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Critical behavior at the integer quantum Hall transition in a network model on the kagome lattice
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We study a network model on the kagome lattice (NMKL). This model generalizes the Chalker-Coddington
network model for the integer quantum Hall transition. Unlike random network models we studied earlier, the
geometry of the kagome lattice is regular. Therefore, we expect that the critical behavior of the NMKL should
be the same as that of the Chalker-Coddington model. We numerically compute the localization length index ν

in the NKML. Our result ν = 2.658 ± 0.046 is close to Chalker-Coddington model values obtained in a number
of recent papers. We also map the NMKL to the Dirac fermions in random potentials and in a fixed periodic
curvature background. The background turns out irrelevant at long scales. Our numerical and analytical results
confirm our expectation of the universality of critical behavior on regular network models.
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Introduction. The integer quantum Hall (IQH) transition
[1] is a quantum phase transition accompanied by universal
critical phenomena. A central characteristic of the transition
is the exponent ν describing the divergence of the localization
length of single-particle wave functions with energies E close
to critical energies Ec:

ξ ∼ |E − Ec|−ν . (1)

Multiple experiments [2–10] demonstrated scaling near the
integer QH transition in various systems. Most experiments
can access only the product νz, where z is a dynamical crit-
ical exponent. With a common assumption that z = 1, all
experiments are consistent with the value νexpt ≈ 2.38. The
attempt [9] to establish the value z = 1 from scaling with the
sample size remains somewhat controversial due to a possible
presence of nonuniversal, sample-dependent parameters (see
Ref. [11]).

The QH plateaus separated by the transition are success-
fully described by models of noninteracting electrons in the
presence of disorder. In this approximation the transition is
an Anderson transition [12]. Even with this simplification the
problem of the IQH transition is notoriously difficult. In early
analytic investigations, the IQH effect was described by a non-
linear σ model [13–17], and a two-parameter renormalization
group flow was suggested in [18,19]. Later, various versions
of the Wess-Zumino model were proposed as the critical field
theories underlying the IQH critical point [20–22]. More re-
cently, analytical results for the multifractal critical exponents
were obtained using conformal field theory [23–25]. The latter
paper [25] notably predicts logarithmic (as opposed to power-
law) scaling effectively meaning ν = ∞.

There are many numerical simulations of noninteracting
models of the IQH transition. One of the better studied mod-
els is the Chalker-Coddington network model on a square

lattice [26,27]. Recent accurate simulations of the Chalker-
Coddington model [28–33] give the value ν in the range
2.56–2.62, which is definitely different from the experimental
value. Similar values have been obtained in numerical simu-
lations of other noninteracting models of the IQH transition
[34–38].

The likely source for the discrepancy between the exper-
imental and numerical values of ν are the electron-electron
interactions [39–42]. Recently, we have proposed another pos-
sible reason for the discrepancy, and studied a version of
the network model on random graphs [43,44]. Our results
suggest that the additional geometric randomness is relevant:
it changes the localization length exponent to ν ≈ 2.37 and
places the random network model in a different universality
class than the regular Chalker-Coddington model.

Random graphs that we have studied are dual to random
quadrangulations. A polygon with n sides in a random graph
is dual to a vertex where n quadrangles meet. If all quad-
rangles are viewed as squares, the deficit angle at the vertex
is Rn = (4 − n)π/2, and this can be interpreted as discrete
curvature of a conical singularity at the vertex. Random net-
works contain randomly placed curvatures, and averaging
over geometric randomness can be interpreted as integration
over configurations of quenched random metric. Any two-
dimensional (2D) model with interacting matter fields defined
by an evolution operator (R matrix) can be studied on random
surfaces [45], similar to critical 2D minimal models coupled
to quantum gravity on triangulated random surfaces [46–49].

