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Ab initio determination of the magnetic ground state of pyrochlore Y2Mn2O7
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There are two discrepant experimental results on the magnetic ground state of Y2Mn2O7; one study proposes
a spin-glass state, while the other introduces the material as a ferromagnet. In this study, we attempt to resolve
this issue by employing density functional theory and Monte Carlo simulations. We derive different spin models
by varying the Hubbard U parameter in ab initio GGA+U calculations. For most of the range of Hubbard
U , we find that the leading terms in the spin Hamiltonian are biquadratic and nearest-neighbor Heisenberg
exchange interactions. By comparing Monte Carlo simulations of these models with the experiments, we find
a ferromagnetic ground state for Y2Mn2O7 to be the most compatible with experiments. We also consider
Y2Mo2O7 as a prototype of the defect-free pyrochlore system with spin-glass behavior and compare it with
Y2Mn2O7. The orbital degrees of freedom are considered as a leading factor in converting a defect-free
pyrochlore such as Y2Mn2O7 to a spin-glass system. By changing the d orbital occupations of Mo atoms, our
GGA+U calculations for Y2Mo2O7 indicate many nearly degenerate states with different d orbital orientations,
which reveals d orbital degrees of freedom in this material. However, for Y2Mn2O7, we find a single ground
state with a fixed orbital orientation. Consequently, all of our ab initio approaches confirm Y2Mn2O7 is a
ferromagnetic system.
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I. INTRODUCTION

The geometrical frustration [1] of magnetic pyrochlore
oxides, with the chemical formula A2B2O7 [2,3], is generating
more research on these materials. The geometrical frustration
is due to the networks of corner-sharing tetrahedrons (Fig. 1
indicates one of these networks), which are formed by the
magnetic ions residing on A and B sites. Due to the diverse
nature of magnetic ions, their interactions, and geometrical
frustration, the ground state can be spin ice [4,5], spin liq-
uid [6], or spin glass [7]. If this frustration accompanies
randomness such as chemical disorders and crystallographic
defects, magnetic moments of ions will freeze with random
spatial orientations [8,9], creating a spin-glass phase. Uncon-
ventional spin-glass behavior for some pyrochlore oxides such
as Y2Mo2O7 [10–14], Y2Mn2O7 [15], Tb2Mo2O7 [16], and
A2Sb2O7 (A=Mn, Co, Ni) [17] has been observed despite the
fact that their crystal structures are highly pure and chemically
ordered. One of the most exciting pyrochlore spin glasses is
Y2Mo2O7, in which, instead of chemical disorder, the orbital
degrees of freedom play a role in converting the material
to a spin-glass system. While, for Y2Mo2O7, theoretical and
experimental evidence of its spin-glass behavior is available,
for Y2Mn2O7, a very similar compound, the experimental
results are inconsistent, and there is no theoretical study of
its low-temperature magnetic ground state.

Reimers et al. showed [15] that Y2Mn2O7 exhibits
experimental evidence of the spin-glass state below
critical temperature (Tc = 20 K), such as splitting of
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zero-field cooling and field-cooling dc susceptibility,
the frequency-dependent ac susceptibility cusp, a broad
maximum peak in the magnetic specific heat near Tc, and
no magnetization saturation in the presence of magnetic
field even at low temperatures. Also, neutron scattering
measurements revealed that there is no Bragg magnetic peak
below Tc. In contrast, Shimakawa et al. observed [18] that
there is a λ peak at Tc = 16 K of the magnetic specific heat,
a signature of the long-range ferromagnetic ground state
similar to other members of this oxide family (In2Mn2O7,
Lu2Mn2O7, Tl2Mn2O7). In both studies, the authors claim
that samples of Y2Mn2O7 are highly pure and free of chemical
disorders.

