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Although the adiabatic heuristic argument of the fractional quantum Hall states has been successful,
continuous modification of the statistics of anyons is strictly prohibited due to algebraic constraints of the braid
group on a torus. We have numerically shown that the adiabatic heuristic principle for anyons is still valid even
though the Hamiltonians cannot be modified continuously. The Chern number of the ground-state multiplet is
the adiabatic invariant, while the number of the topological degeneracy behaves wildly. A generalized Streda
formula is proposed that explains the degeneracy pattern. Nambu-Goldstone modes associated with the anyon
superconductivity are also suggested numerically.
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I. INTRODUCTION

Over the past decade, topology has come to the fore in
modern condensed-matter physics. The quantum Hall (QH)
effect [1,2] is a prime example of topologically nontrivial
phases, where the quantized Hall conductance is given by the
Chern number [3–6]. Topological concepts enrich material
phases beyond the Ginzburg-Landau theory. The fractional
QH (FQH) state [7] is a typical example of the quantum liquid
with topological order [8]. It hosts fractionalized excitations
that carry fractional charges and fractional statistics [9–11],
which is the hallmark of topologically ordered phases [12].
The topological degeneracy is closely related to these frac-
tionalizations [8,13–15]. Some of the non-Abelian topolog-
ical order can be used for a possible quantum computation
[16–20].

Point particles in two dimensions can be charge-flux com-
posites associated with a singular gauge transformation [21].
In relation to the composite fermion picture [22,23], the flux
attachment has been quite successful at describing the FQH
effect; the FQH effect at filling factor ν = p/(2mp ± 1), with
p and m being integers, can be understood as the ν = p integer
QH (IQH) effect of the composite fermions. This concept
is further developed to the “adiabatic heuristic principle”
[24,25]. It states that both states are adiabatically connected
through intermediate systems of anyons. This characterization
of the QH states based on the adiabatic deformation is a
typical example of the topological classification as is widely
applied to recent studies of topological phases.

We note that a careful setup is required to carry the program
of this adiabatic heuristic principle for concrete systems. The
statistical phase θ of anyons is governed by a representation
of the fundamental group of the many-particle configuration
space (braid group) [26]. Therefore, the world lines of the
system needs to satisfy the braid group constraint.

As for topological phenomena, the geometry of the system
is crucially important. With boundaries, low-energy modes

appear as edge states even for gapped systems. Thus, for the
demonstration of the adiabatic heuristic principle, the torus
geometry without any boundaries is favorable [27]. However,
an algebraic constraint of the braid group on a torus [13,28–
32] prohibits continuous change in the statistical phase θ . This
makes it impossible to apply the adiabatic heuristic principle
naively.

In this paper, we show that the adiabatic heuristic principle
indeed remains valid on a torus. Here, “adiabatic” is used
in the sense that the gap remains open, although continuous
deformation of the Hamiltonian is impossible. The many-
body Chern number of the ground-state multiplet is also
calculated numerically, which serves as the adiabatic invariant
while the topological degeneracy changes wildly. We propose
a generalized Streda formula to characterize the obtained
degeneracy pattern in relation to the Chern number, which
follows from the translational invariance of anyons. At the
gap closing point, the Chern number changes sign, and anyon
superconductivity [37–39] is expected.

II. ADIABATIC HEURISTIC PRINCIPLE
AND BRAID GROUP

Let us here briefly derive the fundamental relation of
the adiabatic heuristic principle [24,25]. We consider a QH
system of Na particles with charge −e in a uniform magnetic
field. According to the adiabatic heuristic principle, the QH
state is adiabatically deformed by trading the external fluxes
for the statistical ones of anyons. Since the total flux remains
constant (Nφ + Naθ/π = const), one has the relation 1/ν +
θ/π = const, where Nφ is the number of external fluxes, θ

is the statistics of anyons, and ν = Na/Nφ . Assuming that the
ν = p IQH state of fermions (θ = π ) is included in this series,
one has ν = p/[p(1 − θ/π ) + 1].

