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Spin-1 Kitaev-Heisenberg model on a honeycomb lattice
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We study the Kitaev-Heisenberg model with spin-1 local degree of freedom on a honeycomb lattice numeri-
cally by the infinite density matrix renormalization group method on a cylinder geometry. By tuning the relative
value of the Kitaev and Heisenberg exchange couplings, we obtain the phase diagram with two spin liquid phases
and four symmetry-broken phases. We identify that the spin liquid phases are gapless by calculating the central
charge at the pure Kitaev points without the Heisenberg interactions. Comparing to its spin-1/2 counterpart, the
position and number of gapless modes of the spin-1 case are quite different. Due to the approximate Z2 local
conservations, the expectation value of the Wilson loop operator measuring the flux of each plaquette stays near
to 1, and the static spin-spin correlations remain short range in the entire spin liquid phases.
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Introduction. Ever since it was first proposed by Kitaev
in 2006 [1], the two-dimensional (2D) Kitaev model and its
various extensions have drawn extensive attention both theo-
retically and experimentally [2,3]. Depending on the relative
relations between the exchange couplings in different spatial
directions, the system could be a gapless spin liquid or a
gapped Z2 topologically ordered spin liquid. Under a small
external magnetic field, the gapless spin liquid will open a
gap and change to a non-Abelian topological phase [4–8],
while under a strong magnetic field, the system will be in a
fully polarized phase with chiral magnon edge states [9]. The
existence of a U(1) gapless quantum spin liquid phase is also
proposed in an intermediate magnetic field [10–14]. The other
extensions, for example, the addition of Heisenberg exchange
terms, may lead to different magnetically ordered phases
[15–18]. Some candidate materials with signatures of Kitaev
physics have also been found [3,19–21], such as α-RuCl3

[22–28], H3LiIr2O6 [29], and A2IrO3(A = Na, Li) [17,30–37],
which motivate more studies on various extended Kitaev mod-
els with additional couplings as the effective Hamiltonians for
realistic materials.

Despite the numerous studies on the spin-1/2 Kitaev
model, the spin-1 case is still less explored and has not been
fully understood. The examples of spin-1 spin liquid are quite
rare in Heisenberg-like spin models. Due to the fact that the
quantum fluctuation is reduced with the increasing of local
spin, to realize a spin-1 spin liquid phase the Hamiltonian
terms giving rise to frustration need to be strong enough to
overcome the tendencies of magnetic ordering or other sponta-
neous symmetry breaking. Most of the current understandings
of the spin-1 Kitaev model are based on the symmetry analy-
sis, such as the existence of Z2 Wilson loop operators and the
vanishing of spin-spin correlations beyond nearest neighbors
[38,39]. Small size numerical calculations [40] using exact
diagonalization suggested that the ground state of the spin-
1 Kitaev model is possibly gapless and vortex-free. Unlike

the spin-1/2 Kitaev model, there is no exact solution to the
spin-1 model, and the nature of the quantum state is far from
understood. A recent theoretical paper [41] proposed the rel-
evance of the spin-1 Kitaev spin model to 2D Mott insulators
with strong spin-orbit coupling on lattices with edge-shared
octahedra, which may be realized in layered transition metal
oxides. This work opens the possibility to find the spin-1
spin liquid phases in real materials and makes the theoretical
understanding of the spin-1 Kitaev model more urgent and
important.

In this work, we numerically study the spin-1 Kitaev-
Heisenberg model of a honeycomb lattice on a cylinder
geometry using the density matrix renormalization group
(DMRG) method. We obtain the phase diagram with differ-
ent relative values of the Kitaev and Heisenberg exchange
couplings. Two spin liquid phases exist around the antifer-
romagnetic and ferromagnetic pure Kitaev points (with no
Heisenberg term), respectively. The other four phases are
magnetically ordered with different patterns of spontaneous
symmetry breaking. The entanglement spectrum of the spin
liquid phases has a degeneracy with different momentum
around a cylinder, while the spectrum of the magnetically
ordered phases is dominated by the largest Schmidt value.
Most importantly, we find that the ground states of the pure
Kitaev points are gapless with nonzero central charges, and
the position and number of the gapless modes are different
from its spin-1/2 counterpart. Furthermore, the expectation
value of the Wilson loop operator measuring the flux of each
plaquette stays near to 1, and the static spin-spin correlations
remain short range in the entire spin liquid phase.

