
PHYSICAL REVIEW B 102, 121103(R) (2020)
Rapid Communications
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We develop a bosonization formalism that captures nonperturbatively the interaction effects on the Q = 0
continuum of excitations of nodal fermions above one dimension. Our approach is a natural extension of the
classic bosonization scheme for higher dimensional Fermi surfaces to include the Q = 0 neutral excitations that
would be absent in a single-band system. The problem is reduced to solving a boson bilinear Hamiltonian.
We establish a rigorous microscopic footing for this approach by showing that the solution of such boson
bilinear Hamiltonian is exactly equivalent to performing the infinite sum of Feynman diagrams associated with
the Kadanoff-Baym particle-hole propagator that arises from the self-consistent Hartree-Fock approximation
to the single-particle Green’s function. We apply this machinery to compute the interaction corrections to the
optical conductivity of two-dimensional Dirac fermions with Coulomb interactions reproducing the results of
perturbative renormalization group at weak coupling and extending them to the strong-coupling regime.
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Introduction. The remarkable success of bosonization
in capturing the nonperturbative properties of interacting
fermions in one dimension [1] has long motivated the quest for
extensions of this program to higher dimensions. One major
such enterprise has been the development of higher dimen-
sional bosonization of Fermi surfaces [2–6]. In this approach,
particle-hole creation operators of a given total momentum
Q, c†

k+Q/2c†
k−Q/2, are promoted to bosonic creation opera-

tors with a commutator that is approximated as a number.
The resulting bosonized Hamiltonian only couples bosonic
modes with momentum Q to bosons with either +Q or −Q.
Namely, there is zero amplitude for a particle-hole pair with
momentum Q to transition into two particle-hole pairs with
momenta Q1,2 and Q = Q1 + Q2. The only allowed processes
are for the particle-hole pair with momentum Q to scatter into
another one with the same Q, or to create pairs of particle-hole
pairs with momentum +Q and −Q [see, e.g., Eq. (7.1) in
Ref. [7]]. This assumption of separability of Hilbert spaces
of particle-hole pairs with different |Q|, lies at the heart of the
higher dimensional bosonization approach to Fermi surfaces
and it is believed to be an asymptotically correct descrip-
tion of particle-hole excitations of Landau Fermi liquids at
small |Q|.

Ordinary single-band Fermi liquids do not have low-energy
particle-hole excitations with total momentum Q = 0 and
therefore this sector does not appear in the conventional
problem of bosonization of Fermi surfaces. In contrast nodal
semimetals in which the Fermi surface shrinks to a point,
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have a nontrivial set of gapless optical Q = 0 particle-hole
excitations. The central purpose of the present study is to
develop a systematic bosonization approach to this sector
for gapless semimetals. For concreteness we will discuss on
two-dimensional (2D) massless Dirac fermions, such as those
appearing in graphene and the surface of three-dimensional
topological insulators, but our ideas can be naturally
extended to other cases and higher dimensions. To describe
such excitations, we will borrow the central assumption of the
bosonization approach of Fermi surfaces, namely, that such
optical particle-hole pairs are decoupled from the particle-
hole pairs of finite momentum Q. We expect this simplifi-
cation to be justified at low energies in phases which are
adiabatically related to free fermions, in a similar sense to
how such decoupling allows one to describe Fermi liquids
which are adiabatically related to free fermions in the higher
dimensional bosonization of Fermi surfaces. We will, how-
ever, establish an explicit microscopic connection between
our bosonization approach and the conventional Feynman di-
agrammatic perturbation theory that demonstrates the validity
of this central assumption of our approach. Specifically, we
will prove that the solution of our effective bosonic Hamilto-
nian for the optical particle-hole pairs is exactly equivalent to
the self-consistent Kadanoff-Baym resummation [8,9] of the
particle-hole propagator at Q = 0, associated with the self-
consistent Hartree-Fock approximation to the single particle-
particle Green’s function.