From the analysis of the braid group on a torus [13,28–32],
the relation 1/ν + θ/π = const is rederived (see Appendix
A) with an additional constraint, as explained below. The
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FIG. 1. Pictorial proof of Eq. (1) [28]. (a) The paths of the four
moving processes ρ−1

i , τi+1, ρi, and τ−1
i+1 are presented from bottom

to top. (c) The path in (a) can be deformed into that in (c) through
that in (b).

generators of the braid group on a torus are denoted as σi,
τi and ρi, where σi (i = 1, . . . , Na − 1) is a local exchange
between the ith and (i + 1)th anyons and τi and ρi (i =
1, . . . , Na) are global moves of the ith anyon along a non-
contractible loop on the torus in the x and y directions. Now,
we take the basis |{rk}; w〉 for its expressions, where {rk} is
the position of anyons and w = 1, . . . , M is the extra internal
index that is necessary to satisfy the braid group constraints
on a torus, as seen below. We assume that anyons are Abelian:
σi = eiθ 1M , where 1M is the M-dimensional unit matrix. As
shown in Fig. 1 [28], the generators σi, τi, and ρi need to
satisfy

τ−1
i+1ρiτi+1ρ

−1
i = (σ−1

i )2 = e−i2θ 1M . (1)

By taking a determinant of Eq. (1), we have 1 = e−i2Mθ . If
θ/π = n/m (with n, m being coprime), the dimension of the
representation M needs to be a multiple of m. This constraint
strictly prohibits a continuous change in the Hamiltonian in
the adiabatic heuristic principle.

In this paper, this puzzle is resolved. Although the Hamilto-
nian is defined only for discrete values of θ and its dimension
behaves wildly, the energy gap defined by a dense set of
Hamiltonians is surprisingly smooth and finite. It justifies the
adiabatic heuristic principle on a torus. We also find the
generalized Streda formula to explain the wild behavior of the
degeneracy in terms of the many-body Chern number.

III. MODEL

We consider the periodic system of anyons in the uniform
magnetic field on a square lattice with Nx × Ny sites. The
Hamiltonian is

H = t
∑
〈i j〉

eiφi j eiθi j c†
i c j ⊗ W (i j) + V

∑
〈i j〉

nin j ⊗ 1M, (2)

where ni = c†
i ci and c†

i (ci) is the creation (annihilation) op-
erator of a hard-core boson on site i. The hard-core condition
is necessary to ensure consistency with the braid group. The
Peierls phase eiφi j is specified by the string gauge [33] for
the external magnetic field. The phase eiθi j describes the
statistical phase [29,30] (see the details below). W (i j) is an
M-dimensional matrix [30] to ensure consistency with Eq. (1).
When θ/π = n/m, M is fixed to be m as the irreducible
representation. We set W (i j) = Wx and Wy for (i j) describing

FIG. 2. (a) String gauge. Sketches of the 3 × 3 square lattice with
(b) the string gauge φi j and (c) the statistical gauge θi j . The yellow
points in (c) represent sites with anyons.

a pair of sites across the boundary in the x and y directions,
respectively, and otherwise, W (i j) = 1M , where

Wx =

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

eiηx 0 . . . 0

⎤
⎥⎥⎥⎦, (3)

Wy = eiηy diag[ei2θ , ei4θ , · · · , ei2Mθ ], (4)

and �η = (ηx, ηy) specifies the twisted boundary conditions.
The Hamiltonian is consistent with Eq. (1) since we have
W −1

x WyWxW −1
y = e−i2θ 1M for any �η.

Let us now give detailed descriptions of how to construct
the Hamiltonian in Eq. (2). We first mention the string gauge
φi j briefly. As shown in Fig. 2(a), let us consider a string on
sites and assign the Peierls phase ei2πφ on the links intersected
by the string. They clearly describe the magnetic fluxes φ and
−φ at the terminal and initial points of the string, respectively.
Thus, the string gauge shown in Fig. 2(b) introduces the flux
φ × (1 − NxNy) to the plaquette with origin Oφ but introduces
φ to the others. The gauge convention θi j is also described
by the strings [see Fig. 2(c)]. The strings carry the phase
factor eiθ , and their terminal points are located at plaquettes
adjoining anyons. The additional rules are given as follows
[30] (the roles of each rule are explained in Ref. [34]):

(i) If a string sweeps another anyon in the process of
hopping, one determines the phase factor as if the anyon
crosses the string.

