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Electronic spectral function in the fractionalized pair density wave scenario

M. Grandadam,1 D. Chakraborty,1,* X. Montiel,2 and C. Pépin1

1Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France
2Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

(Received 4 March 2020; revised 11 June 2020; accepted 12 June 2020; published 9 September 2020)

Studies of the electronic spectral function in cuprates by angle-resolved photoemission spectroscopy (ARPES)
reveal unusual features in the pseudogap phase that persist in the superconducting phase. Here we address these
observations based on the recently proposed idea that the pseudogap is due to the fractionalization of modulated
particle-particle pairs (a pair density wave) into uniform particle-particle and modulated particle-hole pairs. The
constraint that appears between these two types of pairs can be seen has an amplitude for the pseudogap energy
scale. This constraint directly modifies the electronic spectral function in the pseudogap phase. We derive a
self-consistent equation for the pseudogap amplitude and show that it leads to the formation of Fermi arcs. The
band dispersion obtained in the antinodal region is in good agreement with experimental ARPES observations
in Pb0.55Bi1.5Sr1.6La0.4CuO6+δ (Bi2201) and present a back-bending that goes to the Fermi level as we go away
from the antinodal region. We also discuss the temperature dependence of the ARPES spectrum in the pseudogap
and in the superconducting state.
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Despite their discovery more than 30 years ago, there is still
no consensus on the nature of the pseudogap (PG) phase of
cuprate superconductors. This mysterious phase that emerges
upon doping the parent Mott insulator shows many unusual
features, the main one being a loss of density of states [1,2]
as the temperature is decreased below a temperature T ∗. In
this study, we discuss a recent proposal where the opening
of the pseudogap is attributed to the fractionalization of a
pair density wave (PDW) [3]. Within this framework, we
discuss the complex phenomenology of angle-resolved pho-
toemission spectroscopy (ARPES) in nearly optimally doped
Pb0.55Bi1.5Sr1.6La0.4CuO6+δ (Bi2201). ARPES has proven to
be one of the key probes in studying cuprates. It has notably
been able to connect the loss of density of states in the pseu-
dogap to the Fermi surface being gapped out in the antinodal
region (ANR) for momenta close to (0,±π ), (±π, 0), while
other parts of the Fermi surface remain unchanged and form
“Fermi arcs.” (For a review of the pseudogap phenomenology,
see, e.g., [4,5].)

Most remarkably one observes, in the ANR, a back-
bending at a momentum kG larger than the normal state
Fermi momentum kF , which suggested the presence of a
modulation vector intimately linked with the opening of the
pseudogap [6]. Moreover, as noticed in Ref. [7], the gap
continuously closes from “below” when moving towards the
Fermi arcs, which is interpreted as revealing the presence
of particle-particle pairs in the PG. Lastly, one observes that
the bottom of the band at k = (0, π ) drops when decreasing
the temperature and a new lightly dispersive “flat” band is
seen in superconducting phase. Few other scenarios have been
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proposed to explain this specific gaping mechanism such as a
quantum disorder PDW [8], a coexistence of charge density
wave (CDW) and PDW [9] or a resonant excitonic state (RES)
[10]. In comparison to previous works, our study is based on a
simple intuition, and accounts for all the experimental features
with very few adjusting parameters.

This Rapid Communication is organized as follows. We
start with a self-consistent equation for the pseudogap am-
plitude by treating a model of itinerant electrons interacting
through antiferromagnetic exchange and residual density-
density interaction at the mean-field level. The pseudogap
can be seen as a superposition of superconductivity (SC)
and CDW orders resulting in a composite order which has
a nonzero amplitude in the ANR leading to the formation of
Fermi arcs. The electronic spectral function in the ANR shows
all the specific features mentioned previously, namely, we ob-
tain a back-bending of the electronic dispersion, a flatband and
the gap closing from below when going closer to the center of
the Brillouin zone. The effects of temperature on the spectral
function close to k = (π, 0) and on the spectral weight of
the flatband are also discussed based on phenomenological
arguments.

