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Thresholdless excitation of edge plasmons by transverse current
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We theoretically demonstrate that dc electron flow across the junction of two-dimensional electron systems
leads to excitation of edge magnetoplasmons. The threshold current for such plasmon excitation does not depend
on contact effects and approaches zero for ballistic electron systems, which makes a strong distinction from
the well-known Dyakonov-Shur and Cerenkov-type instabilities. We estimate the competing plasmon energy
gain from dc current and loss due to electron scattering. We show that plasmon self-excitation is feasible in
GaAs-based heterostructures at T � 200 K and magnetic fields B � 10 T.
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Edge plasmon is a collective electronic excitation propa-
gating along the boundary of a two-dimensional electron sys-
tem (2DES). Since their first observation [1,2], edge plasmons
proved to be challenging yet fruitful phenomena to explore.
The edge plasmons differ dramatically from their higher-
dimensional counterparts: The former usually have longer
lifetimes [3,4], manifest extraordinary light confinement [5,6],
and exhibit unique chiral properties [7–10] such as unidi-
rectional propagation. These features make edge plasmons
promising information carriers in future integrated circuits,
but the technological progress is hindered by their laborious
excitation. Thus, optical excitation techniques involve ponder-
ous near-field equipment [5] or additional sample processing
(e.g., waveguide deployment [3]), whereas electrical excita-
tion of edge plasmons requires ultrashort pulses [11].

In this Rapid Communication, we suggest a simple method
for electrical excitation of edge plasmons in continuous
regime: Excitation by direct transverse current. This method
complements the family of current-driven plasmon instabili-
ties in semiconductor heterostructures containing Cerenkov-
type [12,13], beam [14,15], and Dyakonov-Shur [16] insta-
bilities. However, all mentioned cases concern the excitation
of 2D plasmons by current copropagating with excited wave.
This results either in large threshold velocities for instability
onset [13], or in extreme sensitivity to contact effects [17]. Ac-
cordingly, though current-driven electromagnetic emission in
solids has been observed [18–20], its relation to any plasmon
instability is still debated [21–23].

The proposed technique for edge plasmon excitation has no
current threshold for sufficiently clean systems and is insensi-
tive to contact effects. It is inherited from a proposal of bound-
ary instability in a 2DES with a fully imaginary (turbulent)
spectrum [21,26]. In this Rapid Communication, we show
that turbulent plasma instability is the limiting case of a more
general phenomenon—instability of edge magnetoplasmons
with a well-defined spectrum. We develop a theory of current-
driven edge plasmon instabilities, determine their frequencies
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and growth rates, and suggest a route for their experimental
observation.

As an illustrative and exactly solvable model, we study
the effect of transverse electric current on interedge mag-
netoplasmons (IEMPs). These waves exist on the boundary
between two conductive half-planes in an external magnetic
field B [27–31]. In what follows, we model the boundary as a
steplike profile of electron density n0(x) = nlθ (−x) + nrθ (x)
[32]. IEMP is a chiral mode with the direction of propagation
depending on the direction of B and carrier density contrast
nr − nl . For definiteness, we choose B > 0, nr > nl ; in this
case, the plasmon travels codirectional with the y axis in
Fig. 1(a).

The spectrum of IEMPs is nontrivial: In weak fields its
frequency is proportional to the magnetic field, while in
strong fields the frequency acquires ln(ωc/ω2d )/ωc depen-
dence [Fig. 1(b)], where ωc is the cyclotron frequency and ω2D

is the plasma frequency of unbounded 2DES. The dependence
of wave damping on carrier momentum relaxation time τp is
also noteworthy: In weak fields, the IEMP damping rate is
two times higher than the usual 1/2τp estimate for 2D and
3D plasmons, while in strong fields the damping rate is much
lower and scales as 1/B [Fig. 1(c)].