(ii) When an anyon hops across cut B from left to right, the
phase factor ei(Na−1)θ is given.

(iii) When an anyon hops across a horizontal string, the
phase factor ei2θ , not eiθ , is given.

(iv) When an anyon hops across cut A upward, the phase
factor eiXθ is given, where X is the number of other anyons in
the same x-axis position as the hopping anyon.

Due to Eqs. (3) and (4), we also give the following rules:
When an anyon hops across cut B from left to right, the label
is changed from w to w − 1, where w is the label of the basis
|{rk}; w〉. If w = 1, the phase factor eiηx is also given. Also,
when an anyon hops across cut A upward, the phase factor
eiηy ei2wθ is given.

In this framework, the representations of the global
move operators are given as τ j = ei e

h̄ α j e−i2θ ( j−1)Wx and ρ j =
ei e

h̄ β j ei2θ ( j−1)Wy, where ei e
h̄ α j and ei e

h̄ β j are from the Peierls
phase φi j describing the external magnetic field. As shown
in Appendix A, these representations are consistent with the
braid group on a torus.

The above construction of θi j introduces the magnetic flux
−2π × 2θNa only to the plaquette with origin Oθ shown
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FIG. 3. (a)–(c) Energy gaps are shown as functions of 1/ν for t = −1 and V = 5. The system size is Nx × Ny = 10 × 10. The statistical
parameter θ is determined by ν = p/[p(1 − θ/π ) + 1] with (a) p = 1 (b) p = 2, and (c) p = 3. The vertical dashed lines represent θ/π =
integer. The anyon number is (a) and (b) Na = 4 and (c) Na = 3. We plot the lowest Ncut states at each 1/ν [Ncut = 40 for (a) and (b) and
Ncut = 70 for (c)]. The open black circles in (a) are the gaps END+1 − E1 for V = 0. The inset in (a) is the energy spectrum with the same
setting as in the main panel. (d)–(f) The ground-state degeneracy ND is shown.

in Fig. 2(c) [30]. Since the string gauge φi j introduces the
flux φ × (1 − NxNy) to the plaquette with origin Oφ but φ

to the others, as described above, one gets a condition of
the uniformity of the magnetic field as ei2πφ(1−NxNy )−i2θNa =
ei2πφ . Since Nφ = φNxNy, this condition is consistent with the
relation 1/ν + θ/π = const.

IV. ENERGY GAP

Using the above setup, we numerically diagonalize the
Hamiltonians. In the following, we set Nx = Ny = 10, t = −1,
V = 5, and �η = �0 unless otherwise stated. We assume that
the states are degenerate if the energy difference is less than
0.001.

In Figs. 3(a)–3(c), we plot the energies of a series that
includes the ν = p IQH state (p = 1, 2, 3) as a function of
1/ν. We show the data for θ = (n/m)π with various m and n
(m � 7). The data points with different colors are eigenvalues
of H with different dimensions. Figures 3(a)–3(c) show that
the gap behaves smoothly for a dense set of Hamiltonians.
The energies of the ground state are also smooth [see the inset
in Fig. 3(a)].

Let us first consider a series of the ν = 1 IQH state, which
includes the Laughlin state. We here consider only 0 � ν

since a system of ν < 0 is trivially mapped to that of 0 < ν.
In Fig. 3(a), the threefold-degenerate ground state is obtained
at ν = 1/3, which is consistent with the lattice analog of the
Laughlin state [35]. This state is adiabatically connected to
the ν = 1 IQH state. Note, however, that the ground-state
degeneracy ND changes wildly [see Fig. 3(d)]. At 1/ν = 0,
the gap closing occurs, which suggests the Nambu-Goldstone
modes associated with the superconductivity of hard-core
bosons [36]. In Fig. 3(a), the results without the electron-
electron interactions are also shown. While the ground states
of anyons or bosons are gapped because of their hard-core