The fractionalization of a PDW order is written in a way
resembling the fractionalization of the electron introduced in
strong-coupling theories [11–13]. The assumption is that, at
a certain energy scale E∗, the system wants to form a PDW,
which is depicted locally as an η mode [3,14]

η̂ = [�̂i j, χ̂
†
i j], η̂† = [χ̂i j, �̂

†
i j], (1)

where �̂i j = d̂i j
∑

σ σci,σ c j,−σ and χ̂i j = d̂i j
∑

σ c†
i,σ c j,σ

eiQ·(ri+rj )/2 are, respectively, the SC and CDW operators, d̂i j

being a structure factor which can assume d-wave symmetry
and Q is the modulation wave vector of the PDW. The η
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operators are invariant with the following gauge structure:

�̂i j → eiθ �̂i j, χ̂i j → eiθ χ̂i j . (2)

Then, the effective field theory for the fluctuating PDW is a
rotor model [15], in which the fluctuation of the U(1) gauge
field produces a constraint between the two fields:

|�̂i j |2 + |χ̂i j |2 ≡ |	i j |2 = const, (3)

where 	i j = (�̂i j, χ̂i j )t . The energy scale associated to
Eq. (3) is typically the scale at which the fractionalization
occurs. In our ansatz, it corresponds to the PG scale which
we denote |	i j | = E∗ [3,15] in analogy with the pseudogap
temperature T ∗.

The goal of this Rapid Communication is to test the validity
of this unusual proposal by studying the fine structure of the
spectral weight against the observations made by ARPES in
Bi2201. For this we start with electrons hopping on a square
lattice interacting via an effective antiferromagnetic coupling
Ji j , which comes, for example, from the Anderson super-
exchange mechanism, and a small off-site residual Coulomb
interaction term Vi j :

H =
∑
i, j,σ

ti j (c
†
iσ c jσ + H.c.) + Ji j Si · S j + Vi j nin j, (4)

where c†
iσ is the creation operator for an electron with spin σ

on a site i, Si = c†
iασαβciβ is the spin operator with σ the vector

of Pauli matrices, and ti j describe hopping between different
sites and are taken from a fit to ARPES data [6,10,15]. Both
interactions are restricted to nearest neighbors and we take V
to be smaller than J , which will be our main energy scale.

We treat this model in momentum space and start by
decoupling the interaction with the individual fields form-
ing the doublet. Here these fields are a pairing field �k

and four density modulation fields χk with uniaxial modula-
tion vectors Q = ±Qx; ±Qy = (±Q0, 0); (0,±Q0) shown in
Fig. 1(a). The effective action for the doublet 	

†
k = (�∗

k , χk
∗)

representing our pseudogap is then given by [15]

Se f f =
∫

dτ
∑
Q,k,q

	k
†	k+q

J̃ (q)
− Tr ln[G−1(iω, k)], (5)

G−1(iω, k) = iω − ξk −
∑

Q=±Qx,±Qy

|	k|2
2

G̃(iω, k), (6)

where ξk is the noninteracting electronic dispersion,
G̃(iω, k) = (iω − ξk+Q)−1 + (iω + ξk )−1, and 1/J̃ =
3J/(9J2 − V 2). The electronic Green’s function in Eq. (6)

FIG. 1. (a) Schematic representation of the Brillouin zone for
cuprates with the modulation wave vector used in this work. (b) So-
lution of the gap equation for the pseudogap amplitude Eq. (7).
Colored regions show nonzero solutions for |	k |. We used an axial
modulation wave vector Qx relating hot spots shown in panel (a) and
J = 300 meV, V = J/10, and qAF = 0.15 r.l.u. The white line
indicates the noninteracting Fermi surface. (c) Electronic spectral
function A(k, ω = 0) obtained from Eq. (6) for |	k | given by Eq. (7).
We see the formation of Fermi arcs as the ANR gets gapped out.
We used a broadening factor η = 5 meV for numerical purposes.
(d) Band structure obtained by the Green’s function in Eq. (6) for
kx = π and a constant |	k | = 30 meV. The dotted lines indicate the
noninteracting dispersion ξk (red), the hole band −ξk (green), and the
band from the modulating order ξk+Qx (blue). The black arrows point
to the back-bending mentioned in the main text.

will thus be modified if |	k| acquires a nonzero value even if
both the composing fields are fluctuating and have a vanishing
expectation value.

