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Microscopic details of stripes and bubbles in the quantum Hall regime
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We use a fully self-consistent laterally resolved Hartree-Fock approximation for numerically addressing the
electron configurations at higher Landau levels in the quantum Hall regime for near-macroscopic sample sizes.
At low disorder we find spatially resolved, stripe- and bubblelike charge-density modulations and show how
these emerge depending on the filling factor. The microscopic details of these boundary regions determine
the geometrical boundary conditions for aligning the charge-density modulation either as stripes or bubbles.
Transport is modeled using a nonequilibrium network model giving a pronounced anisotropy in the direction
of the injected current in the stripe regime close to half filling. We obtain a stripe period of 2.9 cyclotron radii.
Our results provide an intuitive understanding of its consequences in strong magnetic fields and indicate the
dominance of many particle physics in the integer quantum Hall regime.
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In May 2019, the quantum Hall effect [1,2] was for-
mally included among the select group of high-precision
experiments to form the basis of a new SI system of units
based on the “Planck constant h, the elementary charge e,
the Boltzmann constant k, and the Avogadro constant NA”
[3]. This had long been awaited and certainly represents
a great achievement and fitting fulfillment of the vision
for “natürliche Masseinheiten” [4] proposed by Max Planck
[5]. In his essay to celebrate this achievement [3], von Kl-
itzing also points out “that a microscopic picture of the
quantum Hall effect for real devices with electrical contacts
and finite current flow is still missing.” Prominent exam-
ples of such microscopic details are so-called “bubble” and
“stripe” phases [6]. They have been identified, e.g., by trans-
port experiments in higher Landau levels (LLs) of ultrahigh
mobility samples [7–9] and are characterized by strong trans-
port anisotropies (stripes) or reentrance effects (bubbles). It
is believed that the phases correspond to density modulations
with characteristic geometric nonuniformities due to the inter-
play of Coulomb interaction and the wave functions in higher
Landau levels.

Early work in modeling density modulations in the quan-
tum Hall regime, starting from the celebrated Chklovskii,
Shklovskii, and Glazman picture [10], assumed unidirectional
charge-density waves (CDWs) [11,12] while mean-field treat-
ments established the possibility of anisotropic phases in a
Fermi liquid [13,14]. However, spatially resolved information
does not yet exist of these phases. Experimentally this is due
to the intrinsic challenge of using local scanning probes in
low temperatures for such remotely doped systems [15–17].
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Nevertheless, much indirect experimental evidence for the ex-
istence of bubble and stripe phases has now been accumulated
[17–28]. Theoretical modeling has likewise concentrated on
transport signatures of these phases [29–32] while spatially
resolved models of bubbles and stripes are only available
in clean systems [33]. The period of the stripe patterns has
been predicted to follow d ∝ Rc with Rc = lB

√
2n + 1 the

cyclotron radius in LL n at the Fermi energy [11,34] and
lB = √

h̄/eB the magnetic length. Experimentally, 1.5Rc [17]
and 3.6Rc [18] have been reported while ∼2.7Rc is predicted
theoretically [34].

In the present work, we show how stripes and bubbles
emerge at weak disorder as self-consistent solutions of the
Hartree-Fock (HF) equations, i.e., in the experimentally rel-
evant regime and without any ad hoc assumptions beyond a
smooth disorder. We provide the full spatial resolution of both
phases from the length scale of lB to near macroscopic sample
sizes. This high resolution allows quantitative comparison
with current experimental efforts [17,18,24,26,27]. A central
insight provided by our work is the importance of many-body
aspects. It should be clear that a fully self-consistent HF
approach in a disordered environment goes well beyond ear-
lier Thomas-Fermi-based (non-)linear screening models. The
inclusion of a converged exchange interaction term essentially
alters the physics. This not only changes the spatial distribu-
tion of stripes and bubbles, but rather is the main reason for
their emergence: Neither pure Hartree nor a noninteracting
model leads to emerging stripes/bubbles unless coupled with
additional assumptions. The key mechanism is a Hund’s rule
behavior for the occupation of the spin-split LLs. The result-
ing g-factor enhancement is then a local quantity depending
on the local filling factor ν(�r) = 2π l2

