential depends only on the perpen-
dicular component of the magnetic field. In other words, in
the range of parameters, where the dispersion can be viewed
as linear, the susceptibility in the z direction does not depend
on the chemical potential. We remark that independence of
observables on chemical potential is a common property of
topological semimetals: the fact that susceptibility in Dirac
semimetals does not depend on chemical potential is similar
to the existence of universal value for anomalous Hall con-
ductivity in Weyl semimetals, which is independent not only
of chemical potential, but even of the presence of supercon-
ductivity [59,60].

In order to study possible spatial modulation of the mag-
netic ground state, we expand the effective action (6) up to
quadratic order over external momentum q. More specifically,
after we expand the terms d±, nF (d±) and its derivatives and
use an identity ∂mnF (d−μ)

∂md = − ∂m−1

∂m−1d δ(d − μ), we obtain the
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following expression for the quadratic terms in momentum:

S(2) = 1

2π2vxvyvz

∫
dk

k

{
−q2

z b2
⊥

6
+ q2

⊥b2
z

3

+ (qxbx + qyby)2

6
− (qxby − qybx )2

6

}
θ (k − μ)

+ 1

2π2vxvyvz

{
−q2

⊥b2
⊥

180
+ 43q2

z b2
⊥

180
− 19q2

⊥b2
z

90
+ q2

z b2
z

30

−11(qxbx + qyby)2

90
+ 11(qxby − qybx )2

90

}
. (8)

Similarly to Eq. (7), this equation has two contributions
from the bulk of the Brillouin zone and from the Fermi sur-
face, respectively. They contain terms entering with opposite
signs, which implies that the bulk and the Fermi surface
compete against each other, and as a result there exists a
possibility of crossovers between different phases at different
Fermi energies. Specifically, at small Fermi energies, the
bulk contribution dominates, since the momentum integral
in Eq. (8) is determined by the UV cutoff of the Brillouin
zone. However, this contribution decreases with increasing μ,
whereas the Fermi-surface contribution does not depend on
the Fermi level μ and thus, at sufficiently large μ, can become
dominant.

Now, let us discuss the form of possible magnetic config-
urations. First, we consider the magnetic instability in the z
direction. At small Fermi energies, the magnetic field compo-
nent bz enters the effective action with positive coefficient in
front of the momentum, which implies that the magnetization
in the z direction is spatially independent. We note, however,
that this is due to the fact that the bulk contribution does
not have a term q2

z b2
z , which in turn happens due to linear

dispersion. In principle, nonlinear corrections to d (k) can
lead to nontrivial bulk term q2

z b2
z , which in turn may change

the ground state into a spin-density wave modulated in the z
direction, as we will see in numerical calculations.

In addition, at sufficiently large Fermi energy, the term
q2

⊥b2
z may acquire negative coefficient, which means that mag-

netic field bz will be spatially modulated in the perpendicular
direction.

In a similar way, if we look at the instability in perpendic-
ular direction b⊥, Eq. (8) tells us that, at small Fermi energy,
it will be spatially modulated in the transverse direction, since
the effective action has negative momentum components in
the z direction and in the xy plane perpendicular to the mag-
netization. If the Fermi level is increased, its momentum may
change: the qz component may disappear, and, furthermore,
it may change from transverse to longitudinal, i.e., the mo-
mentum vector may become aligned with the magnetization
direction.

Thus, we have found that the effective action for magne-
tization in a type-II Dirac semimetal does not reach its local
minimum at zero external momentum q. This fact tells us that
the magnetic state of the type-II Dirac semimetal is spatially
modulated, and its preferred configuration is determined by
the competition between the bulk (i.e., interband) and the
Fermi-surface (i.e., intraband) contributions to the effective
action. As a result, the magnetic ground state may change as

the Fermi level changes. Since we are able to compute analyt-
ically the effective action only in the limit of small momenta
q, we cannot obtain an explicit answer for a wavelength of
the spatial modulation. For this reason, in the Appendix A 1
we compute the effective action (6) numerically at arbitrary
values of the external momentum q and obtain that at small
Fermi level its minimum is reached at the boundary of the
Brillouin zone, i.e., when one of the components of q is
equal to ±π (see Fig. 1). However, when the Fermi level
becomes sufficiently large and nonlinear corrections to the
Hamiltonian (1) become important, the minimum shifts away
from the boundary of the Brillouin zone. Thus, we claim
that at small Fermi level our model of a Dirac semimetal
has an antiferromagnetic ground state, but as the Fermi level
increases it undergoes phase transition to an incommensurate
spin-density wave ground state.