Minimizing Se f f in Eq. (5) with respect to the doublet 	k

gives the mean-field gap equation for the doublet amplitude.
We will consider the different modulation wave vectors to
be decoupled and use the fact that J̃q is peaked around q =
(π, π ) to restrict the momentum summation to a range qAF

around the antiferromagnetic wave vector. The parameter qAF

is physically associated with the short-range nature of the
antiferromagnetic fluctuations [16] mediating the interaction.
Assuming that |	k| is constant over a range qAF , the self-
consistent equation is of the BCS form:

|	k| = −T

N

∑
iωn,q̃

J̃

(
iωn + �ξk+q̃

2

) |	k+π |[
(iωn)2 − ξ 2

k+q̃

]
(iωn − ξk+Q+q̃ ) − (

iωn + �ξk+q̃

2

)|	k+π |2
, (7)

where q̃ range between π − qAF /2 and π + qAF /2 and
�ξk+q = ξk+q − ξk+Q+q. Ignoring frequency dependence
of |	k| we can perform the Matsubara summation
analytically. This leads to two coupled equations

between |	k| and |	k+π| which we can solve self-
consistently.

Results of this self-consistent equation are shown in
Fig. 1(b) for a modulation wave vector linking hot spots along
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FIG. 2. (a)–(d) Experimental dispersion obtained by ARPES [6] for T > T ∗ (red dots) and T < Tc (blue and green dots) for different
cuts at fixed kx = π − δkx . The Fermi arcs end around δkx = 0.6 and the gap observed in the last panel is the standard nodal d-wave SC.
(e)–(h) Theoretical results for the energy dependence of the spectral function A(k, ω) for cuts at fixed kx = π − δkx . The red dotted line is the
noninteracting dispersion. We used the solution of Eq. (7) for the pseudogap amplitude and Qx = (0.2, 0)π .

the x axis. Hot spots are points of the Fermi surface linked
by (π, π ) and are thus expected to be important due to the
form of our interaction. Due to the finite wave vector of
the pseudogap amplitude, the gap equation, Eq. (7), admits
nonzero solution only in the ANR, when this modulation vec-
tor links two parts of the Fermi surface. The region close to the
Brillouin zone diagonal will thus remain unperturbed by the
transition at T ∗. The electronic spectral function A(ω, k) =
− 1

π
Im[G(ω + iη, k)] for ω = 0 and η → 0+ shows that the

ANR is gapped while the nodal region forms Fermi arcs
[Fig. 1(c)]. These arcs terminate close to the hot spots.

We now look at the reconstructed band structure obtained
from the zeros of G−1(k, ω) in the ANR. From the form of
G̃(k, ω), we can understand the dispersion as coming from an
equal superposition of SC and CDW order in the ANR. We
can thus construct the resulting band structure in the pseu-
dogap as the hybridization of the three bands ξk , the normal
state dispersion, −ξk coming from the superconducting order,
and ξk+Q coming from the modulating order. At the zone
boundary (kx = π ), this results in two bands below the Fermi
level shown in Fig. 1(d) with one of them presenting a back-
bending (blue line) indicated by black arrows while the other
one (yellow line) presents little dispersion around ky = 0. In
our mean-field description, this back-bending appears as a
result of the hybridization between the hole band −ξk (green
dotted) and the shifted ξk+Q (blue dotted) band in Fig. 1(d). As
such this back-bending will occur at ky = kG > kF as long as
ξk+Q < ξk , which is satisfied for all kx > khot spot. This means
that this anomalous back-bending will persist below Tc in the
ANR but we will recover a standard back-bending at ky = kF

in the nodal region as the above condition is not satisfied.