nature, the gap at ν = 1/3 vanishes since the system reduces
to the partially filled lowest Landau band of free fermions.
This implies that the interaction is crucially important only
for the FQH states of fermions. In Fig. 4, the energy spectra
as functions of the interaction V are shown. The FQH states
remain gapped with the same topological degeneracy for a
wide range of V apart from the point V = 0 in Fig. 4(c).
Inclusion of the finite interaction V induces the gap at this
point, which is consistent with the gapped Laughlin state.
Although the discussion of the thermodynamic limit is an
open question, our adiabatic heuristic argument for the fixed
system size includes important scientific information.

As for the other series in Figs. 3(b) and 3(c), one can
also see that the gaps remain open for each region 0 < 1/ν

and 1/ν < 0, although their topological degeneracy changes

FIG. 4. Energy spectra are shown as functions of the interaction
V for (a) the Boson FQH state at ν = 1/2, (b) the anyon FQH state
at ν = 2/5, and (c) the Fermion FQH state at ν = 1/3. They are
included in a series of the ν = 1 IQH state. We set t = −1 and
Nx × Ny = 10 × 10. The lowest 40 states are shown in each panel.
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FIG. 5. (a)–(c) Chern number C of the degenerated ground-state
multiplet is shown as a function of 1/ν. In (a), (b), and (c), we
consider the systems in the same settings as in Figs. 3(a), 3(b) and
3(c), respectively. (d)–(f) Spectral flows at 1/ν = 0 for each series.
We set ηy = 0. The statistics parameter is given by (d) θ/π = 2,
(e) θ/π = 3/2, and (f) θ/π = 4/3, respectively.

irregularly [see Figs. 3(e) and 3(f)]. The excitation gap closes
at 1/ν = 0 in both figures, which is consistent with the emer-
gence of the anyon superconductivity [37–39] of θ = (3/2)π
and θ = (4/3)π , respectively.

The numerical results in Fig. 3 suggest that the adiabatic
heuristic principle remains valid for a series that includes the
ν = p IQH state for the general integer p. It also suggests the
realization of the anyon superconductivity of θ = (1 + 1/p)π
by trading all the external magnetic fluxes for the statistical
one.

Since 1/ν ∝ φ, where φ = Nφ/(NxNy) is the number of
fluxes per plaquette, this unusual but adiabatic behavior, in
the sense that the gap remains open, is similar to the Azbel-
Hofstadter problem [40–42] for the weak magnetic field limit.
It implies that the adiabatic invariant of the evolution can be
given by the Chern number of the ground-state multiplet. This
is correct, as we discuss below.

V. ADIABATIC INVARIANT

As for the gapped ground-state multiplet of anyons, we
calculate the many-body Chern number [5]

C = 1

2π i

∫
T 2

d2ηF, (5)

where T 2 = [0, 2π ] × [0, 2π ], F = (∂Ay/∂ηx ) − (∂Ax/∂ηy),
Ax(y) = Tr [†(∂/∂ηx(y) )], and  = (|G1〉 · · · , |GND〉) is a
ground-state multiplet. In the numerical calculation, we use
the method proposed in Ref. [43]. In Figs. 5(a)–5(c), we plot
C for systems with the same settings as in Figs. 3(a)–3(c).
Although the dimensions of the multiplet change wildly, the
Chern number C remains the same. It suggests that C is
an adiabatic invariant of the evolution. As for a series that
includes the ν = p IQH state, we numerically obtain

C = sgn(ν) × p, (6)

where sgn(x) is the sign function. For ν > 0, Eq. (6) is natural
since the ν = p IQH state is included. However, the case with
ν < 0 is nontrivial since it does not include any simple state.

While the energy of the QH systems is almost independent
of �η, the spectral flows at 1/ν = 0 exhibit strong �η depen-
dences [see Figs. 5(d)–5(f)]. They indicate the absence of the
energy gap at 1/ν = 0, which implies the Nambu-Goldstone
modes of the anyon superconductors.