B. Type-I Dirac semimetal

A type-I Dirac semimetal has two experimentally discov-
ered examples: Na3Bi and Cd3As2. It possesses a pair of
Dirac points separated in momentum space in the z direction
and protected by discrete rotational symmetry. We write the
simplest Hamiltonian describing such a system as

H0 =
∑
k,i

di(k)�i, (9)

and, to be consistent with the previous literature [18], we
define the � matrices in terms of Pauli matrices σ and τ as

�1 = τzσx, �2 = τzσy, �3 = τzσz,

�4 = τx, �5 = τy.

We take the simplest possible form of the coefficients di:

d1 = vF kx, d2 = vF ky, d3 = m(kz ),

d4 = d5 = 0.

Here m(k) is a function that changes sign at two symmetric
points separated in the z direction, which are indeed the Dirac
points. We assume that m is positive between the Dirac points
(e.g., at k = 0) and negative away from them.

In type-I Dirac semimetal, the Dirac points are protected by
discrete rotational symmetry [61] along the z axis. Namely,
states in the valence and conduction bands have different
rotation eigenvalues, which makes it impossible to write a
rotationally invariant term, that would gap them out. This, in
turn, results from the fact that, in type-I Dirac semimetals, the
valence and conduction band belong to different multiplets:
the valence band is a singlet with total spin J = 1/2, whereas
the conduction band is part of the triplet with total spin J =
3/2 (see, e.g., Refs. [11,18] for more details). The other bands
from the triplet are separated by an energy gap, so we neglect
them. Thus we start our analysis from writing a Hamiltonian
of the form (4) with H0 describing free electrons in type-I
Dirac semimetals [see Eq. (9)], but we write the magnetization
operator as a sum of singlet and triplet contributions

M = Ms + Mp,
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which have matrix structure following from the total angular
momentum of the states in the bands, namely,

Ms = gs

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 bz b− 0

0 b+ −bz 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

and

Mp = 3gp

2

⎛
⎜⎜⎜⎜⎝

bz 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −bz

⎞
⎟⎟⎟⎟⎠.

We note that we include in the triplet contribution only
the z component of the magnetization field. This is because
interaction with bx,y can occur only through mixing of the
different bands within the triplet, which are separated by an
energy gap, but we are interested in scales smaller than the
width of each band. We also note that, since the conduction
and valence band belong to different multiplets, they have,
generically, different gyromagnetic factors, which we denote
by gs,p, respectively.

We can compute the effective action (5) in the same way, as
in Sec. II A. More specifically, we can still use its expression
(6) and after explicitly evaluating the traces we obtain that, at
zero external momentum q, it can also be represented as a sum
of contributions independent of and proportional to the Fermi
level, respectively:

S(0) = −
∫

d3k

(2π )3

v2
F k2

⊥
8E3

{
(3gp − gs)2b2

z + g2
sb

2
⊥
}

− μ2

8π2v2
F vz

{
(3gp + gs)2b2

z + g2
sb

2
⊥
}
. (10)

We note that we have obtained the last row of this equation
in the limit of small Fermi level, i.e., when we can view
dispersion within each Dirac cone as linear in all directions.

If we assume that the magnetic factors gs,p are close to each
other, gs ≈ gp, we can conclude that the coefficient in front
of b2

z has larger magnitude than the contribution to b2
⊥, and

thus magnetic susceptibility will be larger in the z direction.
Also, we can notice that, as the chemical potential increases,
susceptibility always gets enhanced. This result is different
from the type-II Dirac semimetal, the susceptibility of which
in one direction does not depend on the the magnitude of the
chemical potential. However, it is worth pointing out a special
case gs = ±3gp, which could, in principle, happen if the
bands did not have orbital momentum and their pseudospin σ

or τ were a physical spin. Indeed, in such a case, the terms
in Eq. (10) proportional to bz become trivial, and thus the
magnetic susceptibility becomes independent of the chemical
potential.