As an application of our approach we will compute the
interaction corrections to the optical conductivity of 2D
Dirac fermions with Coulomb interactions, whose strength
is parametrized by the effective fine-structure constant α =
e2/εv, where v is the velocity of the Dirac fermions and ε the
dielectric constant of the surrounding medium. This optical
conductivity at low energies is determined by fundamental
constants of nature, and given by σ0 = e2/16h̄ per Dirac
cone [10,11]. Its zero frequency limit is not expected to be
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renormalized by interactions, but, Coulomb interactions can
produce a slow flow as a function of frequency to such value
and a nontrivial nonanalytic frequency dependence at low
energies. Early perturbative calculations of such corrections
were in mutual disagreement [12,13], but subsequent studies
[14–20] validated the result of Ref. [12]. As we will see,
our approach recovers the perturbative results of Ref. [12]
at small interactions and extends them nonperturbatively to
finite α. Nonperturbative attempts to understand the effects
of Coulomb interactions in the optical conductivity of Dirac
fermions have been scarce. A quantum Monte Carlo effort
[21] to compute the optical conductivity concluded that in-
teraction corrections remain rather small even at α ∼ 2. Our
analysis will also support this conclusion, which is broadly in
agreement with experiments that have found values close to
that for noninteracting fermions [22–24].

Effective Hamiltonian and Hilbert space. The microscopic
Hamiltonian is (h̄ = 1)

H = v
∑

k,σ,σ ′
ψ

†
k,σ

(k · σσσ ′ )ψ†
k,σ ′

+ 1

2A

∑
kk′

∑
σσ ′

Vqψ
†
k′+q,σ ′ψ

†
k−q,σ ψ

†
k,σ ψ

†
k′,σ ′ , (1)

where A is the system area, and Vq is the Fourier transform
of the interaction potential. It is convenient to imagine the
fermions moving in a 2D torus so that its momentum is
quantized on a lattice. In this momentum lattice the complete
many-body Hilbert space is a tensor product of empty, singly,
and doubly occupied states:

H =
⊗

k

(|0〉k ⊕ | ↑〉k ⊕ | ↓〉k ⊕ | ↑↓〉k ). (2)

The kinetic term in Eq. (1) produces no fluctuations between
the occupancy of the momentum sites, and favors a ground
state with singly occupied states with a suitably oriented spin
in the form of vortex around the Dirac point [see Fig. 1(a)].
The interactions are pair hopping terms with a finite ampli-
tude to induce transitions into states with doubly occupied
sites and empty sites. Crucially, the subspace of the Hilbert
space with singly occupied sites is equivalent to the space of
particle-hole pairs with zero total momentum, Q = 0, while
those states with doubly occupied and empty sites contain
particle-hole excitations of finite momentum Q. Therefore,
following the spirit of higher dimensional bosonization, we
project the Hamiltonian in Eq. (1) onto the Hilbert space
of singly occupied sites in the momentum lattice, depicted
in Fig. 1(b). This Hilbert space contains a spin-1/2 at each
momentum site:

Hsingle =
⊗

k

(| ↑〉k ⊕ | ↓〉k ), (3)

and the projection of the Hamiltonian from Eq. (1) leads to
the following Heisenberg model:

PHP =
∑

k

vk · sk −
∑
k �=k′

Vk−k′

4A
sk · sk′ , (4)

where sk = ∑
σ,σ ′ ψ

†
k,σσσσ ′ψ

†
k,σ ′ is a spin operator for the k

site of the momentum lattice. The first term in Eq. (4) is

FIG. 1. (a),(b) Creation of an electron-hole pair as the flipping of
a pseudospin on a vortex configuration. (c) nth-order diagram of the
KB particle-hole propagator associated with SCHF. Double lines are
Green’s functions dressed by SCHF self-energies, and wiggly lines
are interaction matrices. (d),(e) Rediscretization from square to polar
lattice.

a Zeeman vortex field and the second term is a long-range
exchange coupling. This Hamiltonian is not exactly solvable
but the fluctuations around the noninteracting state can be
described by a Holstein-Primakoff expansion [25]. To do so,
we choose a spin basis that diagonalizes the kinetic energy
at each momentum site sk = −sz

kk̂ + sx
kẑ + sy

kφ̂ where ẑ is
the out-of-plane direction and φ̂ = ẑ × k̂. The spin operators
can be expanded as sz

k ≈ 1 − 2b†
kb†

k, sx
k ≈ b†

k + b†
k, and isy

k ≈
b†

k − b†
k. Up to boson bilinears the Hamiltonian becomes (see

§A2 of [26])