Phase diagram. We consider the spin-1 Kitaev-Heisenberg
model on a 2D honeycomb lattice with the Hamiltonian

Ĥ = K
∑
〈i, j〉γ

Ŝγ

i Ŝγ

j + J
∑
〈i, j〉

Ŝi · Ŝ j, (1)
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FIG. 1. (a) Phase diagram of the spin-1 Kitaev-Heisenberg
model with α ∈ [0, 2π ] on an infinite cylinder with Ly = 4. The
black line is the energy of the ground state per site, and the blue
line is the entanglement entropy by cutting the cylinder along a ring.
The bond dimension used in iDMRG is χ = 1000. (b) and (c) are
the zoom-in plots of the spin liquid phases around α = 0.5π and
1.5π , respectively. The black solid lines are the ground state energy
per site with calculations initialized in the spin liquid phases, and
the black dashed lines are the ground state energy per site with cal-
culations initialized in the corresponding nearby symmetry-broken
phases. The blue lines are the entanglement entropy with similar
meaning. The phase boundaries are determined by the discontinuous
points of the first-order derivatives of the energy of the lowest energy
states with respect to α. Insets: The spin-spin correlations 〈Sx

i Sx
0〉 of

each phase in real space with 0 sites marked by the red squares.

where K = 2 sin(α) and J = cos(α) with α ∈ [0, 2π ] are the
Kitaev and Heisenberg exchange couplings, respectively, Ŝγ

i
is the γ (= x, y, z) component of the spin-1 operators on site
i, and 〈i, j〉γ denotes the nearest neighbor coupled by the γ

link.
We use an infinite DMRG (iDMRG) method [42,43] on

an infinite cylinder with circumference Ly = 4 unit cells to
get the phase diagram with respect to the parameter α. The
translational invariant building block of the infinite cylin-
der we use has two unit cells in the x direction along the
cylinder to be compatible with the symmetry-broken phases.
Figure 1(a) shows the phase diagram with the ground state
energy per site and the von Neumann entanglement entropy
S = −∑

β �2
β ln�2

β , where �β’s are the Schmidt values on
the bond of the matrix product state (MPS) cutting the infinite
cylinder into two halves along a ring. There are four magnetic
ordered phases with spontaneous symmetry breaking: Néel
phase for α in [1.83π, 2π ] and [0, 0.494π ], zigzag phase
in [0.506π, 0.87π ], ferromagnetic phase in [0.87π, 1.485π ],
and stripy phase in [1.514π, 1.83π ], respectively. The insets
of Fig. 1(a) give the real-space correlation function 〈Ŝx

i Ŝx
0〉 for
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FIG. 2. Entanglement spectrum εβ with momentum ky around the
cylinder of the ground states with (a) α = 1.485π in ferromagnetic
phase, (b) α = 1.486π in spin liquid, (c) α = 1.513π in spin liquid,
and (d) α = 1.514π in stripy phase. All of these α points are the
nearest points to the phase transitions in the order of 0.001π .

each ordered phase, with 0 sites marked by red squares. The
black dot (circle) on each lattice site represents the positive
(negative) sign of the correlation and the sizes of the dots
and circles are proportional to their absolute values. The spin
symmetry-breaking directions of the shown states are along
the x direction, i.e., 〈Ŝx

i 〉 �= 0. At α = 0.5π and α = 1.5π , the
Heisenberg term J = 0, thus the Hamiltonian is pure Kitaev
with K = 2 and −2, respectively. Two extended spin liquid
phases exist around these pure Kitaev points in the region
[0.494π, 0.506π ] and [1.485π, 1.514π ] with details shown in
Figs. 1(b) and 1(c). In the spin liquids, the quantum frustration
from the Kitaev coupling terms dominates, thus no magnetic
order appears. The static correlations are short range to the
nearest neighbors in the spin liquid as plotted in the insets of
Figs. 1(b) and 1(c). The regions of the spin liquid phases are
smaller than that of the same model with spin-1/2 [16,44].
The results of iDMRG indicate that the transitions between
spin liquid and its nearby symmetry-broken phases are first-
order phase transitions. By initializing the calculation from
each phase and moving towards the phase transition points,
we could find a crossing in the energy lines, as shown by the
solid and dashed black lines in Figs. 1(b) and 1(c). This is a
key feature of the first-order phase transitions [45].

The entanglement spectrum also shows different structures
in the spin liquid and magnetically ordered phases. The cylin-
der has translational symmetry along the y direction, thus the
Schmidt states are eigenstates of the momentum ky in the y
direction and the corresponding entanglement energy levels
εβ = −2 ln �β can be labeled with ky. The entanglement
spectra near the phase transition point from the ferromagnetic
phase to spin liquid are plotted in Figs. 2(a) and 2(b), and
from spin liquid to stripy magnetic ordered phase are given in
Figs. 2(c) and 2(d). In the ordered phases, the entanglement
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spectrum has a nondegenerate dominant value, while in the
spin liquid the entanglement spectrum has approximate four-
fold degeneracies with different ky. The abrupt changes of the
spectrum structure at the phase transition points are consistent
with the first-order phase transitions. We have checked that
the spin liquid phases of the spin-1/2 Kitaev model also have
similar entanglement structures indicating a strong superposi-
tion nature of the spin liquid state.