In what follows, we demonstrate that IEMPs can be excited
by the transverse electric current, and establish the general
features of such an instability. In our analysis we adopt the
hydrodynamic model for electron transport [33]. In linearized
form with respect to variations of carrier density n and drift
velocity u, the hydrodynamic equations read

∂t n + ∇(n0u + u0n) = 0; (1)

∂t u + (u0,∇)u + (u,∇)u0 = − e

mc
u × B − eE

m
, (2)

where e > 0 is the elementary charge, m is carrier effec-
tive mass, c is the speed of light, u0 = ulθ (−x) + urθ (x)
is transverse drift velocity [34], and E = −∇ϕ is plasmon
electric field. To find the eigenfrequencies of plasmons, one
supplements these equations with self-consistent field relation
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FIG. 1. (a) Schematic of electric potential distribution for an
interedge magnetoplasmon confined between two conductive half-
planes with characteristic confinement length Lconf . The plasmon is
chiral and propagates with wave vector q > 0 if nr > nl in magnetic
field Bz > 0. The growing wave amplitude illustrates the gain from
dc current u0. (b) IEMP spectrum for a GaAs/AlGaAs heterostruc-
ture (m = 0.067me, dielectric permittivity ε = 1 for simplicity) at
different plasmon wavelengths λpl = 2π/q � Lconf/2. Carrier den-
sities are nl = 1011 cm−2, nr = 9×1011 cm−2. Orange dashed line
stands for cyclotron frequency. (c) Damping rate dependence from
magnetic field for IEMPs from panel (b) at different temperatures;
effective momentum relaxation times were assumed to be 0.5 ps for
230 K and 5 ps for 77 K [24,25]. Line colors correspond to plasmon
wavelengths defined in panel (b).

ϕ(x) = −eG[n] ≡ −e
∫

dr′G(r, r′)n(r′), where G(r, r′) is the
Green’s function of Poisson’s equation.

The presence of carrier drift makes the conductivity tensor
nonlocal in each of the half-planes, which significantly tangles
the solution of the resulting eigenvalue problem (see, for
example, [35,36]). Fortunately, analytical treatment is greatly
simplified if we consider carrier drift as a small perturbation
over the IEMP profile in an unbiased 2DES. This is done in
the framework of a recently developed perturbation theory for
hydrodynamic plasmons [37].

This theory relies on an operator representation of
Eqs. (1) and (2). It states that if a plasmon mode with
frequency ω is subject to a small perturbation V̂ , then the
perturbation-induced correction to the frequency is given by

δω = 〈�|ĤV̂ �〉
〈�|Ĥ�〉 , (3)

where Ĥ is the “’Hamiltonian operator” governing the net
energy of the wave. In the particular case of IEMP,

Ĥ =
⎛
⎝e2/m G[·] 0 0

0 n0(x) 0
0 0 n0(x)

⎞
⎠, (4)

and the effect of current is described by the perturbation
operator

V̂ = −i

⎛
⎝∂x[u0(x)·] 0 0

0 ∂x[u0(x)·] 0
0 0 u0(x)∂x·

⎞
⎠, (5)

� = {ñ, ũx, ũy}T is a three-dimensional vector comprising
Fourier components of the unperturbed plasmon carrier den-
sity and velocity (we denote ñ = nq,ω), the usage of the dot in
operators (4) and (5) is best understood through the example

V̂ � = −i{∂x(u0ñ), ∂x(u0ũx ), u0∂xũy}T,

and the inner product is defined as

〈�|Ĥ�〉 =
∫

dr
(

e2

m
ñ∗G[ñ] + n0ũ∗ũ

)
.

We managed to evaluate the current-induced perturbation
(3) of plasmon frequency for IEMPs in general form [Eq. (A2)
in the Appendix], which simplifies for the steplike background
density profile:

δω = −i j0

(m|ũx |2
2 − e2Ẽ2

x
2mω2

)∣∣+0
−0∫ ∞

−∞[mn0(|ũx|2 + |ũy|2) − eϕ̃ñ]dx
, (6)

where the notation (· · · )|+0
−0 stands for discontinuity of

the quantity across the interface, and j0 = nl ul = nrur is
carrier flux.

The correction to plasmon frequency (6) is purely
imaginary, which corresponds to wave self-excitation for
Im δω > 0, and damping for Im δω < 0. It depends linearly
on current j0 which is a natural consequence of perturba-
tion theory. From the above equation we readily reveal the
necessary conditions for edge plasmon excitation by direct
current. First, plasmons cannot be excited in the absence of
magnetic field; the latter tangles the ux velocity component
with perpendicular electric field Ey leading to a nonzero
numerator. Highly symmetrical modes are insensitive to drift
as well. The example of such a mode is the proximity plasmon
bound between homogeneous 2DES and a metallic electrode
[38,39].

To judge on the definite effect of drift, we plug the known
distributions of fields in the IEMP mode [28] into Eq. (3) and
numerically evaluate the integrals [40]. As a result, we obtain
the IEMP growth rate dependence on the cyclotron frequency
shown in Fig. 2.

