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Free fermionic and parafermionic quantum spin chains with multispin interactions
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We introduce a family of Z (N ) multispin quantum chains with a free fermionic (N = 2) or free parafermionic
(N > 2) eigenspectrum. The models have (p + 1) interacting spins (p = 1, 2, . . . ), which are Hermitian in the
Z (2) (Ising) case and non-Hermitian for N > 2. We construct a set of mutually commuting charges that allows
us to derive the eigenenergies in terms of the roots of polynomials generated by a recurrence relation of order
(p + 1). In the critical limit we identify these polynomials with certain hypergeometric polynomials p+1Fp. Also
in the critical regime, we calculate the ground-state energy in the bulk limit and verify that they are given in terms
of the Lauricella hypergeometric series. The models with special couplings are self-dual and at the self-dual point
show a critical behavior with a dynamical critical exponent zc = p+1

N .
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Introduction. Models known by the general name of free
systems play a crucial role in condensed matter physics and
in statistical mechanics of exactly integrable systems. The
simplest and prototypical of these models is the quantum Ising
model in a transverse field [1,2]. The Hamiltonian defined in
a chain of L sites and free boundary conditions is given by

HI = −
L−1∑
i=1

λ2iσ
z
i σ z

i+1 −
L∑

i=1

λ2i−1σ
x
i , (1)

where σ x,z
i are the standard spin- 1

2 Pauli matrices attached at
the sites (i = 1, . . . , L) and the couplings λ j ( j = 1, . . . , 2L −
1) play the role of local temperatures. The 2L eigenvalues of
this model can be obtained through a Jordan-Wigner transfor-
mation and it has the form

EI = ±ε1 ± ε2 ± · · · ± εL, (2)

where the pseudoenergies εi are functions of {λi}. The model
is called free since all the 2L values of EI are obtained solely
from the L pseudoenergies εi. In this case we have a free
fermionic system since each pseudoenergy can appear with
both signals as in a standard fermionic system.

A simple direct generalization of (1) with Z (N ) symmetry
and having a free eigenspectrum was proposed in the late
1980s [3,4],

HB = −
L−1∑
i=1

λ2iZ
†
i Zi+1 −

L∑
i=1

λ2i−1Xi, (3)

where Xi and Zi are obtained from the Z (N ) generalizations of
the Pauli matrices satisfying the algebra

ZX = ωXZ, X N = ZN = 1, Z† = ZN−1, ω = e
2iπ
N ,

(4)
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and having the unique irreducible representation [5] in CN

given by

Xj,k = δ j,k+1 (mod N ), Zj,k = ω j−1δ j,k . (5)

The spectrum of (3) has the form

−EB = ωs1ε1 + ωs2ε2 + · · · + ωsL εL, (6)

where si ∈ {0, 1, . . . , N − 1} and εi are given in terms of
the roots of a given polynomial [3,4]. Clearly, the result (6)
reduces to (2) when N = 2. Formula (6) was conjectured in
Refs. [3,4] and proved in Refs. [6,7]. More recently, it was
proved using raising and lowering parafermionic operators
[8], generalizing the Clifford algebra method [9] for the free
parafermionic system. The work [8] has boosted a number
of papers on the spectral problem of (3) [10–15]. In analogy
with the Ising chain, the model (3) is free in the sense that the
quasienergies are independent of the choice of si, despite the
model not being Hermitian for N > 2.

We recall that the Hamiltonian (3) can be derived from the
transfer matrix of the so-called τ2 model [16,17] under certain
restrictions. For the general Hamiltonian arising from the τ2

model, see, e.g., Refs. [6,10]. To the best of our knowledge,
the Hamiltonian (3) or the general case derived from the τ2

model are so far the only known models with a spectrum of
the form (6) when N > 2.

The solution of the Ising chain involves the transforma-
tion of the Pauli operators in fermions by means of the
Jordan-Wigner transformation. As a result, the Hamiltonian
acquires a quadratic form in Fermi or Majorana operators.
Similarly, using the Fradkin-Kadanoff transformation [18],
the Hamiltonian (3) can be written in terms of parafermions
[8,19]. However, the resulting Hamiltonian is not quadratic
in the parafermions, and yet it has a free parafermionic
spectrum.

Recently, a remarkably simple Hamiltonian with three-spin
interactions that has a spectrum of the form (2) was introduced
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[20]. It is given by

HF = −
L−2∑
i=1

λiσ
z
i σ x

i+1σ
x
i+2. (7)

The standard Jordan-Wigner transformation applied to (7)
yields a Hamiltonian of order four in the Majorana fermions.
Given this feature, it is quite surprising that it has a free
spectrum.