VI. TOPOLOGICAL DEGENERACY

As mentioned above, the ground-state degeneracy changes
wildly during the evolution, as shown in Figs. 3(d)–3(f). The
fermion FQH state at ν = p/q is q-fold degenerate [44], but
this pattern does not hold in the anyonic systems; the QH
state with (ν, θ/π ) = (1, 1/2) in Fig. 3(e), for example, has
fourfold degeneracy. We address this issue analytically below.

Let us consider a continuous translationally invariant
system of size Lx × Ly with external magnetic field B =
φ0Nφ/(LxLy). The results obtained below are valid even
for lattice models as long as φ is sufficiently small, i.e.,
the magnetic length becomes much larger than the lattice
constant. The statistics of anyons is set as θ = (n/m)π ,
and a translation operator of the center of mass is given
by T (a) = exp{(i/h̄)

∑
i K i · a}, where K i = pi + eA(ri ) −

eBez × ri [44–46]. Since the interactions of the system includ-
ing the statistical vector potential [21] are given by the relative
coordinates of anyons, T (a) commutes with the Hamilto-
nian H . Noting that T (b)−1T (a)−1T (b)T (a) = ei e

h̄ B(a×b)Na , let
us now assume the following:

ρ−1
i T (a)−1ρiT (a) = ei e

h̄ B(a×Lyey ), (7)

T (b)−1τ−1
i T (b)τi = ei e

h̄ B(Lxex×b) (8)

since each loop given by Eqs. (7) and (8) does not enclose the
other anyons.

Equation (1) implies [τm
i , ρ j] = 0. (The proof for any i and

j is given in Appendix A.) Then by defining TA ≡ T ( 1
m

Ly

Nφ
ey),

which satisfies

[TA, τm
i ] = [TA, ρi] = 0, (9)

let us take the simultaneous eigenstate |ψ0〉, which satis-
fies H (�η)|ψ0〉 = E (�η)|ψ0〉 and TA|ψ0〉 = eiλ|ψ0〉 with λ be-
ing real. Here, the twisted boundary angles �η are speci-
fied by τm

i and ρi with Eqs. (3) and (4). Further defining
TB ≡ T ( Lx

Nφ
ex ) and TC ≡ τ1T ( n

m
Lx
Nφ

ex ), we define a new state

|ψs,t 〉 ≡ T s
BT t

C |ψ0〉. While TB and TC commute with τm
i and

ρi, we have

TATB = TBTAei2π 1
m ν, (10)

TATC = TCTAei2π ( 1
m +ν n

m2 )
. (11)

This implies H (�η)|ψs,t 〉 = E (�η)|ψs,t 〉 and TA|ψs,t 〉 =
eiλei2π fs,t |ψs,t 〉, with

fs,t = νs + (1 + νθ/π )t

m
= ν

pm
[p(s + t ) + t], (12)

where ν = p/[p(1 − θ/π ) + 1] is used in the last part. Thus,
the topological degeneracy NTD is given by the number of
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pairs (s, t ) that give different values of fs,t mod 1. Since
pm/ν is always an integer, one obtains NTD = pm/|ν|. Using
Eq. (6) and M = m (irreducible representation), we have

NTD = MC/ν. (13)

This is consistent with the obtained ground-state degeneracy
shown in Figs. 3(d)–3(f). The anyon nature shown in Eq. (11)
gives the extra degeneracy compared with the fermionic stan-
dard case [44].

VII. GENERALIZED STREDA FORMULA

Taking the difference of Eq. (13) for two possible cases in a
series, one obtains �NTD/�(M/ν) = C, where we assume the
Chern number C is the invariant. Since M/ν = MNxNyφ/Na,
with φ being the number of fluxes per plaquette, we finally
have

�(Np/N ′
site )

�φ
= C, (14)

where Np ≡ NTDNa is the “parton” number corrected by the
topological degeneracy and N ′

site ≡ MNxNy is the extended
number of sites due to the non-Abelian nature of the repre-
sentation. This is a generalized Streda formula for anyons.
Note that Eq. (14) for fermions (M = 1, ν = p/q, NTD = q,
C = p) reduces to the standard Streda formula [47]. When
one includes a reducible representation of the braid group,
i.e., M = tm, with 2 � t (t is an integer), the degeneracy
NTD increases t times. Therefore, Eqs. (13) and (14) hold
generally.