The spectral weight A(k, ω) for each band is obtained
for different fixed values of kx = π − δkx and compared to
the experimental dispersion of Ref. [6] [Figs. 2(a)–2(d)]. As
we get closer to the center of the Brillouin zone we can
see that the energy of the maximum of the band gets closer
to the Fermi level leading to the pseudogap closing “from
below” [Figs. 2(e)–2(h)] as observed experimentally. Note
that we obtain here a gap closing from below contrary to
what was argued previously for a pure CDW scenario with
a modulation along the y direction [7]. This is because we
consider a modulation wave vector along the x direction. This
same orientation for the modulation wave vector has been
used recently to explain ARPES results in Bi2201 through
the idea of a quantum disorder PDW [8] and other theoretical
approaches such as a superposition of CDW and PDW order
[9] or a RES [10].

Our previous description of the band structure in the pseu-
dogap also shows a second band located at the bottom of the
noninteracting band. Here we connect this band to the flatband
observed experimentally below Tc [green dots in Figs. 2(a)–
2(c)] and argue that finite lifetimes for the single-particle and
pair excitations lead to this band not being observed above Tc.
For this, we add three phenomenological damping rates �0,
�1, and �2 in our mean-field Green’s function:

G−1(iω, k) = iω − ξk − i�0 −
∑

Q=±Qx,±Qy

|	k|2
2

G̃(iω, k),

G̃(iω, k) = (iω − ξk+Q + i�1)−1 + (iω + ξk + i�2)−1.

(8)
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FIG. 3. Energy dependence of the spectral function at kx = π for different ky between −π/4 and π/4; successive lines are shifted for
clarity. (a) Without any lifetime �0 = �1 = �2 = 0. We used a broadening η = 0.002 eV for numerical purposes. (b) Turning on a single-
particle lifetime �0 = 0.02 eV leads to both bands being broadened in a similar way. (c) In contrast, when we consider only a finite particle-hole
lifetime �1 = 0.02 eV we see that the dispersion close to ky = 0 is more strongly affected than the dispersion at higher momenta. The flatband
is also more strongly dampened than the main band. (d) The situation is reversed if we consider only a particle-particle lifetime �2 = 0.02 eV.
The parts of the bands close to ky = 0 are less affected and still well defined. The flatband is more broadened but remains visible.

The two factors �1 and �2 represent the lifetime of particle-
hole and particle-particle pairs, respectively [17–19]. These
lifetimes capture the fluctuations in the pseudogap phase and
are used in other approaches such as preformed pairs [20–23]
or effect of Gaussian fluctuations [24]. They are expected to
be nonzero above Tc but to vanish at the transition temper-
ature when fluctuations are quenched. The first �0 term is a
single-particle lifetime which is always nonzero. The effect of
each of these additional terms is depicted in Figs. 3(a)–3(d).
Allowing a nonzero �0 will broaden the two bands below the
Fermi level in similar ways [Fig. 3(b)], in contrast to the pair
lifetimes which have a very different effect on specific parts
of the dispersion. Indeed, Fig. 3(c) shows that a nonzero �1

will strongly suppress the flatband close to the Fermi level
and also dampen the main band close to ky = 0. Turning on
the �2 term will have the opposite effect as the band far from
ky = 0 gets dampened while the bottom of the flat- and main
bands remain well defined. The experimental observation of
the flatband only close or below Tc can then be attributed to
the presence of a particle-hole pair lifetime in the pseudogap.
Note also that due to disorder effects, which couple directly to

charge order [25], this lifetime could remain nonzero below
Tc and thus leads to this band remaining broad even in the
superconducting state as observed experimentally. Moreover,
this description provides good agreement with the experimen-
tal observation that the dispersion in the ANR does not change
across the superconducting transition. In our case, the position
of the main band does not change with temperature and only
the spectral weights of the two bands get modified as the
different lifetimes decrease.