Our previous results [43,44] raise the issue of universality
of critical behavior of network models. We expect that if the
network is not random but contains periodically placed fixed
curvatures, then the exponent ν should be the same as in the
Chalker-Coddington model. One such network can be defined
on the kagome lattice which contains triangles with R3 =
π/2 and hexagons with R6 = −π in a periodic arrangement.
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FIG. 1. The network model on the kagome lattice. Left running
channels are shown in blue; right running channels in green. The
column transfer matrices A, B, and A′ are framed by red dashed lines.
There are two different types of vertices, a and b, shown as squares
(a) and circles (b).

In this Rapid Communication we study the network model
on the kagome lattice (NMKL) analytically and numerically,
determine its critical behavior, and confirm our expectation of
the universality of the exponent ν.

The model. The NMKL is shown in Fig. 1. A state of the
network |ψ〉 = ∑

l ψl |l〉 is a vector in H = CNL , where NL is
the number of links, and |l〉 are basis vectors associated with
each link l .

States of the network evolve in discrete time, each time step
described by a unitary matrix U acting on H whose matrix
elements Ull ′ are nonzero only if l ′ and l are incoming and
outgoing links at the same node. In this case Ull ′ = eiφlSll ′ ,
where φl are random phases uniformly distributed on [0, 2π ),
and the scattering matrix S depends on the type of node
(square or circle in Fig. 1):

Sa =
(−t r

r t

)
, Sb =

(−r t
t r

)
. (2)

This choice assigns probabilities t2 for all right turns and r2 =
1 − t2 for all left turns.

The clean model where all φl = 0 is periodic and is easily
solved in the momentum space (see [50], Sec. I). We find that
at the critical point of the clean model t0 = √

3/2 (r0 = 1/2),
the spectrum of the quasienergy ε = −i lnU contains a gap-
less Dirac cone, so the long-distance description is the 2D
Dirac fermion. In analogy with the analysis of Refs. [43,51],
the addition of weak randomness in the phases φl leads to the
field theory of a Dirac fermion with random mass, coupled
to random scalar and vector potentials, and a fixed periodic
curvature background. The periodic nature of the curvature
background on the lattice scale makes it irrelevant in the
long-distance limit, and leads to the same model of Dirac
fermions as in Ref. [51] for the Chalker-Coddington model.
This enforces our expectation that the critical behavior of the
NMKL is the same as that of the Chalker-Coddington model.

Numerical procedure. To compute critical exponents of the
NMKL we use the transfer-matrix method [52,53]. For finite

networks of length L, with M channels in each direction,
and periodic boundary conditions in the transverse direction,
we compute the product TL = ∏L

j=1 AU1 jBU2 jA′U3 jBU4 j of
transfer matrices for L layers. Each layer is split into four sub-
layers, as indicated in Fig. 1. The 2M × 2M transfer matrices
for the sublayers, A, A′, and B, contain 2 × 2 matrices a and b
for the scattering nodes, and 2 × 2 identity matrices 12:

A = diag(12, a, . . . , 12, a),

A′ = diag(a, 12, . . . , a, 12),

B =

⎛
⎜⎜⎝

1/t 0 · · · r/t
0 b · · · 0
...

...
. . .

...

r/t 0 · · · 1/t

⎞
⎟⎟⎠,

a =
(1/r t/r

t/r 1/r

)
, b =

(1/t r/t
r/t 1/t

)
. (3)

In addition, the random phases φl are combined into diagonal
matrices Ull ′ = exp (iφl ) δll ′ .

The transmission and reflection amplitudes t and r at each
node are shown in Fig. 1. We parametrize them as

r = (1 + 3e2x )−1/2, t = (
1 + 1

3 e−2x
)−1/2

. (4)

Here x = 0 corresponds to the critical point of the clean model
without randomness. This parametrization resembles that tra-
ditionally used for the Chalker-Coddington model. However,
in the latter case there is a symmetry with respect to rotations
by 90◦ that results in the invariance of the spectrum of TL upon
exchange x ↔ −x or, equivalently, t ↔ r even in the presence
of random phases. In the NMKL there is no such symmetry,
and the critical point in the random model is not expected to be
at x = 0. The determination of the value of xc will be carried
out simultaneously with that of the critical exponents by fitting
the expected scaling function to the numerically obtained data.