Bρ(�r) [35,36] with ρ(�r)
the local carrier density. This exchange-enhanced g factor is
a concept that allows one to discuss the exchange interaction
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FIG. 1. Spatially resolved filling factor distribution ν↓(�r) for different total filling factors (a) ν = 6.20, (b) ν = 6.54, and (c) ν = 4.54 with
B = 1.5 T. The colors denote different ν↓(�r) values as indicated in the legends. The thin black lines are contours.

within an effective single-electron picture [37,38]. By doing
so, we find that the local variation of the enhancement of the
Zeeman energy due to ν(�r) has to be considered in addition to
the laterally varying Hartree potential, leading to a modified
effective potential for the electrons that also strongly modifies
the screening behavior. In addition to the largely repulsive
Hartree part of the self-consistent Thomas-Fermi screening,
the ν(�r) dependence of enhanced Zeeman energy leads to a
positive feedback loop in the self-consistent carrier redistri-
bution and produces an instability of the electron density ρ,
which may lead to jumps either to a locally full or locally
empty LL [35,36], resulting in a clustering of the filling factor
that is triggered by the disorder or edge potential. The bound-
aries of those clusters finally create narrow channels that align
mainly along the edge or random potential fluctuations. In
the case of a very clean high mobility electron system such a
trigger effect for the cluster formation by the random potential
is missing and the electron system has to find such a cluster
structure by self-organization, resulting in the formation of
stripes or bubbles.

The numerical simulations are performed as described
in Refs. [35,36,39] via a variational minimization of the
self-consistent Hartree-Fock-Roothaan equation [40–43]. To
simulate ultrahigh mobility samples, the random potential
strength is kept low. The filling factor and the lateral system
size are made as large as possible with respect to the available
computing power. Configurations up to 1 μm2 are achiev-
able as shown in Fig. 1 with spatial resolution of ∼4.4 nm
well below lB for a magnetic field B varying from, e.g., 1
(lB ∼ 26 nm) to 6.5 T (lB ∼ 10 nm). The random potential is
generated by Gaussian impurity potentials of radius 40 nm,
the number of impurities is N = 2000, and their random
placement results in a fluctuating potential of Vmax = 0.43 mV
and Vmin = −0.50 mV [44]. At a total filling factor of, e.g.,
ν = 6.54 (= ν↓ + ν↑ = 3.54 + 3.0) and B = 1.5 T, this cor-
responds to more than 2000 electrons. In order to generate
transport data, we employ a nonequilibrium network model
(NNM) introduced previously [45]. A very large number of
step by step calculations are required [46] in the NNM. Hence,
for keeping within the available computing time, the transport
simulations have been performed for smaller sample size such
as 500 × 500 nm2.

In Fig. 1 we depict the variation in ν↓(�r) for three
different densities at fixed magnetic field. Figure 1(a) shows

the situation far from any half-odd average ν↓. The required
area of the filled (spin-down) clusters is only a minor part
of the total area. As seen in the figure this can be achieved
by a nearly evenly spaced distribution of bubblelike-shaped
clusters. Since we are considering already the fourth partly
filled spin-split LL, the boundaries of the bubbles consist of
three substripes because of the three nodes of the Landau basis
function for the fourth LL [16]. A boundary with such an
internal structure takes up a substantial area as well and even
tends to dominate the region of a single bubble as a whole.
In other words, the area that one bubble needs is dominated
by the width of the boundaries and not by the region of an
assumed idealized full LL. When increasing the filling factor
towards half filling, as shown in Fig. 1(b), it becomes clear
that such a bubblelike geometry of the clusters is impossible
to achieve with the given total ν, because round bubbles would
leave too much unfilled space between the bubbles even if
touching each other. The only way to remove the unfilled
space between bubbles is a change of the geometry so that
the boundaries of different clusters arrange almost in parallel,
which means a transfer to a stripelike geometry. In order to
demonstrate that the width of the boundaries of the stripes
and bubbles depend on the LL index, Fig. 1(c) shows the
half-filled LL at filling factor ν ≈ 4.5 instead of ν = 6.5 and
one can see that there is one substripe less at the boundary,
allowing a more dense arrangement of stripes or bubbles than
in the higher LLs. These results suggest that the higher the
filling ν the higher the tendency for creating the stripe pattern
near a half-filled LL. Overall, the figures show that our HF
calculations can provide a fascinating insight into the spatial
behavior of bubble and stripe configurations.