Pure Kitaev model and spin liquid. In this section we will
focus on the pure Kitaev model with K = ±2 and J = 0, and
the corresponding spin liquid phases. Let us now review some
symmetry properties of the pure Kitaev model. The general
Wilson loop operator for spin S on sites {1, 2, . . . , n} of a loop
L is defined by

ŴL = eiπ Ŝ
γ12
1 eiπ Ŝ

γ12
2 eiπ Ŝ

γ23
2 eiπ Ŝ

γ23
3 · · ·

× eiπ Ŝ
γ(n−1)n
(n−1) eiπ Ŝ

γ(n−1)n
n eiπ Ŝ

γn1
n eiπ Ŝ

γn1
1 , (2)

where γi,i+1(= x, y, z) denotes the direction of the link be-
tween sites i and i + 1. It can be verified that [ŴL, ĤK ] = 0
and [ŴL,ŴL′] = 0, where ĤK denotes the pure Kitaev Hamil-
tonian. Since (ŴL )2 = 1, the eigenvalues of ŴL are WL = ±1.
We rename ŴL as Ŵp if the loop is around a single hexagonal
plaquette of the honeycomb lattice, and as Ŵy if the loop winds
once around the cylinder.

To examine the nature of the spin liquid, we first check
if the spin liquid is gapless. We choose two sizes of infinite
cylinders with Ly = 3 and Ly = 4 and consider α = 1.5π

(α = 0.5π is equivalent). We initialize the iDMRG calcula-
tions by complex random MPSs with bond dimension χini =
100. A random initial state may give a random bias to help
with selecting states in different sectors with different Wy after
updating variationally, thus we have a chance to get the lowest
energy state in each sector. We name the state with a lower
energy of these two states as the ground state and the other
one as an excited state.

For Ly = 3, the ground state is gapped with Wy = 1, while
the lowest energy state in the sector with Wy = −1 (an ex-
cited state) is gapless. For a variational-optimized MPS which
represents a gapless state, both the entanglement entropy S
and correlation length ξ will increase with its bond dimen-
sion, and the scaling relation between them S = (c/6)lnξ

gives the central charge c of the gapless state. Figure 3(a)
shows the finite entanglement scaling for this gapless excited
state. The linear fitting (black line) gives the central charge
c ≈ 1.097. The same plot for the gapped ground state is given
in the lower right inset of Fig. 3(a). The entanglement entropy
of the gapped ground state converges quickly and does not
grow with the bond dimension. This observation is quite sim-
ilar to the spin-1/2 case. In the spin-1/2 case, although with
Ly = 3 and the periodic boundary condition in the y direction
the momentum lines cut through the positions of the gapless
Majorana cones at ±( 1

3 , 2
3 ) in momentum space [see the upper

left inset of Fig. 3(a)], the free fermion degree of freedom
will adjust to the antiperiodic boundary condition (due to the
gauge flux) to give a gapped ground state with lower energy.
We conjecture that a similar effect may also play an important
role in the spin-1 case as we have seen different flux states
(Wy = ±1) have different central charges on the cylinder with
Ly = 3. However, due to the lack of an analytical solution,
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FIG. 3. (a) Finite entanglement scaling of the lowest energy state
in the sector with Wy = −1 on an infinite cylinder with Ly = 3. The
bond dimensions of the data points are in the range [500,1200].
The lower right inset is the same plot for the corresponding gapped
ground state with Wy = 1. (b) Finite entanglement scaling of the
ground state with Wy = −1 on an infinite cylinder with Ly = 4. The
bond dimensions of the data points are in the range [1300,2900].
The lower right inset is the same plot for the gapped ground state of
the spin-1/2 Kitaev model with W̃y = 1 on an infinite cylinder with
Ly = 4, where W̃y is the corresponding Wilson loop operator around
the cylinder for spin-1/2. The slope of the black line in (a) gives
the central charge c ≈ 1.097 and in (b) gives c ≈ 1.088 by linear
fitting with standard deviation errors 0.024 and 0.018, respectively.
The upper left insets of (a) and (b) are the Brillouin zone of the hon-
eycomb lattice with Ly = 3 and 4, respectively, in which the dashed
lines are the momentum lines with periodic boundary condition in the
y direction, and orange dots show the possible positions of gapless
Majorana cones.

only the results for Ly = 3 cannot guarantee if the true ground
state in the 2D limit is gapless. Therefore, we consider Ly = 4
in the following.