Now, let us explore spatial modulation of the spontaneous
magnetization. In the same way as in Sec. II A, we com-
pute quadratic over external momentum q corrections to the

effective action and obtain the following expression:

S(2) = −
∫

|m|>μ

dkz
gsgpv

2
F q2

⊥b2
z

4v2
F |m|

−
∫

|m|>μ

dkz
m′2q2

z

48v2
F |m|

[
(3gp + gs)2b2

z + g2
sb

2
⊥
]

+
∫

|m|>μ

dkz
mm′′q2

z

32v2
F |m|

[
(3gp − gs)2b2

z + g2
sb

2
⊥
]

+ πv2
F q2

⊥
v2

F vz

[
3g2

pb2
z

2
+ g2

sb
2

3
− 59gsgpb2

z

10

]

+ π

v2
F vz

v2
z q2

z

12

[
(3gp − gs)2b2

z + g2
sb

2
⊥
]
.

We can see that, similarly to the type-II Dirac semimetal,
S(2) contains a momentum integral, which diverges in the
limit of zero μ, and thus becomes dominant if μ is small
(strictly speaking, this divergence appears due to expansion in
q; it does not appear when we evaluate Eq. (5) numerically).
However, as μ grows, its contribution decreases, whereas the
other (i.e., intraband) contribution remains invariant. Thus, we
can infer that the z component of the magnetic field is spatially
modulated in both the z and the perpendicular direction, but
it can undergo crossovers, as μ is increased. Similarly, the
perpendicular magnetization b⊥, if present, is spatially mod-
ulated in the z direction, and again, with increasing μ, it can
undergo crossover. In the Appendix A 1 we present numerical
results (see Fig. 2) obtained from lattice regularization of
the Hamiltonian (9), which confirm our analytical calculation
and also demonstrate that at small μ the spatially modulated
magnetic state is antiferromagnetic, but as μ increases it may
undergo transition to a spin-density wave state.

Overall, we have found that Dirac semimetals naturally
host spatially modulated magnetic ground states, though their
specific configurations may depend on details of the model.
Furthermore, we have found that the ground state is deter-
mined by the competition between the bulk of the Brillouin
zone and the Fermi surface, and therefore can change with
Fermi level. In the Appendix we consider the same problem
numerically on a lattice and obtain that in most cases the
ground state is antiferromagnetic, though it can also undergo
transitions to a spin-density wave or a ferromagnet.

III. MAGNETIC SUSCEPTIBILITY AT FINITE
TEMPERATURES

In the previous section, we studied possible magnetic insta-
bilities in Dirac semimetals at zero temperature and found that
spontaneous magnetization occurs at finite wave vector, thus
forming an antiferromagnetic or a spin-density wave phase.
Now we would like to get an idea of how it may possibly
change, once the temperature becomes finite. Since at both
finite temperature and wave vector the effective action cannot
be computed analytically, we limit our analysis to the case of
zero wave vector.

We start from Eq. (6). Since we are only interested in the
change of the effective action due to small temperature T �
μ, we leave only terms which contain nF (d − μ) or its first
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derivative. After taking the limit q → 0, we obtain

�S(0)
2 =

∫
d3k

(2π )3

{
trM2

2

(
nF (d − μ)

2d
+ 1

2

∂nF (d − μ)

∂d

)

+ tr( �dk ��)M( �dk ��)M

2

(
−nF (d − μ)

2d3

+ 1

2d2

∂nF (d − μ)

∂d

)}
. (11)

For each of the models, we can substitute explicit expressions
for the traces, and then take the momentum integrals (see,
e.g., Ref. [62] for details of computing integrals over Fermi
distributions). However, we also have to account for the fact
that μ is a function of temperature. This T dependence (at
T � μ) can be explicitly found by imposing the condition
of conserved particle number N (T ) = const and computing it
explicitly:

Nper node =
∫

d3k

(2π )3
nF (k − μ) ≈ μ3 + π2T 2μ

6π2
,

which in turn leads to the following expansion for the chemi-
cal potential:

μ ≈ EF − π2T 2

3EF
.

Note that the expression for μ does not depend on the number
of Weyl nodes.