TL is a product of random matrices. According to Os-
eledec’s theorem [54] the Lyapunov exponents defined as
the eigenvalues of log[TLT †

L ]/2L, tend to nonrandom values
as L → ∞. The smallest positive Lyapunov exponent γ is
inversely proportional to the localization length in the quasi-
one-dimensional system with width M. The product � = γ M
(the “dimensionless” Lyapunov exponent) becomes a univer-
sal quantity in the limit M → ∞ at the critical point. In
practice, a finite-size-scaling analysis relates � to critical ex-
ponents of the NMKL. In addition, Tutubalin’s theorem [55]
states that for finite systems with L � 1, the Lyapunov expo-
nents have Gaussian distributions with variance ∼(M/L)1/2.
If we consider an ensemble of N random networks, the vari-
ance decreases to ∼(M/LN )1/2. Therefore, our strategy is to
consider large numbers of long systems to create ensembles
of γ that have distributions close to Gaussian.

In this work we used networks of length L = 5 × 106

and created ensembles of Lyapunov exponents γ labeled by
a = 1, . . . , Nens, where Nens = 200 is the number of pairs
(x, M )a that we used. The widths M take ten values M =
20, 40, . . . , 200, and the 20 values of x in the range [0.24, 0.3]
were chosen adaptively to get more data points in the vicinity
of the (a priori unknown) critical point xc [which we estimate
to be xc = 0.268(1)]. The numbers Na of Lyapunov exponents
in each ensemble are given in Table I in [50], Sec. II; most of
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them are Na = 624. The total number of Lyapunov exponents
in all ensembles is NLyapunov exponent = 130 896.

Computing large products TL directly is not possible, as
many entries of the products grow exponentially with L.
This problem is often overcome using the QR decomposition
[52,53,56], where matrices T in the product are decomposed
as T = QR with unitary matrix Q and upper right triangular
matrix R. An alternative is to use the LU decomposition
T = PL U using a lower triangular matrix L with unit
diagonal, a permutation matrix P and an upper triangular
matrix U (see Ref. [57] for details). Simulations with the LU
decomposition are about two times faster than those with the
QR decomposition.

We have generated pairs of large ensembles of Lyapunov
exponents γ for multiple pairs (x, M ) using both the QR
and the LU decompositions and created a histogram for each
ensemble. The histograms are very well described by normal
distributions as confirmed by Gaussian fits. The centers of
the Gaussian peaks in a pair corresponding to the ensembles
generated by the QR and the LU decompositions differ by
orders of magnitude less than the peaks widths. The widths
of peaks in each such pair agrees with the same precision as
the centers of the peaks do.

The fitting procedure. Near the critical point in a system
of finite width M, the Lyapunov exponent � is expected
[28,52,53] to exhibit the following scaling behavior:

� = F�[M1/νu0(x), f (M ) u1(x)], (5)

where F� is a scaling function of the relevant field u0(x) and
the leading irrelevant field u1(x). In the limit M → ∞ the
contribution of the irrelevant field should vanish, so f (M )
should decrease with M. If the field u1 is truly irrelevant, we
have f (M ) = My with a negative exponent y < 0. Recently, it
was suggested that one might need to include two irrelevant
fields [33], or that the field u1 can be marginally irrelevant.
The latter case would correspond to f (M ) = (ln M )b with
some negative b < 0 [30,33]. We comment on results by fits
with two irrelevant fields below.

On the left-hand side of (5) we use the numerical values
of γ extracted from TL for various combinations x and M.
The scaling function � is expanded in its arguments, and we
assume that the scaling fields ui are polynomials in x. Since
we do not have symmetry under x ↔ −x, and the critical point
xc �= 0, we do not restrict u0(x), u1(x) to be even or odd. Then
we get

F�[u0M1/ν, u1My] = �00 + �01u1My + �20u2
0M2/ν

+ �02u2
1M2y + �21u2

0u1M2/νMy

+ �03u3
1M3y + · · · , (6)

with fields u0,1 = p0,1(x − xc), and polynomials

p0(x) = x +
m∑

k=2

akxk, p1(x) = 1 +
n∑

k=1

bkxk . (7)

Since the overall scaling of the fields is arbitrary, the leading
coefficients in (7) are set to 1.