We observe that the instability benefits from pronounced
density contrast at the boundary (see the blue arrow in Fig. 2),
and its behavior drastically differs in limits of weak and strong
magnetic fields. In weak fields the instability growth rate
scales linearly with the wave vector and is independent of
B. In strong fields, the plasmon growth rate scales as B2 and
is independent of the wave vector. The growth rates in these
limiting cases are given by

δωw � iq j0
nr − nl

2nrnl
∝ ω0

c q1�n1; (7)

δωs � −iq j0
ωc

ω

(nr − nl )2(nr + nl )

8n2
r n2

l

∝ ω2
c q0�n1, (8)

where ωc = eB/mc is the cyclotron frequency.
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FIG. 2. Calculated IEMP growth rate (in units of q0ul ) vs cy-
clotron frequency [normalized by plasma frequency in the left half-
plane ωl (q0)] at various wave vectors and density contrasts for
GaAs/AlGaAs heterostructure, q0 = 2π/(0.5 μm), ul = 107 cm/s.
Solid lines correspond to relative density contrast (nr − nl )/(nr + nl )
value 0.8, dot-dashed to 0.2, dashed to 0.6, and dotted to 0.9, while
nl is fixed at 1011 cm−2. The growth rate in weak fields saturates as
the relative density contrast approaches 1 (blue arrow).

The instability has zero threshold current in the absence
of momentum relaxation pathways. In realistic systems, it
is mainly hampered by carrier scattering on phonons or im-
purities. Thus, it is important to estimate the threshold drift
velocity uth at which gain (6) takes over scattering loss.

To provide a quantitative picture, we examine the stability
of dc current in the GaAs/AlGaAs heterostructure for a wide
range of magnetic fields and wavelengths. In Fig. 3, we
plot the boundaries separating stability and instability regions
at three temperatures; the instability regions are indicated
by red arrows. The boundary lines are calculated from the
balance between the damping rate at a given wavelength
and magnetic field, and the growth rate at GaAs saturation
velocity (∼2×107 cm/s) [41]. We observe that IEMP can be
easily excited at 77 K; its excitation at higher temperatures
is possible for shorter wavelengths and/or stronger magnetic
fields. However, it is not the absolute value of the magnetic
field that governs the instability growth rate; instead, it is the
ratio of cyclotron and plasma frequencies. Hence, in order to
achieve pronounced growth rates one can not only increase
the field, but also decrease ω2d (e.g., by depletion of carrier
density). For example, electron gas on a surface of liquid
helium usually exhibits ωc/ω2d � 1000 even at B = 1 T [2],
which enormously boosts the quadratically scaled growth
rate (8).

Another loss mechanism is caused by viscosity, which is
extremely challenging to incorporate in exact analysis of edge
plasmons [35]. Still, we can roughly estimate the correspond-
ing damping rate as

Im δωvisc ≈ −νq2

2
, (9)

FIG. 3. Color map of edge magnetoplasmon dispersion
ωemp(λpl, B) overlaid with “critical lines” of instability calculated
at three different temperatures for GaAs/AlGaAs heterostructure.
Waves with parameters to the right from critical lines have
threshold carrier velocity below the saturation velocity in GaAs
(∼2×107 cm/s). Structural parameters are the same as in Fig. 1(b);
effective momentum scattering times are the following: 5 ps for
77 K, 0.75 ps for 200 K, and 0.25 ps for 250 K.

where ν = v2
F τee/4 is kinematic viscosity; at 77 K and q =

2π/(2 μm) we can estimate ν ≈ 170 cm2/s [42–44] and
Imδωvisc = −1011 s−1. The damping rate (9) is several times
smaller than the loss from momentum scattering in weak
magnetic fields [Fig. 1(c)] and does not affect the results of
Fig. 3 much. Still, its role increases at larger wave vectors.

We note that our analysis relies on a hydrodynamic model
of electron transport and thus cannot be extended to cover
the quantum Hall regime. Still, we can speculate that the
instability would be nearly absent in this regime. Indeed, in
quantizing magnetic fields the drifting electrons would be
bound to skipping orbits and thus would not be able to deliver
energy to the edge mode. Still, quantum effects do not affect
numerical estimates of Fig. 3 as the necessary condition for
their observation h̄ωc � kT does not hold for our temperature
range.