The motivation of the present study is to resolve the issue
of the low-temperature magnetic ground state of Y2Mn2O7

by means of the density functional theory (DFT) and clas-
sical Monte Carlo (MC) simulations. We derive an effective
spin Hamiltonian for Y2Mn2O7. The Hamiltonian consists of
Heisenberg exchange, biquadratic (B), and Dzyaloshinskii-
Moriya (DM) interactions and single-ion anisotropy �. Using
this Hamiltonian, the critical and Curie-Weiss temperatures,
as well as magnetic order, are investigated using Monte Carlo
simulations. Our calculations show that Y2Mn2O7 is a py-
rochlore ferromagnet. To ensure that the ground state is a
ferromagnet, not a spin glass, we investigate d-orbital degrees
of freedom as one of the possible sources of spin glass. Since
Y2Mo2O7 is a spin glass (due to d-orbital degrees of freedom),
we also study this material as a prototype of unconventional
spin glass for comparison. Our ab initio results indicate d
orbital degeneracy (orbital degrees of freedom) for Mo in
Y2Mo2O7, while the Mn d state is free of orbital degeneracy
in Y2Mn2O7.
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FIG. 1. The corner-sharing tetrahedral network of the Mn (Mo)
atom in the cubic pyrochlore Y2Mn2O7 (Y2Mo2O7).

In the following sections, we explain why Y2Mn2O7 is
a pyrochlore ferromagnet, not a spin glass. In Sec. II, we
present the details of the DFT and Monte Carlo computa-
tions. Section III is devoted to the spin Hamiltonian and
critical properties of Y2Mn2O7. Furthermore, we compare
Y2Mn2O7 with Y2Mo2O7 in terms of orbital degeneracy for
the minority-spin state. Finally, in Sec. IV a summary is given.

II. COMPUTATIONAL DETAILS

For all of the ab initio calculations, we adopt experimental
parameters for both Y2Mn2O7 and Y2Mo2O7. These py-
rochlores crystallize in a cubic structure with the Fd3m space
group. Both Mn (Mo) and Y ions form separate corner-sharing
tetrahedral networks (Fig. 1 shows tetrahedral networks of
Mn atoms in the pyrochlore structure), where Y, Mn (Mo),
O(1), and O(2) atoms occupy 16d , 16c, 48 f , and 8a Wyckoff
positions, respectively. From x-ray powder diffraction, the x-
positional internal parameter and lattice constant of Y2Mn2O7

are determined to be 0.3274(8) and 9.901 Å, respectively
[19]. For Y2Mo2O7, powder neutron diffraction identifies the
internal parameter as 0.3382(1) and the lattice constant as
10.230(1) Å [20].

In this work, we use the FLEUR [21] and QUANTUM

ESPRESSO [22] (QE) codes for ab initio calculations. The for-
mer operates based on the full-potential linearized augmented
plane wave (FPLAPW), while the latter uses the plane-wave
pseudopotential approach. For FPLAPW calculations, the op-
timized cutoff of wave function expansion in the interstitial
region is set to kmax = 4.2 a.u.−1. The muffin-tin radii of Y,
Mn, and O atoms are set to 2.6, 2.1, and 1.4 a.u., respectively.
For all QE calculations, the optimized 40- and 400-Ry cutoffs
have been considered for expanding wave function and charge
density in the plane wave, respectively. In QE calculations,
we approximate electron-ion interactions using the GBRV
ultrasoft pseudopotential [23]. For the exchange-correlation
energy, we employ the Perdew-Burke-Ernzerhof parametriza-
tion of the generalized gradient approximation (GGA) [24].
For the Bader charge analysis, we use CRITIC2 [25,26]
with QE.