The common feature of the Hamiltonians (1), (3), and (7)
is that their energy density operators satisfy a very simple
algebra [8,20] with M generators ha, namely,

haha+m = ωha+mha for 1 � m � p,

[ha, hb] = 0 for |a − b| > p, hN
a = λN

a , (8)

where p = 1 for (1) and (3) and N = p = 2 for (7). In fact,
the Hamiltonians (1), (3), and (7) can be written as

−H =
M∑

i=1

hi, (9)

where M = 2L − 1,

h2i−1 = λ2i−1Xi for i = 1, . . . , L,

h2i = λ2iZiZ
†
i+1 for i = 1, . . . , L − 1, (10)

for (1) and (3) and M = L − 2,

hi = λiσ
z
i σ x

i+1σ
x
i+2 for i = 1, . . . , L − 2, (11)

for (7).
The algebra (8) for p = 1 belongs to the realm of general-

ized Clifford algebras (see, e.g., Refs. [21–28]).
The aim of this Rapid Communication is to argue that

Hamiltonians of the form (9) whose energy density operators
satisfy (8) for arbitrary positive integer p and N have a free
parafermionic spectrum of the form (6). In order to do that,
we follow the strategy in Ref. [20]. The idea is that, using
(8), one can easily build a set of conserved charges associated
with (9) and use them to construct a generating function. This
generating function satisfies an important product formula
(20), which is similar to that satisfied by the transfer matrix of
the τ2 model [7]. We remark that this procedure is independent
of the representation of the algebra (8). Nevertheless, it is
easy to find representations of (8) using (4) which leads to
interesting quantum spin chains with (p + 1) multispin inter-
actions. For example, hi = λiZiZi+1 · · · Zi+p−1Xi+p produces a
Hamiltonian acting in the vector space (CN )⊗M+p,

H = −
M∑

i=1

hi = −
M∑

i=1

λiZiZi+1 · · · Zi+p−1Xi+p. (12)

The commuting charges and their generating function. The
simple form of the algebra (8) allows one to construct explic-
itly a set of mutually commuting charges, the Hamiltonian
being one of them. As in Ref. [20] for the case p = 2, the
commuting charge operators H (l )

M are obtained by summing
all the products h j1 h j2 · · · h jl formed by l generators hi in the
set {h1, . . . , hM} whose indices difference | ji − ji±1| is larger

than (p + 1), namely,

H (0)
M = 1, H (1)

M = −H =
M∑

j=1

h j,

H (2)
M =

M∑
j1=1

M∑
j2= j1+p+1

h j1 h j2 , . . . ,

H (M̄ )
M =

M∑
j1=1

M∑
j2= j1+p+1

· · ·
M∑

jM̄= jM̄−1+p+1

h j1 h j2 · · · h jM̄ , (13)

where M̄ is the largest number of commuting hj we can obtain
from the set {h1, . . . , hM}, and it is given by the integer part of
M+p
M+1 , i.e., M̄ = �M+p

p+1 �. We notice that the Hamiltonian (9) is

the charge −H (1)
M .

The generating function of the charges is defined as

GM (u) =
M̄∑

l=0

(−u)lH (l )
M , (14)

and we claim that it satisfies the fundamental properties

[GM (u), GM (v)] = [
H (l )

M , GM (u)
] = [

H (l )
M , H (l ′ )

M

] = 0, (15)

for arbitrary u and v and l, l ′ = 0, 1, . . . , M̄.
Actually, the commutativity relations (15) follow from the

fact that the generating function GM (u) and the charges H (l )
M

satisfy recurrence relations, namely,

H (l )
M = H (l )

M−1 + hMH (l−1)
M−(p+1), (16)

GM (u) = GM−1(u) − uhMGM−(p+1)(u), (17)

with the initial conditions H (0)
M = 1, H (l )

M = 0 for l < 0 or
M � 0, and GM (u) = 1 for M � 0. The proof [29] of (15)
follows from the fact that

β
(l )
M (u) = [

H (l )
M , GM (u)

]
(18)

satisfies a recurrence relation with the same form as (17),
namely,

β
(l )
M (u) = β

(l )
M−1(u) − uhMβ

(l )
M−(p+1)(u). (19)

We remark that (15) has been proved for N = p = 2 in
Ref. [20] using the fact the generating function admits certain
factorizations and it was also proved for p = 1, arbitrary N in
Ref. [8].

Product formula for the generating function. The free
spectrum nature for the Hamiltonian (9) emerges from the
following conjecture: The generating function GM (u) satisfies
the product relation,

τM (u) ≡ GM (u)GM (ωu) · · · GM (ωN−1u) = P(p)
M (uN )1, (20)

where P(p)
M (z) is a polynomial of degree M̄ in z = uN . Formula

(20) has the same form as the one satisfied by the transfer
matrix of the τ2 model [7]. When N = 2, (20) is known as the
inversion relation [30], since GM (−u) is proportional to the
inverse of GM (u).