For Ly = 4, the ground state of the spin-1 case is gap-
less and has a fitting central charge c ≈ 1.088 as shown in
Fig. 3(b). This gapless ground state has Wy = −1, which is
the same as the gapless excited state of Ly = 3. The lowest
energy state in the sector with Wy = 1 is also gapless, but
has a larger central charge. This is different from the spin-1/2
case, in which Ly = 4 is not compatible with the positions of
the Majorana cones, so we always get a gapped ground state
as shown in the lower right inset of Fig. 3(b). One possible
explanation of the central charge 1 here is that there are two
gapless Majorana cones in the spin-1 case, and they may
locate at (0, 1

2 ) and ( 1
2 , 1

2 ) as marked by the orange dots in the
upper left inset of Fig. 3(b). We could see that with Ly = 4
and the periodic boundary condition in the y direction the
momentum lines go through these two points, and give the
gapless ground state with central charge c = 1 (one Majorana
cone contributes 1/2 to the central charge). Notice that the C6

rotation symmetry is broken by the cylinder geometry, thus
the spectrum at ( 1

2 , 0) may be different from that at (0, 1
2 ) or

( 1
2 , 1

2 ). Other possible situations include gapless excitations
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FIG. 4. (a) The real-space lattice with flux +1 in each plaquette
is schematically shown for the ground state of the pure Kitaev model.
The sites n = 0, 1, . . . , 5 with orange squares are used to calculate
correlations in (c). (b) Apply Ŝx on one site of the ground state in (a);
fluxes in two plaquettes are flipped to −1. (c) The spin-spin correla-
tions 〈Sx

0Sx
n〉 on n labeled in (a) are plotted at α = 1.5π, 1.513π, and

1.514π . (d) The flux Wp in each plaquette versus α around the phase
transition between spin liquid and stripy phase.

around the 
 = (0, 0) point, which is protected by some sym-
metries, or around a small Fermi sea, which are consistent
with both Ly = 3 and Ly = 4 results.

Besides Ŵy, the eigenvalue of local flux operator Ŵp is also
a good quantum number of the eigenstates of the pure Kitaev
Hamiltonian. The ground states we obtained are vortex-free,
i.e., eigenvalues of Ŵp are +1 for all of the plaquettes. The
flux Wp in each plaquette is near to 1 in the spin liquid
phase with J �= 0 around the pure Kitaev points, and drops
abruptly to near 0 at the phase transition point as shown in
Fig. 4(d).

By direct calculation, we know that {Ŝγ
i ,Ŵp} = 0 if site i is

on the plaquette p and γ corresponds to one of the two links
on p which is connected to site i; otherwise, [Ŝγ

i ,Ŵp] = 0.
Therefore, if we apply a local spin operator, for example, Ŝx

i on
site i of the lattice, two of the plaquettes which share the site
i and link x will reverse their flux Wp as schematically shown
in Figs. 4(a) and 4(b). This property leads to the vanishing

of the spin-spin correlations beyond the nearest neighbors,
since the eigenstates with different quantum number Wp will
be orthogonal to each other and thus have zero overlap. This
correlation remains short range in the entire spin liquid phase,
and changes to long range once the symmetry breaking hap-
pens. In Fig. 4(c), the spin-spin correlation 〈Sx

0Sx
n〉 is plotted

with sites n = 0, 1, . . . , 5 as marked in Fig. 4(a), in which
α = 1.5π is a pure Kitaev point, and α = 1.513π and α =
1.514π are adjacent to the phase transition point between the
spin liquid and stripy phase. We could see that the change
of the spin-spin correlation is very sharp crossing the phase
transition, and the correlation for the magnetic ordered phase
goes to a constant which indicates a long-range-order ground
state [46].

Discussion. We identify the gapless spin liquid phases in
the spin-1 Kitaev-Heisenberg model, and find that the gapless
modes are very different from the corresponding spin-1/2
model. The extensive numerical studies in this work give some
insight about the nature of the gapless excitations and could
motivate more theoretical studies to fully understand the spin-
1 Kitaev model. There are still many open questions about the
extended spin-1 Kitaev model for future works. We list a few
here: (1) If the Kitaev coupling coefficients are anisotropic, is
there a gapped region and what is the topological nature of
the gapped phase? (2) If we apply a magnetic field, will the
spin liquid open a gap and become a non-Abelian phase? (3)
The real materials which realize spin-1 Kitaev coupling may
have many other complicated interactions like the spin-1/2
case, so the phase diagram could be much richer. Therefore,
more theoretical studies with different coupling terms added
to the pure Kitaev model are also interesting.

Note added. Recently, we noticed a related work [47] based
on a tensor network approach for the spin-1 Kitaev model.
Some conclusions of their work on the nature of spin liquid
do not agree with our work, and we believe that further the-
oretical and numerical studies are needed to resolve the full
nature of it.
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