We use the GGA+U approximation to correct the on-site
Coulomb interaction for 3d and 4d electrons of Mn and
Mo atoms, respectively. The implementation of GGA+U in
FLEUR follows Liechtenstein’s approach. The approach needs
two parameters, U (on-site Coulomb repulsion) and JH (the
on-site Hund’s exchange). However, in our QE calculations,
we use Dudarev’s approach, which needs only effective on-
site Coulomb repulsion (Ueff = U − JH). Because for many
oxides JH ∼ 1 eV [27,28], we use this value for JH in all
FPLAPW calculations. To have an estimation of the Ueff

parameter, we employ the linear-response calculation method
implemented in QE [29]. For this estimation, we use the
conventional cell of Y2Mn2O7 (containing 88 atoms). We also
estimate Ueff through a more exact procedure called a self-
consistent Hubbard U [30]. The method calculates Ueff using
the repeating linear-response calculation within GGA+U un-
til Ueff reaches a convergent value.

We derive the spin model Hamiltonian for Y2Mn2O7 from
FPLAPW total energies of different magnetic configurations.
In order to capture the physics of exchange interactions and
critical properties of the Y2Mn2O7 pyrochlore, we define the
spin Hamiltonian as follows:

H = −1

2

∑

i �= j

Ji j ( �Si · �S j ) + 1

2
B

∑

n.n

( �Si · �S j )
2

+ 1

2
D

∑

n.n

D̂i j · ( �Si × �S j ) + �
∑

i

( �Si · �di )
2, (1)

where �Si denotes the unit vector of the magnetic moment at
the ith lattice site, Ji j are the Heisenberg exchange parameters
up to the third neighbor (J1, J2, J3a) (see Ref. [31] for more
details), B is the biquadratic exchange interaction between the
nearest neighbors, D shows the strengths of the DM interac-
tion, and � is the strength of single-ion anisotropy. Also, D̂i j

shows the direction of DM vectors which is determined by
Moriya rules [32], and the vector �di is the single-ion easy-
axis direction at the ith site. In our previous study [31], we
demonstrated that Eq. (1) enables us to describe the magnetic
properties of the pyrochlore FeF3. The similarity between the
structures of pyrochlores FeF3 and Y2Mn2O7 makes Eq. (1)
suitable for Y2Mn2O7 too. The similarity comes from the facts
that (i) the structures of both Y2Mn2O7 and FeF3 have the
same space group (Fd3m), (ii) Mn and O(1) in Y2Mn2O7

have the same Wyckoff positions as Fe and F in FeF3, and
(iii) O(1) is intermediate between Mn atoms in Y2Mn2O7 and
F is intermediate between Fe atoms in FeF3.

The calculation of different spin Hamiltonian terms is
divided into two categories. The first category is related to
the Heisenberg term up to the third-nearest neighbor. To this
end, we use the conventional unit cell (88 atoms) with a 4 ×
4 × 4 Monkhorst-Pack k-point mesh. The second category is
devoted to other spin Hamiltonian terms. Since the nearest
neighbor is important for these terms, we consider the primi-
tive cell (22 atoms) with a 6 × 6 × 6 Monkhorst-Pack k-point
mesh. To derive Heisenberg coupling constants, we calculate
the GGA+U total energies of several collinear magnetic con-
figurations. Then through the least-squares method, we obtain
the Heisenberg constants (J1, J2, J3a) by fitting the Heisenberg
part of the spin Hamiltonian to the GGA+U total energies.
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TABLE I. Calculated spin Hamiltonian constants for different Ueff parameters. Negative and positive values for Heisenberg exchanges pa-
rameters denote antiferromagnetic and ferromagnetic exchange interactions, respectively. The values of critical and Curie-Weiss temperatures
for different Ueff parameters were calculated with the Monte Carlo simulation.