We can evaluate the effective action (11) by using explicit
expressions for the traces, taking momentum integrals and
using the above expansion for μ. In the case of a type-II Dirac
semimetal, we obtain the following answer:

�S(0)
2 = − b2

⊥E2
F

2π2vxvyvz
+ b2

⊥T 2

6vxvyvz
.

The most important feature of this expression is that it
does not contain any dependency on bz. In other words, we
have obtained a surprising result, that in the leading order,

paramagnetic susceptibility χi j = − ∂2�S(0)
2

∂bi∂b j
of a type-II Dirac

semimetal in the z direction is temperature independent. This
is the consequence of the fact that, in Dirac semimetals, bands
are very close to each other, which makes interband contri-
bution to the susceptibility (Van Vleck paramagnetism) com-
parable to the intraband contribution (Pauli paramagnetism).
Moreover, we were assuming here that the dispersion is linear,
which is just an approximation in real materials. However,
since we obtained that the susceptibility is temperature in-
dependent, it seems that by slight perturbing it is possible to
make it either decreasing or increasing with temperature.

In a type-I Dirac semimetal, the answer for the effective
action has the form

�S(0)
2 = − 1

8π2v2
⊥vz

{
(3gp + gs)2b2

z + g2
sb

2
⊥
}(

E2
F − π2T 2

3

)
.

As we can see, the susceptibility is temperature dependent in
all directions. However, we note that it becomes temperature
independent in the z direction in the special case gs = −3gp,
which could, in principle, happen if the band pseudospin were
the same as physical spin.

To summarize our results, we have studied magnetic sus-
ceptibility of Dirac semimetals as a function of temperature
and found that, in certain cases (namely, when pseudospin
coincides with physical spin), it may be temperature inde-
pendent. In this section, we did not study the behavior of the
antiferromagnetic or spin-density wave instabilities at finite
temperature, but we consider it numerically in the Appendix
A 2 (see Figs. 3, 4 for the cases of type II and I Dirac
semimetals respectively). We obtain that the ground state
evolves, and, in principle, it may undergo a transition, e.g.,
from spin-density wave to antiferromagnetic phase.

IV. DISCUSSION

In this paper, we have explored a possibility of sponta-
neous magnetization in Dirac semimetals, and found that they
naturally host antiferromagnetic or spin-density wave ground
states. We have also found that their specific structure may
vary depending on a particular type of Dirac semimetal, as
well as its Fermi energy, temperature, and nonlinear correc-
tions to the Dirac spectrum. However, in special cases, when
the bands do not have orbital momentum, magnetic properties
of Dirac semimetals, including magnetic susceptibility, may
be Fermi energy and temperature independent.

The main reason which makes Dirac semimetals different
from other solids lies in the fact that, in contrast to con-
ventional Fermi liquid, magnetization in Dirac semimetals is
created not only by electrons on the Fermi surface, but also
by electrons from the whole Brillouin zone. In the limit of
small chemical potential, i.e., when the Fermi level is close
to the Dirac points, the Fermi surface gets reduced to a point
or points, and thus the magnetization is created mainly by the
bulk of the Brillouin zone. On the other hand, at finite Fermi
level, the magnetization arises from competition between the
bulk and the Fermi-surface contribution, which results in a
possibility of phase transitions with varying Fermi energies.

We expect that our findings may have a lot of implications.
In fact, the problem of spatially inhomogeneous magnetiza-
tion in Weyl/Dirac semimetals has also been extensively stud-
ied [63–65], and it was found that it may lead to unusual prop-
erties. For example, in the presence of periodic magnetization,
there appear novel electronic states, so-called pseudo-Landau
levels, which have dispersion forming an “open nodal line.”
We suggest that such effects may arise due to spin-density
waves in Dirac semimetals, which we study in this paper.

We note that a type-II Dirac cone has been experimentally
observed in the material ZrTe5 [17]. In fact, this material has
been studied for a long time [66]. First, it was discovered
as a material which exhibits anomalous resistivity peak at
T = 150 K [66], but, soon after, it was claimed that such an
anomaly is not attributed to a spin- or charge-density wave
[67]. We suggest that such a conclusion may be reconsidered,
for example, because in the work [67] it was implicitly
assumed that the spin- or charge-density wave leads to sup-
pression of carrier densities at Fermi level, but it may not be
the case (e.g., if there appear gapless pseudo-Landau levels).