Another feature of the temperature dependence measured
experimentally for T ∗ > T > Tc in the ANR is a significant
decrease of the energy of the bottom of the band when the
temperature is decreased while the maximum energy and the
back-bending wave vector change only slightly as shown in
Fig. 4(a). Here we describe this change in the band struc-
ture by adding a finite amplitude for the particle-hole order
parameter |χk|. We then have three different regions such
that at T > T ∗ we have free electrons: At T � T ∗ where the
pseudogap has a finite amplitude but the particle-hole gap is
still 0 and at T � Tc where the particle-hole gap is finite. We
then obtain the band dispersions shown in Fig. 4(b). Because
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FIG. 4. Temperature evolution of the band at the zone edge in
the pseudogap regime. (a) Experimental measurement for a range of
temperature going from above T ∗ ∼ 132 K to T � Tc ∼ 38 K [6].
(b) The red line indicates the noninteracting band above T ∗. The
orange line is the band after the opening of the pseudogap presenting
a back-bending shifted from the original Fermi momentum kF . When
going down in temperature we add a finite mean-field amplitude for
the CDW order and obtain the band dispersion represented in blue.
The back-bending wave vector and the gap with respect to the Fermi
level are mainly unchanged while the bottom of the band is strongly
affected.

the bottom of the band is directly related to the hybridization
with the band coming from the charge modulation, it is
directly affected by the nonzero value of |χk|. On the other
hand, the back-bending momentum is determined mainly by
the value of the modulation wave vector Q and the energy
of the maximum comes from the hybridization between the
superconducting band −ξk and the shifted band ξk+Q, thus
related to the value of |	k|. In contrast, a finite amplitude
for the SC order parameter |�k| would produce the opposite
effect and change substantially the position of the maximum
leaving the bottom of the band unchanged [15]. The fact that
|χk| acquire a quasi-long-range component before the |�k|
is representative of the fact that CDW is observed experi-
mentally at a temperature higher than the temperature for SC

fluctuations T ′
c . This long-range component of the CDW order

has also been observed by Raman spectroscopy [26], x-ray
[27–32], and NMR [33–36] measurements above Tc.

In conclusion, we showed here how the recently proposed
idea of fractionalized PDW [3] can be used to construct a
mean-field description of the pseudogap phase of cuprates.
The main idea is that even if none of the CDW or SC orders
develop a long-range component, the constraint introduced
by the fractionalization affects the electronic Green’s func-
tion. Using a microscopic model we derived a self-consistent
equation for the pseudogap amplitude and showed that it has
nonzero solutions in the antinodal region, which gives a gap
in the ANR in the PG phase and leads to the formation of
Fermi arcs. The band dispersion obtained in the antinodal
region is in good agreement with the experimental ARPES
measurement made on Bi2201. Specifically, we recover all
the features observed in the pseudogap state. The superposi-
tion of particle-particle and particle-hole orders leads to an
anomalous back-bending of the main band below the Fermi
level, a gap closing from below and a flatband close to the
bottom of the original electronic dispersion. We argue that
this band is seen experimentally only below Tc because it is
strongly affected by the finite pair lifetime in the pseudogap
phase. Lastly, we discussed the change of the dispersion as the
temperature is lowered from T ∗ to Tc by showing that a finite
quasi-long-range component of the particle-hole order leads
to the minimum of the band going down in energy while the
energy and momentum of the maximum stay unchanged.

The competition between different orders is present in
many other materials such as transition metal dichalcogenides
[37], for example. We showed here that considering an en-
tanglement between these competing orders has unique con-
sequences beyond the standard competing scenarios. This
idea could also be used to study other materials that exhibit
pseudogap physics such as CeRhIn5 [38] and NbSe2 [39,40].

We thank S. Sarkar and A. Banerjee for valuable discus-
sions. This work has received financial support from the ERC,
under Grant agreement. No. AdG-694651-CHAMPAGNE.
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