Ueff (eV) J1 (meV) J2 (meV) J3a (meV) B (meV) D (meV) � (meV) TC (K) �CW (K)

2.36 −0.69 −0.14 −0.28 −0.79 0.13 −0.12 7.0 −30.4
3.36 −0.02 −0.10 −0.17 −0.84 0.13 −0.12 7.4 −8.6
4.36 0.60 −0.07 −0.08 −0.89 0.13 −0.12 8.3 8.6
4.83 0.89 −0.06 −0.05 −0.92 0.13 −0.12 13.7 16.5
5.36 1.22 −0.04 −0.01 −0.96 0.14 −0.12 21.1 25.5
Expt. 20 [15], 16 [18] 41 [15], 50 [18]

For biquadratic interaction B, we calculate the GGA+U total
energies of several noncollinear magnetic configurations with
a zero magnetic summation at each Mn tetrahedron. It can
easily be demonstrated that for such magnetic arrangements,
the Heisenberg term is degenerate. Therefore, the GGA+U
total energy differences of these magnetic configurations are
related to nonrelativistic interactions such as the biquadratic
interaction. To obtain D and �, we include spin-orbit coupling
(SOC) in the total energy calculations (GGA+U+SOC).
Then by computing the total energies of some noncollinear
magnetic configurations which are degenerate with respect to
the biquadratic and Heisenberg parts of the spin Hamiltonian,
we extract D and �. The details of these calculations were
reported in Ref. [31].

To explore the low-temperature magnetic ground state and
critical properties of Y2Mn2O7, we perform Monte Carlo
simulations using the replica exchange method [33] as im-
plemented in the Esfahan Spin Simulation package (ESpinS)
[34]. We use three-dimensional lattices consisting of N × L3

spins, where L = 11 is the linear size of the simulation cell
and N is the number of spins (N = 4 for one tetrahedron);
106 Monte Carlo steps (MCs) per spin at each temperature
are considered for the thermal equilibrium and data collection,
respectively. To reduce the correlation between the successive
data, the interval between measurements is set to 10 MCs.

III. RESULTS AND DISCUSSION

A. Spin Hamiltonian of Y2Mn2O7

Table I summarizes calculated H terms for different Ueff

parameters as well as TC and �CW, which were obtained by
means of MC simulations of Eq. (1). From the linear response
and self-consistent linear-response approach, we obtain Ueff =
4.36 eV and 4.83 eV, respectively. According to Table I, for
these Ueff values, the type of nearest-neighbor exchange inter-
action is ferromagnetic. The linear-response method provides
a rough estimation of Ueff, which allows us to tune Ueff

around this estimation to obtain more consistent results with
the experiment. Therefore, we also consider Ueff = 3.36 eV
and Ueff = 5.36 eV. Because at Ueff = 3.36 eV, J1 is approx-
imately zero, we also add Ueff = 2.36 eV in our Hubbard
parameter list, where we guess J1 becomes antiferromagnetic.

According to Table I, the most influential interactions
are the first nearest-neighbor Heisenberg and biquadratic ex-
change. For the Heisenberg exchange J1, there is a transition at
Ueff = 3.36 from antiferromagnetic (negative J1) to ferromag-

netic (positive J1) type. The anisotropic exchange interactions
(D and �), unlike isotropic terms (J1 and B), have no changes
with Ueff. The positive D (direct Dzyaloshinskii-Moriya inter-
action) tends to choose noncollinear spin orientations [35,36]
(all-in/all-out phase), but this interaction is weaker compared
to other interactions, and the ground state is likely to be
less dependent on this interaction. In contrast, the biquadratic
interaction B becomes slightly stronger with increasing Ueff,
and its negative value indicates that magnetic moments tend
to choose collinear spin orientation.

B. Monte Carlo simulations

For each Ueff , the corresponding spin model Hamiltonian
is used in MC simulations. From MC simulations, we obtain
thermodynamic magnetic properties of Y2Mn2O7, such as
critical (TC) and Curie-Weiss (�CW) temperatures. To extract
�CW, we linearly extrapolate the reverse magnetic susceptibil-
ity data at high temperature (250–300 K) to the low tempera-
ture, as shown in Fig. 2(b). For estimation of TC, we use the
peak of the magnetic specific heat [Fig. 2(a)]. Comparing TC

and �CW with experiment (Table I) reveals that the MC results
related to self-consistent Ueff (i.e., 4.83 eV) and also Ueff =
5.36 eV are comparable to experimental data. Also, according
to Table I, there is a transition from antiferromagnetism
(�CW < 0) to ferromagnetism (�CW > 0) when Ueff changes
from 3.36 to 4.36. So although we find Ueff = 5.36 eV to be
the best of our GGA+U results, considering the two extrema
of our results, i.e., Ueff = 2.36 eV (antiferromagnetic phase)
and Ueff = 5.36 eV (ferromagnetic phase), can be instructive.