VIII. CONCLUSION

In this paper, the adiabatic heuristic principle for the QH
states was demonstrated on a torus numerically. The emer-
gence of the anyon superconducting states was also suggested.
The Chern number of the ground-state multiplet served as the
adiabatic invariant of the evolution although its degeneracy
changes wildly. The anyon nature brings the extra multiplicity
to the topological degeneracy. It results in a generalized Streda
formula that follows from the translational invariance. Exten-
sions of this adiabatic principle on a torus could be useful to
characterize the non-Abelian FQH states.
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APPENDIX A: CONSTRAINTS ON STATISTICAL PHASE

In this Appendix, we derive the relation 1/ν + θ/π =
const from the braid group analysis on a torus. A proof of
[τm

i , ρ j] = 0 for any i and j is also given here.
In the main text, we denote the generators of the braid

group on a torus by σi, τi, and ρi. They satisfy the following
relations [13,31,32]:

τ−1
i+1ρiτi+1ρ

−1
i = (σ−1

i )2, (A1)

FIG. 6. Closed paths defined by (a) (σ−1
i τiσ

−1
i )−1τi+1 and

(b) (σiρiσi )−1ρi+1.

ρ−1
1 τ−1

1 ρ1τ1 = σ1 · · · σNa−1σNa−1 · · · σ1ei e
h̄ BLxLy , (A2)

τi+1 = σ−1
i τiσ

−1
i ei e

h̄ (αi+1−αi ), (A3)

ρi+1 = σiρiσie
i e

h̄ (βi+1−βi ), (A4)

where αi and βi are real numbers. Equation (A1) is the same
as Eq. (1). The derivations of Eqs. (A3) and (A4) are given in
Appendix B.

Substituting σi = eiθ 1M into Eqs. (A1), (A2), (A3), and
(A4), we have

ρiτi+1 = τi+1ρie
−i2θ , (A5)

ρ1τ1 = τ1ρ1ei2(Na−1)θ+i2πNφ , (A6)

τi+1 = τie
−i2θ ei e

h̄ (αi+1−αi ), (A7)

ρi+1 = ρie
i2θ ei e

h̄ (βi+1−βi ). (A8)

Here, we note that the representations

τ j = ei e
h̄ α j e−i2θ ( j−1)Wx, (A9)

ρ j = ei e
h̄ β j ei2θ ( j−1)Wy (A10)

satisfy the relations in Eqs. (A5), (A6), (A7), and (A8).
Substituting Eq. (A7) into Eq. (A5), one gets

ρiτ j = τ jρie
−i2θ . (A11)

If θ/π = n/m, it reduces to [τm
i , ρ j] = 0. Comparing

Eq. (A11) for i = j = 1 with Eq. (A6), we get

ei2θNa+i2πNφ = 1. (A12)

This implies that θ/π + 1/ν = 2πs/Na, with s being an inte-
ger.

APPENDIX B: NONCONTRACTIBLE LOOPS ON A TORUS

In this Appendix, we prove Eqs. (A3) and (A4). If the
magnetic flux is absent, the relations of the braid group are
given as [13,28]

τi+1 = σ−1
i τiσ

−1
i , (B1)

ρi+1 = σiρiσi. (B2)

Note that (σ−1
i τiσ

−1
i )−1τi+1 and (σiρiσi )−1ρi+1 move anyons

along closed loops shown in Figs. 6(a) and 6(b), respectively.
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Therefore, if the magnetic field described by the vector poten-
tial A(r) is present, (αi+1 − αi )/φ0 and (βi+1 − βi )/φ0 fluxes
penetrate each closed path, respectively, where αi = ∮

Lτi
dr ·

A(r), βi = ∮
Lρi

dr · A(r), and Lτi (ρi ) is the path given by τi(ρi ).
Then we obtain Eqs. (A3) and (A4).
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