We mention that, in recent years, antiferromagnetism was
found to be common in Dirac and Weyl semimetals. A large
number of materials where antiferromagnetism coexists with
Dirac electrons were discovered. These materials include, for
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example, antiferromagnetic NdSb [48,49], where localized
spins form ferromagnetic planes which are antiferromagneti-
cally aligned in one of the directions—similarly to the models
considered in this paper. Weyl points were also theoretically
predicted in antiferromagnets Mg3Sn and Mg3Ge [68,69].
More interestingly, in Ref. [45] it was claimed that Dirac
electrons enhance antiferromagnetic exchange interaction in
the experimentally discovered Dirac semimetals CaMnBi2
and SrMnBi2. Another example of a Weyl semimetal which
contains ferromagnetic planes aligned antiferromagnetically
is BaMnSb2 [70]. Perhaps, the most interesting material
where Dirac electrons coexist with antiferromagnetism is
CuMnAs [40,41]: in this material, phase transition between
commensurate and incommensurate antiferromagnetism has
been observed as a function of temperature and chemical
composition (i.e., chemical potential) [40]. Similarly, the
material EuCd2As2 [50] has been predicted to be antiferro-
magnetic, but it may undergo a transition into a ferromag-
netic phase under doping. Finally, we mention Dirac material
Sr1−yMn1−zSb2 [71], which exhibits so-called canted antifer-
romagnetic order, i.e., two spin components are antiferromag-
netically ordered in such a way that the net magnetization is
nonzero, but at higher temperatures it undergoes transition to
a ferromagnetic phase. Interplay between antiferromagnetism
and Dirac electrons is currently being actively studied, and it
leads to novel effects, which have promising applications in
spintronics [54].

Here we have presented a simple mean-field picture, ex-
plaining why antiferromagnetism naturally appears in Dirac
semimetals. We remark that our approach is not to be viewed
as rigorous: the mean field is just a rough approximation,
which does not always predict quantities (e.g., temperature
dependencies) accurately. A significant contribution to the
magnetization behavior may arise due to quantum correc-
tions (e.g., magnons), the full electronic structure, etc. In
addition, rigorously speaking, magnetic instabilities in Dirac
semimetals have to be compared with various instabilities
of different types (see e.g., Ref. [72]). Nevertheless, we
have demonstrated that the simple mean-field picture suc-
cessfully explains the origin of antiferromagnetism in Dirac
semimetals.

In the future, it might be interesting to derive the same
results using more rigorous techniques, e.g., renormalization-
group analysis. Finally, we note that while preparing this
paper we became aware of an experimental work [73], where
charge-density waves were found in closely related Weyl
semimetals. We believe that they may be described using the
same method as spin-density waves considered in the present
paper.
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APPENDIX: NUMERICAL CALCULATION OF POSSIBLE
MAGNETIC GROUND STATES IN DIRAC SEMIMETAL

In this Appendix, we consider lattice versions of the mod-
els of type-II and -I Dirac semimetals introduced in the main
text, and compute their effective actions [Eq. (5)] numerically.
In this way, we are able to find the momentum q of the mag-
netic ground state [determined by a minimum of the effective
action S(q)] and its behavior at different μ and T , including
the range, when nonlinear corrections to the dispersion be-
come important. We obtain that, typically, at small μ, the mo-
mentum q has one of the components equal to π , which tells
us that the ground state is antiferromagnetic, whereas at suf-
ficiently large μ (when nonlinear corrections become impor-
tant) q starts decreasing, thus showing a phase transition from
antiferromagnetic to spin-density wave ground state. We note
that, throughout our analysis, we do not consider the full 3D
range of momenta, which would be computationally challeng-
ing, but instead we limit ourselves with just a few special di-
rections of q, which is sufficient for our illustrative purposes.

This section is organized as follows. In Sec. 1 we describe
our method of finding the magnetic ground state at zero
temperature by considering the model of a type-II Dirac
semimetal, and then repeating the calculations for the case of
a type-I Dirac semimetal. After this, in Sec. 2 we generalize
our method in the case of finite temperatures.