The critical exponents ν and y, and the critical amplitude
ratio �c ≡ �00 are the most interesting universal character-
istics of the IQH transition. The latter is related to one of

FIG. 2. Histogram for M = 180 and x = 0.255. The ensemble
consists of 1088 Lyapunov exponents.

the multifractal exponents by �c = π (α0 − 2) [58,59]. These
quantities, together with a finite number of expansion coef-
ficients in Eqs. (6) and (7), form sets 
 = {ν, y, �i j, ak, bl}
of the fitting parameters. The fits should use as few fitting
parameters as possible while reproducing the data as well as
possible, and we use several criteria to assess the quality of
our fits. Details of our best-fitting procedures are presented in
[50], Sec. II.

Results. In Fig. 2 we present an example of a histogram
for the distribution of � for M = 180 and x = 0.255. The
distribution is fitted to a Gaussian, and the Gaussian fit is
very accurate in full accord with Tutubalin’s central limit
theorem [55]. As discussed in [50], each distribution for a
given (x, M )a defines one data point and its error bars, as well
as weights for the fitting procedures.

In Fig. 3 we plot the numerical data points for Lyapunov
exponents, together with the scaling function F� that results
from one of our two best fits. The two fits give the following

FIG. 3. Results of the best fit for the Lyapunov exponents. The
system widths M are color-coded as indicated below the figure.
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values of the critical parameters (and the 95% confidence
bounds):

ν = 2.658 (2.612, 2.704), (8)

y = −0.1511 (−0.4307, 0.1284), (9)

�c = 0.9166 (0.884, 0.9493), (10)

and

ν = 2.659 (2.614, 2.704), (11)

y = −0.07007 (−0.1625, 0.02232), (12)

�c = 1.02 (0.5593, 1.481). (13)

Other fitting parameters 
 are presented in [50].
Discussion and outlook. We have studied the integer quan-

tum Hall transition in the network model on the kagome
lattice (NMKL). We have argued that the model should exhibit
critical properties that are the same as the Chalker-Coddington
model on a square lattice. We simulated the NKML numer-
ically using the transfer matrix approach, and obtained a
number of critical properties, including the value

ν = 2.658 ± 0.046 (14)

for the localization length exponent. Our result is close to the
Chalker-Coddington model value obtained in a number of re-
cent papers [28–38], ν ∼ 2.56–2.62, though somewhat higher
and with larger error bars. Let us discuss these deviations.

The error bars in Eq. (14) are larger by about a factor of
5 compared to the cited studies of the Chalker-Coddington

model. The reason for the lower accuracy is absence of sym-
metry between the transmission and reflection amplitudes t
and r that requires us to treat the critical point xc on par
with other fitting parameters, thereby increasing their total
number. This is not necessary for the Chalker-Coddington
model where the critical point is fixed by symmetry.

The average value ν = 2.658 is higher than the values re-
ported for the Chalker-Coddington model, but within the error
bars the exponents for the network models on the kagome
and the square lattices agree. We also performed fits for the
NMKL including two irrelevant fields, and found that those
fits resulted in values for ν that are lower than those with
one irrelevant field. Unfortunately, the fits with two irrele-
vant fields inevitably produced larger error bars, since they
involved larger numbers of fit parameters.

The main message is that our result (14) implies that the
universality class of the transition in NMKL is the same as
in the Chalker-Coddington model, in spite of the presence
of nonzero, periodically distributed curvature. Such regular,
nonfluctuating curvature background turns out to be irrelevant
and does not change the critical behavior. In contrast, in our
previous papers [43,44] we considered network models with
geometric disorder in the form of random, fluctuating curva-
tures, indicating the presence of an effective 2D gravitational
field in the system. Inclusion of a random curvature made
the structurally disordered network models different from the
flat Chalker-Coddington model, and resulted in the critical
properties that were different for the two models, signifying
the relevance of geometric disorder.
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