Figure 2 contains the transport data obtained by applying
the NNM at different carrier densities. Since the stripe align-
ment tends to be more horizontal, i.e., along the x-direction as
shown in Fig. 1, the longitudinal resistance Rxx appears higher
for vertical sample current and lower for horizontal current
flow [44]. This is consistent with experimental observations
resulting in large Rxx peaks for vertical current, while for a
horizontal current the Rxx peaks are hardly visible. When the
difference between horizontal and vertical Rxx is no longer
prominent, we find that we have reached a bubble phase.

The characteristics of the microscopic structure of the
stripes consist on one hand in the periodicity of the stripe
pattern and on the other hand in the microscopic details of the
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FIG. 2. Longitudinal resistance Rxx for easy (horizontal) and
hard (vertical) directions (cf. Fig. 1) as a function of carrier density
ρ. The sample size is 500 × 500 nm2, B = 1.5 T, the impurity radius
40 nm, and the number of impurities N = 100. The random impurity
placement results in a fluctuating potential from Vmin = −1.7 mV to
Vmax = 1.7 mV.

boundaries of the stripes. Together with the geometric shape
of the stripes (and, indeed, the bubbles), these determine the
relation between the areas of full and empty LLs. Focusing
first on the periodicity, Fig. 3 presents the two-dimensional
Fourier transformation of the lateral carrier density at various
magnetic fields from B = 1 T to B = 6.5 T at a fixed filling
factor of ν = 4.5. While Fig. 3(a) shows only a selection
of a few spectra, Fig. 3(b) displays the trend of all evaluated
spectra. As can be seen in the x direction there is a smooth
and somewhat smeared out distribution that starts from zero,
indicating that there is no clear periodicity in the x direction.
In contrast, in the y direction, there is a well pronounced
maximum which matches the reciprocal stripe period in the
y direction as also seen in Figs. 1(b) and 1(c). For B = 1.5 T
the reciprocal period (wave number) appears to be close to 6
[47] and for B = 6 T it matches 12, which is consistent with
a

√
B dependence. Furthermore, we extract the mean period

of the corresponding stripe patterns, similar to those shown
in Fig. 1, to be approximately 175 nm for B = 1.5 T and
81 nm for B = 6 T. Extending the analysis to other B values,
we indeed find a clear

√
B behavior as shown in Fig. 3(b).

Previous theoretical results on the period d of the stripes have
led to the expectation d = αRc = α

√
(2n + 1)h̄B/e [11,34].

Experimentally, α = 1.5 [17] and 3.6 [18] have been esti-
mated. For n = 3 and B = 1.5 T, these give 88 and 210 nm,
respectively. Obviously, only the latter one is compatible with
our result at 1.5 T. Conversely, from Fig. 3(b), we extract
a value α = 2.9 ± 0.1. This agrees very well with previous
straight-line CDW-based predictions of 2.7 [34] and 2.8 [12].

Friess et al. [17] investigated the Knight shift in nuclear
magnetic resonance (NMR) spectra to demonstrate the coex-
istence of regions with different spin polarization due to the
periodic variation of the filling factor in stripe and bubble
phases. Their method provides direct information about the

FIG. 3. (a) Two-dimensional Fourier spectra at ν = 4.5 for dif-
ferent B fields. The different spectra are shifted to the right for better
visibility. For a sample size of 1000 × 1000 nm2, the frequency in
units of 0.001 nm−1 (left axis) equals the number of stripes that
can be accommodated within the boundaries. The corresponding
period length is shown on the right axis and the color bar indicates
the Fourier intensity in arb. units. The horizontal red lines indicate
selected values. (b) Variation of the reciprocal stripe period 1/d (�)
as a function of

√
B. The solid lines correspond to d = α

√
2n + 1Rc

for the LL index n = 3 with α = 2.7 (blue line, theory) [34], 3.6 (red
line, experiment) [18], and 2.9 (black line, our fit), respectively. The
gray dotted grid lines highlight selected B and d values.