HHP =
∑
k,k′

B†
kHkk′Bk′ , (5)

with B†
k = (b†

k b†
k ), and

Hkk′ = δkk′

(
2Ek 0

0 −2Ek

)
− Tkk′ , (6)

with Ek = v|k| + �k, �k = ∑
k′ Vk−k′ cos φkk′/2A is

the Hartree-Fock self-energy, and Tkk′ is (for details
see §A1 of [26])

Tkk′ = Vk−k′

4A

(
1 + cos φkk′ 1 − cos φkk′

1 − cos φkk′ 1 + cos φkk′

)
. (7)

Connection with perturbation theory. We will now demon-
strate that the solution of the boson bilinear Hamiltonian
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in Eq. (5) is exactly equivalent to the calculation of the
particle-hole propagator within the Kadanoff-Baym (KB)
resummation of Feynman diagrams associated with the
self-consistent Hartree-Fock (SCHF) approximation to the
single-particle Green’s function. In terms of electrons, the
boson creation operator b†

k corresponds to the interband
Q = 0 electron-hole pair creation operator: b†

k = ψ
†
k+ψ

†
k−,

where the subindex s = ± denotes the conduction and valence
bands. Therefore, our goal is to compute the electron-hole
pair propagator defined as

χ
s1s2
k1k2

(t ) = −iT
〈
ψ

†
k1s1

(t )ψ†
k1 s̄1

(t )ψ†
k2 s̄2

ψk2s2

〉
. (8)

The KB SCHF resummation includes the entire Bethe-
Salpeter ladder series with all internal single-particle Green’s
functions dressed with the SCHF self-energy [8,9]. These
SCHF Green’s functions are given by (see §A3 in [26])

Gs1s2
k (ω)= ks1 ks2

k1 =
δs1s2

ω − s1(Ek − iη)
. (9)

and the nth-order Feynman diagram of this series is shown in
Fig. 1(c). The zeroth-order term of the series is

χ (0)s0s1

k0k1
(ω) = −δk0k1δs0s1

(
δs0,1 − δs0,−1

ω − 2s0(Ek0 − iη)

)
. (10)

An important property of this series, which can be readily
obtained by integrating over internal intermediate frequencies,
is that the intermediate Green’s functions are all constrained
to satisfy s = s′, which physically means that the intermediate
pairs always have one electron in the conduction band and a
hole in the valence band. This allows one to cast the series as
a matrix geometric series involving χ0 and T of Eq. (7):

χ (ω) = χ0(ω) + χ0(ω)T [χ0(ω) + χ0(ω)T χ0(ω) + · · · ],

and therefore the solution of the series has the form

χ−1
k0k f

(ω) = −(ω − iη)τ zδk0k f − Hk0k f , (11)

where Hk0k f is given in Eq. (6) and τ z is the diagonal Pauli ma-
trix. The structure of this correlator is equal to the propagator
of the Holstein-Primakoff (HP) bosons of the Hamiltonian (6).
We therefore see that the exciton propagator has an identical
effective Hamiltonian to the one obtained from the HP bosonic
Hamiltonian in Eq. (6), demonstrating that the bosonized
Hamiltonian is equivalent to self-consistent KB resummation
of the particle-hole propagator.