For Ueff = 5.36 eV, ferromagnetic J1 dominates over other
interactions, and it is expected to have a ferromagnetic phase.
The strong negative biquadratic interaction (B = −0.96 meV)
prevents noncollinear magnetism, which can be caused by
single-ion (� = −0.12 meV) and Dzyaloshinskii-Moriya
(D = 0.14 meV) interactions. However, for Ueff = 2.36 eV,
although J1 and B play a significant role, the third-nearest-
neighbor exchange interaction J3a also contributes to deter-
mining the magnetic ordering configuration at low tempera-
tures. In the following, we consider the effect of J3a on the
magnetic ordering of the system.

To have a correct sense of magnetic ordering below the
transition temperature for the Ueff = 2.36 case, we take a
snapshot of the magnetic configuration at 0.5 K (see Fig. 3).
From the snapshot, we can easily recognize a collinear anti-
ferromagnetic arrangement in most of the tetrahedrons. How-
ever, in few of the tetrahedrons, the magnetic arrangement
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FIG. 2. Monte Carlo simulation results using a lattice of linear
size L = 11: (a) Magnetic specific heat and (b) reverse magnetic
susceptibility for Ueff = 2.36 and 5.36 eV. Dashed lines are fitting
lines to data in the range 250–300 K. The inset zoom shows reverse
magnetic susceptibility in the 20–30 K interval for U = 5.36 eV.

does not follow a perfect antiferromagnetic configuration
(i.e., |S1 + S2 + S3 + S4| ≈ 0, where S1 · · · S4 indicate the
unit vectors of the spin directions at each vertex). Still, the
characteristic feature in all of the tetrahedrons is that magnetic
moments are approximately collinear. Therefore, to consider
the magnetic ordering, we guess absolute total magnetization,
|S1 + S2 + S3 + S4|, is a proper measurement for magnetic
order inside tetrahedrons (for a collinear arrangement, |S1 +
S2 + S3 + S4| can be 4, 2, or 0). The probability densities of

FIG. 3. A two-dimensional slice (7 × 7 × 1) of a spin snapshot
at T = 0.5 K for Ueff = 2.36 eV.

FIG. 4. The probability distribution of |S1 + S2 + S3 + S4| in-
side tetrahedrons at T = 0.5 K for Ueff = 2.36 eV (a) with J3a and
(b) without J3a.

|S1 + S2 + S3 + S4| at T = 0.5 K (below the transition tem-
perature) and T = 35 K (above the transition temperature) are
represented in Fig. 4(a). The distribution of |S1 + S2 + S3 +
S4| indicates the collinear magnetism (the peaks are around 0,
2, and 4), but in many tetrahedrons, a perfect antiferromag-
netic arrangement is disturbed. However, an almost perfect
antiferromagnetic arrangement will appear [Fig. 4(b)] if we
switch off the third-nearest-neighbor exchange interaction J3a.
Therefore, although our MC simulation shows J3a has a very
small effect on transition temperature, it completely changes
the magnetic order.

C. Orbital degree of freedom in Y2Mn2O7 and Y2Mo2O7

Our ab initio calculations show that for calculated Ueff

using both linear response (4.36 eV) and self-consistent linear
response (4.83 eV), the low-temperature magnetic ground
state has a ferromagnetic order. Also, MC simulations con-
firm the compatibility of the derived spin Hamiltonian from
GGA+U at Ueff = 4.83 and 5.36 eV with the experimen-
tal thermodynamic quantities, TC and �CW. However, some
experimental evidence indicates spin-glass behavior for this
compound [15]. Since experimental results for Y2Mn2O7

confirm no chemical disorder is present in this system, we
suggest that Y2Mn2O7 may have an orbital degree of free-
dom mechanism similar to Y2Mo2O7, which leads them to
a spin-glass behavior [10,37]. In the following, we compare
Y2Mn2O7 and Y2Mo2O7 to confirm firmly that Y2Mn2O7

cannot be a spin glass similar to Y2Mo2O7.