1. Magnetic ground states

Let us describe our approach of finding the magnetic
ground states by using an example of a type-II Dirac
semimetal. We replace the coefficients di from Eq. (2) with
their lattice counterparts, which, in the type-II case, have the
form

d2 = vz sin kz, d3 = vy sin ky,

d4 = vx sin kx. (A1)

We use these expressions to compute numerically the
effective action [see Eq. (6)]. More specifically, we evaluate
the momentum integral entering the effective action (6) over
the Brillouin zone (i.e., over the range −π < kx,y,z < π ) by
using the tetrahedral method [74]. Its main idea is that after the
integration range is split into cubes by discretizing momentum
each of the cubes is additionally split into nine tetrahedra.
This approach helps us resolve issues, which may happen due
to divergences near the Fermi surface in the numerator and
denominator of Eq. (6). We present our findings in Fig. 1.
One can see that for some directions of the momentum qi the
effective action has a minimum at zero qi, as was predicted by
Eq. (8), whereas for others the minimum is reached at finite
values of qi. For example, in the case of b ‖ x [see Fig. 1(a)],
the effective action increases with qx, and the curvature de-
creases with increasing μ consistently with Eq. (8). At the
same time, the effective action describing bx as a function
of qy,z [see Fig. 1(b)] has a minimum away from zero. Thus,
the bx component of the magnetization is spatially modulated
both in y and z directions.

In a similar way, one can see that magnetization bz [see
Fig. 1(c)] is spatially modulated in the z direction (as we
will see, this is due to nonlinear corrections to the energy
spectrum). At small values of the chemical potential μ, the

125119-7



GRIGORY BEDNIK PHYSICAL REVIEW B 102, 125119 (2020)

FIG. 1. Numerically computed effective action (5) for a type-
II Dirac semimetal placed on a lattice [Eqs. (1) and (A1)] as a
function of external momentum q for different values of the chemical
potential μ. The directions of the magnetization b and momentum
q are (a) �b = (0.5, 0, 0) and �q = (0, qy, 0), �q = (qx, 0, 0); (b) �b =
(0.5, 0, 0) and q = qy = qz, �q = (0, 0, qz ); and (c) �b = (0, 0, 0.5)
and �q = (0, 0, qz ), �q = (qx, 0, 0). At small chemical potential μ, the
magnetization component bx is modulated in the y direction, whereas
bz is modulated in the z direction, but at μ = 1.0 a phase transition
occurs: the modulation of bz changes from the z to the x direction.

effective action has a minimum at the boundary of the Bril-
louin zone, which implies that the ground state is antiferro-
magnetic. However, at larger values of μ, spatial modulation
of the ground state decreases, so that it starts forming a spin-
density wave. Eventually, spatial modulation in the z direction
disappears, but, on the other hand, it appears in the x direction.
Thus, as μ increases, there appears a phase transition between
two spin-density waves modulated in different directions.

We note that our numerical results have minor deviations
from the analytical ones, but the difference is explained by

FIG. 2. Numerically computed effective action (5) for a type-I
Dirac semimetal [Eqs. (9) and (A2)] as a function of qz, qx for
various values of the chemical potential μ. The parameters of the
model are m0 = 1.0, m1 = 1.0, gs = gp = 1.0. The magnetic field is
(a) �b = (0, 0, 0.5) and (b) �b = (0.5, 0, 0). At small values of μ, the
magnetization bx,z has minima at either px = π or pz = π . However,
at large μ, the local minimum gets displaced away from the boundary
of the Brillouin zone. Thus, at small μ, the magnetization bx,z forms
an antiferromagnetic configuration, but with increasing μ it changes
into a spin-density wave.

the nonlinearity of dispersion. For example, from Eq. (8) we
expect that, in the case of strictly linear dispersion, the term
q2

z b2
z should have zero bulk contribution and small positive

contribution from the Fermi surface. However, since on a
lattice the dispersion (A1) is nonlinear, it has indeed a large
negative bulk contribution responsible for the shape of the
curves in Fig. 1(c). Similarly, the wavelength of spin-density
waves is determined by scales of the band. In realistic materi-
als, we expect nonlinear corrections to play a weaker role than
in our simulations, since their scale is much larger than the
chemical potential, but our main conclusion is that nonlinear
corrections to the band structure may change magnetic ground
states in numerous ways, even though they are still expected
to be spatially modulated.