We stress that edge plasmon instability should be distin-
guished from the Dyakonov-Shur instability. The latter relies
on the surplus of energy gained by plasmon at source over
the energy lost at the drain, thus being extremely sensitive to
boundary conditions [45]. In contrast, edge plasmon instabil-
ity is independent of contact effects, as the required energy
transfer from dc current to plasmon occurs in the interior
of the 2DES in the vicinity of the density step. What is
more, the frequency of the excited plasmon is independent
of sample length or width provided they significantly exceed
plasmon wavelength. These features make IEMP instability
a prominent candidate for the creation of resonant-tunable
arrays of plasmonic THz emitters.

The proposed technique necessarily requires that the edge
mode be localized between two conducting materials so that
the electric current could pass through. For instance, modes
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such as metal-dielectric interedge plasmon [46] or transverse
magnetosound [47] do not satisfy this condition.

It is remarkable that current-induced frequency shift given
by Eq. (6) can be obtained purely from energy conservation
considerations (see Appendix), similarly to the Reynolds-
Orr energy equation known in the fluid turbulence theory
[48,49]. However, the strong inhomogeneity of dc current
flow (∂u0x/∂y = 0) necessary for turbulence onset in fluids
is not required for edge plasmon instability due to nonzero
compressibility of the electron system.

Remarkably, edge plasmon instability is just one of numer-
ous manifestations of the flux-to-perturbation energy transfer
in plasmonics. For example, it can be used to excite chiral
plasmons without magnetic field [9], intersurface magneto-
plasmons (3D analog of IEMPs), higher-order (quadrupole,
etc.) magnetoplasmon modes bound to a smooth edge [50],
or increase the lifetime of decaying modes such as the upper
mode of IEMP [28]. It would be of particular interest to
examine the stability of proximity magnetoplasmons [38,39]
with respect to external source-drain bias due to the rela-
tively simple experimental setup (no need for density con-
trast). Essentially, the magnetic field will be needed to break
the proximity mode symmetry and make it susceptible to
drift.

In conclusion, we predicted thresholdless current-driven
edge plasmon instability. Possible applications include electri-
cal excitation of edge plasmons in continuous regime and the
creation of competitive resonant THz sources. The underlying
mechanism for the reported instability is flow-to-perturbation
energy transfer that proves to be a general phenomenon in
plasmonics and has many potential manifestations.
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the Russian Science Foundation.

APPENDIX: FLOW-TO-PERTURBATION
ENERGY TRANSFER

We multiply the Euler equation (2) with n0u, integrate over
the whole 2DES, and eliminate the boundary contributions by
the Gauss-Ostrogradsky formula that can be done exception-
ally by virtue of the localized nature of edge plasmons. Thus,
we obtain the following equation for energy balance:

∂t

∫
(K + �)dS =

∫
e(E, u0)

m
n dS −

∫
n0u[(u0,∇)u

+ (u,∇)u0]dS, (A1)

where

K + � = n0u2

2
− enϕ

2m
is total plasmon energy density. Hence, plasmon energy den-
sity changes in time due to its interaction with stationary flow
(right-hand side). We stress that electron compressibility is
crucial for plasmon excitation; otherwise, the right-hand side
of Eq. (A1) vanishes for flows ∂iv0 j = 0, i = j.

Remarkably, the perturbation theory result (6) can be ob-
tained from Eq. (A1). To do this, we represent all the IEMP
characteristics (variations of carrier density, velocity, etc.) in
the form a = ã exp−iωt−iδωt+iqy +c.c., where a is one of the
variations, and δω ∝ u0 is the drift-induced correction. Next,
we perform time averaging over period T � 2π/ω and to the
first order of u0 we obtain

δω = −i

∫ ∞
−∞ n0ṽ

∗
x ∂x(u0ṽx ) dx + ∫ ∞

−∞ n0ṽyu0∂x(ṽy) dx − e/m
∫ ∞
−∞ ϕ̃∂x(u0ñ) dx

2
∫ ∞
−∞(n0ũ2/2 − eñϕ̃/2m) dx

, (A2)

where we used the following properties of unperturbed IEMP:
ϕ̃, ñ, ṽy are real, ṽx is imaginary; dependence of these quan-
tities on drift velocity leads to higher-order terms that we
neglect.

Equation (A2) can be also obtained from the perturbation
theory and in the case of a steplike background density
profile leads to Eq. (3): The first integral in (A2) equals
j0|ṽx|2/2|+0

−0, the second one is zero, and the last one is equal
to e2Ẽ2

x /2mω2|+0
−0, which leads us to Eq. (6).