We state the conjecture (20) after extensive analytical and
numerical computation. Analytically, we can verify (20) up
to N = M̄ = 4 for p = 1, 2, 3. Numerically, we checked it

121101-2



FREE FERMIONIC AND PARAFERMIONIC QUANTUM SPIN … PHYSICAL REVIEW B 102, 121101(R) (2020)

for small lattice sizes (M̄ � 8, N � 6), with Hamiltonians of
dimension up to 6 × 105. Although it is a general conjecture
for arbitrary values of N and p, we were able to prove it,
after a lengthy calculation, for N = 2, 3 and arbitrary values
of p [29]. The key point is to show that τM (u) also satisfies the
recurrence relation

τM (u) = τM−1(u) − uN hN
MτM−(p+1)(u), (21)

with τM (u) = 1 for M � 0. This expression gives τ1(u) =
1 − uN hN

1 and by iterating (21) we obtain that τM (u) is a
polynomial in uN , as stated in (21). We see from (21) that
the coefficients of P(p)

M (uN ) depend on the values hN
i = λN

i of
the couplings in the Hamiltonians (9) and (12). The proof of
(22), similarly as happened with (20), is a consequence of the
recurrence Eqs. (17) and (18).

Relation (22) implies the recurrence relation for the poly-
nomial (hereafter we use the variable z = uN for the polyno-
mial P(p)

M ),

P(p)
M (z) = P(p)

M−1(z) − zλN
MP(p)

M−(p+1)(z), (22)

with the initial condition P(p)
l (uN ) = 1 for l � 0. Comparing

(22) with the recursion relation (17), we identify the depen-
dence in {λN

i } of the coefficients C(l )
M in the expansion

P(p)
M (z) =

M̄∑
l=0

(−z)lC(l )
M . (23)

They are obtained by replacing hj → λN
j in (13), i.e.,

C(l )
M =

M∑
j1=1

M∑
j2= j1+p+1

· · ·
M∑

jl = jl−1+p+1

λN
j1λ

N
j2 · · · λN

jl , (24)

for l = 0, 1, . . . , M̄.
In the special case where λN

j = 1 ( j = 1, . . . , M), C(l )
M

corresponds to the number of ways to put l particles with an
excluded volume of (p + 1) lattice units in a lattice of size M,
that is, it is given by the binomial coefficient,

C(l )
M =

(
M − p(l − 1)

l

)
= (M − p(l − 1))!

(M − p(l − 1) − l )!l!
, (25)

and we can identify P(p)
M (z) as the generalized hypergeometric

polynomial p+1Fp [31],

P(p)
M (z) = p+1Fp

(
−M+p

p+1 − M+p−1
p+1 − M+p−2

p+1 · · · − M
p+1

−M+p
p − M+p−1

p · · · − M+1
p

;
(p + 1)p+1

pp
z

)

=
M̄∑

l=0

(−1)l

(
M − p(1 − l )

l

)
zl . (26)

It is worth noticing that for the critical quantum Ising chain,
where p = 1, the polynomial (26) is related to the Chebyshev
polynomial of the second type, i.e., P(1)

M (z) = z
M+1

2 UM+1( 1

2z
1
2

).

The solution of the product formula and the spectrum of
the Hamiltonian. The eigenspectrum of the Hamiltonian (9)
−H (1)

M as well as of all the charges H (l )
M are obtained from

the product formula (20). Owing to (15), by applying (20)
to a given eigenfunction of GM (u) with eigenvalue 
(u),
we obtain


(u) · · · 
(ωN−1u) = P(p)
M (uN ) =

M̄∏
i=1

(
1 − uN

zi

)
, (27)

where zi are the roots of (23). Relation (27) can be solved in
terms of zi,


M (u) =
M̄∏

i=1

(
1 − u

ωsi

z1/N
i

)
=

M̄∏
i=1

(1 − u ωsiεi ), (28)

where εi = z−1/N
i and si ∈ {0, 1, . . . , N − 1}. We verified that

all the roots of zi of (23) are distinct. Therefore, there are NM̄

distinct eigenvalues of the generating function. We can expand
(28) in terms of its roots,



{si}
M (u) =

M̄∑
l=0

(−1)l el (ω
s1ε1, . . . , ω

sM̄ εM̄ )ul , (29)

where el (ωs1ε1, . . . , ω
sM̄ εM̄ ) is the lth elementary symmetric

polynomial in {ωs1ε1, . . . , ω
sM̄ εM̄} [32].

Since u is arbitrary, applying (14) to a eigenvector with
eigenvalue 


{si}
M (u) yields the eigenvalues q(l )

{si} of the charges

H (l )
M , i.e.,

q(l )
{si} = el (ω

s1ε1, . . . , ω
sM̄ εM̄ ), l = 1, . . . , M̄. (30)

In particular, the Hamiltonian (9) has the the spectrum with
the same form as (6),

−E {si} = q(1)
{si} = ωs1ε1 + ωs2ε2 + · · · + ωsL εM̄ . (31)

The spectrum of (9) is thus determined by the roots of the
polynomial (23) [33]. For general values of the couplings {λi}
we expect a quite rich phase diagram (see Ref. [20] for the
case N = p = 2).