Momentum space reparametrization. So far we have imag-
ined our system to have a finite size so that momenta belongs
to a discrete lattice. However, it is convenient to perform a
reparametrization that manifestly displays the symmetries of
the thermodynamic limit. If we parametrize momentum space
by a new coordinate z(k), we can trade our boson Hamiltonian
by one in a different lattice given by

HHP =
∑
z,z′

B†
zHzz′Bz′ . (12)

As detailed in [26], in order to preserve the underlying
microscopic normalization of the states, the boson operators

and the Hamiltonian in the new lattice need to be rescaled as
follows:

Bz = J (z)Bk, Hzz′ = J (z)J (z′)Hkk′ , (13)

where J (z) = √
D(z)(z1z2)/(k1k2), ki = 2π/Li, zi

is the discretization unit of the new coordinate system, and
D(z) is the Jacobian of the transformation. In particular, in
order to exploit the emergent rotational invariance in the ther-
modynamic limit, we use the following polar parametrization
z = (k, φ):

km = K√
2

tan2(mθ ), φn = nφ, (14)

where (km, φn) are the polar coordinates of a given site in
the polar momentum lattice depicted in Figs. 1(d) and 1(e),
K is the UV momentum scale, θ = (π/2)/(M + 1), φ =
2π/(2L + 1), and n = 0, . . . , 2L, m = 1, . . . , M.

The radial discretization we are choosing is denser at
small k and more dilute at large k. This is not crucial but
allows faster numerical convergence at low energies. We have
verified that the results we will describe are independent of
the specific choice of the radial discretization once the grids
become sufficiently dense [26].

Applying the transformation from Eq. (13) to the boson
Hamiltonian from Eq. (12) leads to the following decoupling
into angular momentum channels:

B�
m =

L∑
�=−L

ei�φn Bmn, HHP =
∑
m�

B�†
m H �

mm′B�
m′ . (15)

Therefore the problem reduces to a set of bosons moving in
an effective one-dimensional radial space for each angular
momentum channel which in general needs to be solved
numerically.

Optical conductivity. As a concrete application of our for-
malism we study the Coulomb interaction corrections to the
optical conductivity of Dirac fermions. We follow the Kubo
approach to compute the conductivity from the current-current
correlator χμν (t ) = i�(t )A〈[ jμ(t ), jν (0)]〉. The total current
operator carries Q = 0, so it can be represented exactly within
the effective spin-1/2 Hilbert space of Eq. (4) as follows:

j = v

A

∑
k

ψ
†
kσ1

σσ1σ2ψkσ2 = v

A

∑
k

ŝk. (16)

Using the HP approximation for the spin operators, the
current-current correlator then can be expressed as (see Eq.
(C8) in [26])

χϕϕ (t ) = i�(t )
2v2θ

(2K)2(2π )

∑
mm′

Sm
〈[

B1†
m (t ), B1†

m′
]〉

Sm′ ,

where [B�†
m ] = (b�†

0 · · · b�†
M b�†

0 · · · b�†
M ) and [Sm] =

(t0 · · · tM − t0 · · · − tM ) are scale factors with tm =
3
√

tan(θm) sec(θm). Because the current transforms as a vector
under rotations, the calculation of the conductivity only re-
quires solving the boson bilinear Hamiltonian of Eq. (15) for
the angular momentum channel � = 1, which is diagonalized
by a transformation of the form (see [27])

B1†
m =

∑
n

R†
mnD†

n, H1
mm′ =

∑
nn′

R∗
mn�nn′R∗

n′m′ , (17)
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FIG. 2. (a) Conductivity at weak coupling. Thick: Bosonization
approach. Dotted: Leading RG correction σ̃ (ω). Solid: Leading
perturbative correction from Ref. [12]. (b) Conductivity at strong
coupling from the bosonization approach.

where �nn′ = diag(ω0 · · · ωM −ω0· · ·− ωM ) is the diagonal
matrix of the eigenvalues of Eq. (5). The real part of the
conductivity can be obtained from the following Lehmann-
type representation [see Eq. (C12) in [26]]:

σ (ω) = v2θ

(2K)2

∑
m

∣∣∣∣∣
∑

n

R∗
mnSn

∣∣∣∣∣
2
δ(ω − ωm)

ωm
. (18)

We will now describe the results for the optical conductiv-
ity obtained by numerically diagonalizing the � = 1 angular
momentum bilinear Hamiltonian of Eq. (15) for the Coulomb
interaction Vq = 2πe2/ε|q|. Further details can be found in
[26]. To isolate the interaction corrections to σ (ω) we define