1. Electronic structure differences between Y2Mn2O7 and
Y2Mo2O7 at the GGA level

In the literature of magnetic pyrochlore oxides [3],
the valence state for pyrochlore oxides is simplified as
A2

+3B2
+4O7

−2. This simplification leads to 3d3- and
4d2-electron configurations in d orbitals for Y2Mn2O7 and
Y2Mo2O7, respectively [15,37]. However, using the Bader
charge analysis, we estimate the valence state within the GGA
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TABLE II. Charge distribution among Mn d and Mo d orbitals
in Y2Mn2O7 and Y2Mo2O7, respectively, obtained by GGA Lowdin
charge analysis.

Atom Spin dtot (dz2 , dx2−y2 ) (dxy, dxz, dyz )

Mn ↑ 3.9589 0.9450 0.6897
↓ 1.1277 0.1819 0.2546

Mo ↑ 3.0019 0.6326 0.5789
↓ 1.1764 0.1923 0.2639

calculations as follows: Y2
+2.18Mn2

+1.89O(1)5
−1.12O(2)2

−1.39

and Y2
+2.20Mo2

+2.19O(1)5
−1.23O(2)2

−1.40. Lowdin charge
analysis also confirms these results. In addition, Lowdin
charge analysis indicates how electrons distribute
among d orbitals (Table II). Due to the hybridization of
the d orbitals of Mn (Mo) with p orbitals of oxygen atoms,
the occupation of d orbitals of Mn (Mo) is fractional. The
spin-minority occupation for both Mn and Mo is about 1
electron, while the spin-majority occupation is about 4 and 3
for Mn and Mo, receptively. To have a better comparison, we
also compare the density of states (DOS) of d Mo and d Mn
states at the GGA level of DFT theory (Fig. 5). According to
Fig. 5, Y2Mn2O7 is an insulator, indicating that band theory
gives at least a correct state (i.e., insulating) for this material.
However, DOS of Y2Mo2O7 shows some d states at the Fermi
level despite the fact that Y2Mo2O7 is a semiconductor [38].
The reason for such a difference is that while crystal field

FIG. 5. Density of state (DOS) of (a) the Mo d orbital in
Y2Mo2O7 and (b) the Mn d orbital in Y2Mn2O7. The positive
and negative DOSs indicate majority-spin and minority-spin states,
respectively. The magnetic moments of Mn and Mo (obtained by
subtracting the spin-majority population from the spin-minority pop-
ulation) are 2.83μB and 1.83μB, respectively. For these calculations,
we choose the ferromagnetic arrangement and use spin-polarized
GGA.

splitting helps the 3d5 configuration of Y2Mn2O7 become an
insulator, the lack of crystal field splitting at the Fermi level
leads the 4d4 configuration of Y2Mo2O7 to the metal in GGA
calculations.

2. Orbital degree of freedom

The GGA+U calculations are generally based on the den-
sity matrix of atomic orbital states such as d states. In some
systems, there are several choices for density-matrix occu-
pations, and therefore, there are several electronic structures
for the system [39,40] (more precisely, GGA+U faces the
multiminima problem). In practice, the correct density-matrix
occupation can be chosen by comparing the GGA+U total
energies. Principally, for systems such as Y2Mn2O7 in which
GGA predicts correctly the system is an insulator, there is a
unique density-matrix occupation (i.e., a single minimum),
and there is no need to optimize the density matrix. However,
for systems such as Y2Mo2O7 in which GGA results in a
(wrong) metallic state, it is possible to have multiple minima
due to degrees of freedom in the density-matrix occupation.
These degrees of freedom in the density matrix happen be-
cause of partially occupied d-orbital states at the Fermi level.
It is also worth mentioning that the density-matrix occupa-
tions are under the influence of symmetry. Higher symmetry
lowers the degrees of freedom in the density matrix and, in
some cases such as Y2Mo2O7, restricts GGA+U calculations
to some incorrect solutions.