We stress that the result (A2) is more general than illus-
trative formula (6) as it allows one to calculate the drift-
induced correction to the spectrum of a plasmon with an
arbitrary profile. In particular, Eq. (A2) covers the case of
smooth background carrier profiles, in which higher-order
modes (quadrupole, etc.) emerge, and predicts thresholdless
instabilities for each of them [if for some profile expression
(A2) is negative, one shall simply reverse the dc current flow
to switch from decay to instability].

[1] D. B. Mast, A. J. Dahm, and A. L. Fetter, Observation of Bulk
and Edge Magnetoplasmons in a Two-Dimensional Electron
Fluid, Phys. Rev. Lett. 54, 1706 (1985).

[2] D. C. Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and
F. I. B. Williams, Dynamical Hall Effect in a Two-Dimensional
Classical Plasma, Phys. Rev. Lett. 54, 1710 (1985).

[3] V. M. Murav’ev, I. V. Kukushkin, A. Parakhonskiı̌, J. Smet,
and K. Von Klitzing, Measurement of the mean free path
of edge magnetoplasmons revealed in the spectra of mag-
netic oscillations of photovoltage in a two-dimensional elec-
tron system under microwave radiation, JETP Lett. 83, 246
(2006).

121402-4

https://doi.org/10.1103/PhysRevLett.54.1706
https://doi.org/10.1103/PhysRevLett.54.1710
https://doi.org/10.1134/S0021364006060063


THRESHOLDLESS EXCITATION OF EDGE PLASMONS BY … PHYSICAL REVIEW B 102, 121402(R) (2020)

[4] P. J. M. Peters, M. J. Lea, A. M. L. Janssen, A. O. Stone,
W. P. N. M. Jacobs, P. Fozooni, and R. W. van der Heijden,
Observation of Audio-Frequency Edge Magnetoplasmons in the
Classical Two-Dimensional Electron Gas, Phys. Rev. Lett. 67,
2199 (1991).

[5] Z. Fei, M. Goldflam, J.-S. Wu, S. Dai, M. Wagner, A. McLeod,
M. Liu, K. Post, S. Zhu, G. Janssen et al., Edge and surface
plasmons in graphene nanoribbons, Nano Lett. 15, 8271 (2015).

[6] I. V. Andreev, V. M. Muravev, V. N. Belyanin, and I. V.
Kukushkin, Azbel’-kaner-like cyclotron resonance in a two-
dimensional electron system, Phys. Rev. B 96, 161405(R)
(2017).

[7] A. C. Mahoney, J. I. Colless, L. Peeters, S. J. Pauka, E. J.
Fox, X. Kou, L. Pan, K. L. Wang, D. Goldhaber-Gordon, and
D. J. Reilly, Zero-field edge plasmons in a magnetic topological
insulator, Nat. Commun. 8, 1836 (2017).

[8] D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X.
Zhang, Infrared Topological Plasmons in Graphene, Phys. Rev.
Lett. 118, 245301 (2017).

[9] J. C. Song and M. S. Rudner, Chiral plasmons without magnetic
field, Proc. Natl. Acad. Sci. USA 113, 4658 (2016).

[10] V. M. Muravev, A. A. Fortunatov, I. V. Kukushkin, J. H. Smet,
W. Dietsche, and K. von Klitzing, Tunable Plasmonic Crystals
for Edge Magnetoplasmons of A Two-Dimensional Electron
System, Phys. Rev. Lett. 101, 216801 (2008).

[11] G. Ernst, R. J. Haug, J. Kuhl, K. von Klitzing, and K. Eberl,
Acoustic Edge Modes of the Degenerate Two-Dimensional
Electron Gas Studied by Time-Resolved Magnetotransport
Measurements, Phys. Rev. Lett. 77, 4245 (1996).

[12] M. Krasheninnikov and A. Chaplik, Instabilities of two-
dimensional plasma waves, Sov. Phys. JETP 52, 279 (1980).

[13] S. A. Mikhailov, Plasma instability and amplification of
electromagnetic waves in low-dimensional electron systems,
Phys. Rev. B 58, 1517 (1998).

[14] K. Kempa, P. Bakshi, J. Cen, and H. Xie, Spontaneous genera-
tion of plasmons by ballistic electrons, Phys. Rev. B 43, 9273
(1991).
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