σ̃ (ω) = σ (ω) − σ0

σ0
, (19)

where σ0 = e2/16 is the noninteracting conductivity of Dirac
fermions. The leading perturbative correction to this conduc-
tivity is expected to be of the form [12] σ̃ = Cα + O(α2),
with C = (19 − 6π )/12. We have been able to reproduce this
perturbative correction numerically at small α as shown by
solid horizontal lines in Fig. 2(a) along with the full numerical
result from Eq. (18). At larger values of α, clear deviations
from the leading perturbative result are seen in Fig. 2(b). One
of the conspicuous deviations is a logarithmic decrease of the
conductivivity at low frequencies (see [26]). This logarithmic
decrease can be explained by the logarithmic running of the
coupling constant at small frequencies expected from the
perturbative renormalization group (RG) analysis:

σ̃ (ω) = Cα

1 + α
4 ln

(Kv
ω

) ≈ Cα

[
1 + α

4
ln

(
ω

Kv

)]
. (20)

The predicted RG logarithmic correction is shown by a dotted
line in Fig. 2(a), which is in good agreement with the numer-
ical implementation of Eq. (20) at small α. For larger values
of α we see clear deviations from this leading RG perturbative
result, as shown in Fig. 2(b).

Nevertheless, as shown in Fig. 2, even for a value of α

as large as α = 5 the maximal deviation of the conductivity
from the noninteracting value is only about 4%. This indicates
a resilience of conductivity of Dirac fermions to interaction
corrections even when nonpertubative effects are included,
in agreement with experiments that have obtained values
close to those of noninteracting fermions [22–24]. We would
like to note that our formalism so far neglects the role of
screening [namely, the wavy interaction lines in Fig. 1(a)
are the bare Coulomb interactions]. The qualitative role of
screening is expected to be secondary since the system has
a vanishing density of states. Nevertheless, screening can play
an important role quantitatively at strong coupling, and we
actually expect that the interaction corrections to the optical
conductivity upon including screening would be even smaller
than the corrections we obtained, because within the RPA
screening should lead to a reduction of the effective value
of α→αRPA ≈ α/(1 + πNα/8), where N is the total number
of Dirac cones (e.g., N = 4 for graphene [16]). We note
that a challenge in systematically accounting for the coupling
of the modes at Q = 0 that we have studied to the density
fluctuation modes at nonzero Q, which are responsible for
screening, is that, because of momentum conservation, such
coupling would necessarily include boson cubic and higher-
order nonlinear terms in the effective bosonic Hamiltonian,
making it challenging to solve the problem in an essentially
exact manner as we have so far done.

Discussion and summary. We have developed a formal-
ism that captures nonperturbatively the interaction effects on
the continuum of Q = 0 particle-hole excitations of Dirac
fermions. Our approach is constructed by projecting the full
microscopic many-body Hamiltonian of Dirac fermions into
the subspace of singly occupied momentum states, leading to
an effective spin-1/2 Heisenberg-like model in a momentum
lattice. This problem is subsequently reduced to a boson
bilinear Hamiltonian by a standard Holstein-Primakoff trans-
formation. We have provided a solid microscopic justification
for this formalism by showing that it is equivalent to the
Kadanoff-Baym resummation of the particle-hole propaga-
tor associated with the SCHF approximation to the single-
particle Green’s function. This approximation is expected
to capture the essential universal low-energy properties of
the semimetallic phase that evolves adiabatically from free
fermions. We have applied this formalism to compute the
Coulomb interaction corrections to the optical conductivity
of Dirac fermions and found that it recovers the results of
perturbative renormalization group at weak coupling [12] and
extended them to strong coupling. Remarkably, we have found
that the Coulomb interaction corrections remain very weak
(∼4%) up to values of the effective fine-structure constant
α ∼ 5, in agreement with experiments in graphene that have
measured a value of the optical conductivity that is con-
sistent with the free-electron theory [22–24]. Although our
discussion has been restricted to 2D Dirac fermions, our
approach can be naturally generalized to other multiband
semimetals and higher dimensions, such as Weyl semimetals
[28] and novel nodal fermions [29], providing an interest-
ing tool to capture nonperturbative effects of interactions
on the correlation functions of Q = 0 operators of these
phases.
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