Now, let us repeat the calculations in the case of a type-I
Dirac semimetal. In a similar way, we compute the effective
action (6) for the model (9) placed on a lattice. We choose the
functions d as

d1 = sin kx,

d2 = sin ky, (A2)

d3 = m0 − m1(1 − cos kz ).
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FIG. 3. Numerically computed effective action (5) for a type-II
Dirac semimetal [Eq. (A1)] at various temperatures. The magnetic
field and momentum have the directions b = (bx, 0, 0), q = (0, q, q)
(left) and b = (0, 0, bz ), q = (0, 0, qz ) (right). The Fermi level is
EF = 0.7, and the other parameters are the same as in Fig. 1. At zero
T , the minimum of the effective action is away from the boundary of
the Brillouin zone, but approaches it as T increases. Thus the system
undergoes a phase transition from antiferromagnetic to spin-density
wave phase.

We present our findings in Fig. 2(b). One can see that in
the case of magnetization in the z direction the effective action
has local minima either at X or at the Z point of the Brillouin
zone, i.e., at q = (π, 0, 0) or (0, 0, π ), which suggest that bz

can be spatially modulated in both x and z directions. On the
other hand, bx is modulated in the z direction: at small μ, it
forms an antiferromagnet, but, as μ increases, a transition to
the spin-density wave phase occurs. Eventually, at large μ, a
phase transition occurs: spatial modulation in the z direction
disappears, and the system becomes spatially modulated in the
x direction.

2. Magnetic ground states at finite temperatures

Once we found the magnetic ground states at zero tem-
perature, we can try to study their evolution, once temperature
becomes finite. Specifically, we would like to compute numer-
ically the effective action (6) at finite temperatures. Since nF

and its derivative significantly deviate from constant only in a
narrow range of parameters, straightforward tetrahedral inte-
gration is challenging. For this reason, to obtain the effective
action at finite temperature, we first compute it for various
chemical potentials at zero temperature, and then obtain the
answer at finite temperatures by applying a discretized version
of the following relation [75]:

S(T, μ) = −
∫

dξ
∂nF (ξ − μ)

∂ξ
S(0, ξ ). (A3)

In addition, we have to account explicitly for the change
of chemical potential with temperature, which we do in the

FIG. 4. Numerically computed effective action for a type-I Dirac
semimetal [Eq. (A2)] at various temperatures. Here b = (bx, 0, 0),
q = (0, 0, qz ) (left) and b = (0, 0, bz ), q = (0, 0, qz ) (right). The
Fermi level is μ = 0.7, and the other parameters are the same as in
Fig. 2.

following way. First, we numerically compute particle number
at zero temperature as a function of chemical potential: N =∫

d3k
(2π )3 θ (μ − k). Then, by using Eq. (A3), we obtain particle

number N (μ, T ) at various finite temperatures and chemical
potentials and use it to find the dependency μ(T ). Namely,
for a given chemical potential at zero temperature EF , we take
number of particles N (EF , T = 0); then, for given nonzero
T , find two closest values of N (T ) and their corresponding
μ and finally obtain the answer for μ(T ) through their linear
interpolation. In total, we find μ(T ) for given EF and then use
it to compute the effective action through Eq. (A3).

In the case of a type-II Dirac semimetal, we present our
findings in Fig. 3. At q = 0 we expect that the effective action
will be temperature independent for b ‖ z, but will increase,
e.g., for b ‖ x. Our numerical plots are consistent with these
predictions at small T , but as T becomes large the numerical
plots start behaving differently because of nonlinearities in
the dispersion. More interestingly, our numerical findings
confirm that the wave vector of the magnetization changes
with temperature, and, even more, as temperature grows, the
system may undergo a phase transition from spin-density
wave to antiferromagnetic phase.

The results for the type-I Dirac semimetal are qualitatively
similar to the type-II case and are shown in Fig. 4. As
expected, the magnitude of the effective action decreases with
temperature, and its shape evolves. Specifically, its minimum
may shift, so that the system undergoes a transition from
spin-density wave to antiferromagnetic phase.

Thus, we have demonstrated that Dirac electrons may have
a large variety of possible magnetic phases. Most commonly,
these phases are antiferromagnetic or spin-density wave, and
there are possible transitions between them, as chemical po-
tential or temperature varies.
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