area fractions, although there is no direct information about
geometry and periodicity. In order to extract also microscopic
details of the structural information, they use a semiclassical
model [17,48] based on superpositions of the single-electron
densities obtained from the Landau basis functions. In our
case, we can similarly model the NMR intensity as Iν ( f ) =∫
G{ f − [ f0,ν−1 − ν(�r)Kmax,ν]}) dr2 with Gaussian G describ-

ing the absorption spectrum of individual nuclei [48], f the
NMR frequency, Kmax the maximal Knight shift for the fully
spin-polarized LL at odd ν, and f0 the frequency of the
nonshifted NMR line for the non-spin-polarized situation at
even filling factor ν − 1. Numerically, Iν ( f ) is calculated by
evaluating our interacting ν(�r) at each �r and summing over
all points of a typically 229 × 229 grid. In Fig. 4, we show
that Iν ( f ) exhibits features that redshift to lower frequencies
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FIG. 4. (a) Simulation results of Iν ( f ) using our HF results for
ν↓(�r) as input. The traces are shifted vertically for better visibility
and varied in steps of �ν = 0.1. (b) Color plot of Iν ( f ) for very fine
resolution �ν = 0.01. The color legend gives the numerical values
of Iν ( f ).

when increasing ν, e.g., from the non-spin-polarized ν = 4
to a fully spin polarized ν = 5 (see Supplemental Material
[44] for ν = 2 → 3). At intermediate filling factors the spec-
tral response splits, mainly into double/triple peak structures.
This indicates the coexistence of regions with different filling
factor as expected from a stripe- or bubble-like electron dis-
tribution (see Supplemental Material [44]). Around ν ∼ 4.4
one can recognize three peaks with changing weights in the
superposition while varying the total filling factor. This is
in good agreement with the experimental results [17], but
naturally less so when compared to a single-particle modeling.

Intuitively, the driving force for the formation of bubbles
and stripes can be understood as follows: The Hund’s rule
behavior causes a g-factor enhancement that maintains the
tendency to fill up just one spin level as much as possible
before starting to fill up the next spin level. When entering
a stripe/bubble from outside (e.g., ν = 4, not spin polarized)
to inside (e.g., ν = 5, fully spin polarized) the g-factor en-
hancement also drastically increases. Inside the stripe/bubble
the spin levels are strongly pushed apart, corresponding to a
significantly lower energy of the occupied lower spin state,
while outside there is minimal g-factor enhancement at even
filling factor ν = 4. In terms of an effective single-particle

picture the electrons in the stripes/bubbles encounter a po-
tential well established by the local variation of the g-factor
enhancement and which dominates over the repulsive Hartree
interaction. From a qualitative point of view, the stripes can
be understood as leaky noncoupled electron waveguides that
consist of self-assembled one-dimensional potential wells and
the leakage shows up as the boundary region as discussed
before.

In conclusion, we have computed the microscopic picture
of stripe and bubble phases for the integer quantum Hall
(IQH) regime at high LLs and in weak disorder. Our re-
sults rely on spatially resolved, self-consistent HF calculations
of nearly macroscopic sizes of O(1 μm2) and, for transport
calculations, are coupled to device contacts with finite cur-
rents. The existence of microscopic stripes and bubbles at
weak disorder is thus confirmed. Their spatial features show
intriguing extended oscillations along the stripes and sur-
rounding the bubbles. These are clearly due to the structure
of the underlying Landau states. We find that the stripe pe-
riod scales with B−1/2 as expected and agrees in detail with
previous experimental measurements. Overall, together with
results from HF calculations in the strong disorder regime
[35,36,39], this shows that the IQH regime can now be
described spatially resolved with high accuracy from micro-
scopic to near-macroscopic length scales. Our results shine
a light on the understanding of the microscopic picture of
the IQH effect and demonstrate the permanent dominance of
many-particle physics for quantum Hall physics. The demon-
strated Hund’s rule behavior in context with the g-factor
enhancement allows one to incorporate the exchange inter-
action into an intuitive understanding of the major effects
driving weakly and strongly disordered quantum Hall sys-
tems.

The data accompanying this publication are available from
the corresponding authors.
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