To explore the possibilities in density-matrix occupation
for Y2Mo2O7, we manipulate the initial density-matrix oc-
cupations of Mo atoms at the starting point of GGA+U
calculations with symmetry breaking for the antiferromag-
netic magnetic configuration. We use Ueff = 3.5 eV to correct
on-site electron-electron Coulomb repulsion on 4d orbitals
in Y2Mo2O7 [10]. For our exploration of density-matrix
occupation, we consider 150 different initial density-matrix
occupations. These initial density-matrix occupations lead to
50 distinguishable electronic configurations as the result of
GGA+U self-consistent field calculations. Figure 6 shows
the total energy of these 50 GGA+U solutions versus their
density matrix occupations, which is represented by a number
(from 1 to 50). Among these 50 GGA+U solutions, we fo-
cus on insulating ones. Despite differences in density-matrix
occupations, the insulating GGA+U solutions are nearly de-
generate in terms of energy. To characterize the difference
between these nearly degenerate states, we select two of them
(the ones denoted by arrows in Fig. 6) and compare their d-
orbital orientations at the tetrahedron corners. Figure 7 shows
that despite the same spin magnetic moment directions, there
are tiny differences in the orbital orientations of these two
electronic configurations. These orbital degrees of freedom
create local distortions and cause the system to show spin-
glass behavior [10,37]. In contrast, for Y2Mn2O7, we reach
a single solution where orbital orientations at the tetrahedron
corners show a single direction.

IV. CONCLUSIONS

In this paper, we tried to shed light on the magnetic
state of the pyrochlore Y2Mn2O7 using ab initio GGA+U
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FIG. 6. Total energy of Y2Mo2O7 versus density matrix occupa-
tions. The x axis representatively indicates different density matrix
occupations. We set the minimum of total energy to zero. The solid
red and open blue circles indicate insulator and metallic solutions,
respectively. The black arrows show two insulator solutions that we
select as instances to examine d-orbital orientation.

calculations and Monte Carlo simulations. For GGA+U cal-
culations, we estimated Hubbard Ueff via the linear-response
method. Using GGA+U calculations, we constructed several
spin models for Y2Mn2O7 by tuning the Hubbard parameter
Ueff around its estimated value. By comparing Monte Carlo
simulations of these models with experimental measurements
such as the Curie-Weiss temperature, we found that the ferro-
magnetic state of Y2Mn2O7 almost matches the experiments.
Also, we proved that Y2Mn2O7 cannot have a d-orbital degree
of freedom mechanism which may turn Y2Mn2O7 into a

FIG. 7. The orbital orientation of the 4d band nearly below the
Fermi level for two approximately degenerate GGA+U solutions for
Y2Mo2O7.

spin-glass system. To examine this issue, we analyzed both
Y2Mn2O7 and Y2Mo2O7, where for the latter, there is evi-
dence of spin-glass behavior due to the d-orbital degree of
freedom mechanism. We demonstrated that while GGA+U
calculations reveal the d-orbital degree of freedom mecha-
nism in Y2Mo2O7, there is no way that GGA+U leads to
such machinery for Y2Mn2O7. In summary, we suggest that a
pure pyrochlore phase of Y2Mn2O7 is a simple ferromagnetic
system. We also propose further experiments on this material
to clarify this issue. As a general outline, given the availability
of modern laboratory equipment, the results of the neutron
scattering measurements can be repeated once again, and the
absence or presence of a sharp Bragg peak can be reexamined.
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