Criticality. Instead of considering the most general models
we are going to restrict ourselves to the case where we
have only two values for the coupling constants (1 and λ).
We consider the model where we alternate the block of p
couplings with the values (1 and λ), i.e.,

λkp+ j =
{

1, k odd,

λ, k even,
(32)

for k = 0, 1, 2, . . . and j = 1, . . . , p.
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For p = 1 we recover (3) with the couplings λ2i−1 =
1, λ2i = λ, and, for example, for p = 3 we have

−H(λ) = h1 + h2 + h3 + λ(h4 + h5 + h6)

+h7 + h8 + h9 + · · · . (33)

This model is gapped (noncritical) at the limiting values λ = 0
and λ → ∞, since the model reduces to a set of disjoint
p-interacting systems. On the other hand, by shifting the
variables hi → hi+p, we see that apart from the boundary con-
ditions the eigenenergies of the Hamiltonians with couplings
λ and 1/λ are related, i.e.,

H(λ) = λH
(

1

λ

)
, (34)

and thus the model is self-dual, and in the case we have
a single transition from λ = 0 and λ → ∞, it is the phase
transition point λ = λc = 1. This is the case for p = 1 [13]
and N = p = 2 [20], and for general values of p, as we argue
below.

In order to show the criticality at λ = λc = 1 we extend
the interesting procedure introduced in Ref. [20] for the case
p = 2, that enables us to find the roots of (26) in the bulk limit
M → ∞.

We consider lattice sizes that are multiples of (p + 1), i.e.,
M = (p + 1)M̄. In this case, the recurrence relation (22) for
the polynomials (26) gives

P(p)
M (z) = P(p)

M−(p+1)(z) −
p+1∑
i=1

(
p + 1

i

)
ziP(p)

M−i(p+1)(z),

with the condition P(p)
(p+1)l (z) = 0 for l � 0.

If we have a root zk of the M = (p + 1)M̄ polynomial, i.e.,
P(p)

(p+1)M̄
(zk ) = 0, this root should satisfy the M̄ + 1 coupled

difference equations of order p + 1,

P(p)
(p+1)(M̄− j)

(zk ) =
p+1∑
i=0

(
p + 1

i

)
zi

kP(p)
(p+1)[M̄− j−(i−1)]

(zk ), (35)

with j = 1, . . . , M̄ and initial conditions

P(p)
(p+1)M̄

(zk ) = P(p)
(p+1)l (zk ) = 0, l = 1, . . . , p. (36)

The ansatz

P(p)
(p+1)(M̄− j)

(zk ) = μM̄+p−1− j z1− j
k , j = 1, . . . , M̄, (37)

gives the characteristic equation

(μ + 1)p+1 − z−1
k μp = (μ − μ1) · · · (μ − μp+1) = 0. (38)

The general solution of (35) is then given by a combination of
the (p + 1) roots μi of the characteristic equation

P(p)
(p+1)(M̄− j)

(zk ) =
p+1∑
i=1

Aiz
1− j
k μ

M̄+p−1− j
i , (39)

where Ai (i = 1, . . . , p + 1) are going to be fixed by (36), i.e.,

p+1∑
i=1

Aiμ
M̄+p−1
i = 0,

p+1∑
i=1

Aiμ
p−l−1
i = 0, l = 1, . . . , p,

(40)
where we set Ap+1 = 1.

We could not find a closed form for the roots of the
polynomial (38). However, surprisingly, one can find at least
one simple root. It is parametrized by the up to now free
parameter pk ,

μ1 =
sin

( ppk

p+1

)
sin

(
pk

p+1

)eipk , z−1
k = sinp+1(pk )

sin
(

pk

p+1

)
sinp

( ppk

p+1

) . (41)

Then, using Viète’s formulas [34],

ei(μ1, μ2, . . . , μp+1) = (−1)i

[(
p + 1

i

)
− z−1

k δi,1

]
, (42)

for i = 1, . . . , p + 1, we can relate all the other roots to pk .
By means of (41), the quasiparticle energies in (31) can be
written as

εk = sin
p+1
N (pk )

sin
1
N

(
pk

p+1

)
sin

p
N

( ppk

p+1

) , k = 1, . . . , M̄. (43)

Note that the second Eq. (40) fixes the amplitudes Ai in
terms of the roots μi = μi(pk ). The first equation in (40) then
gives a quantization condition for pk , which, except for p = 1,
does not seem to have a closed solution. For p = 1, one has

pk = π

M̄ + 1
k, k = 1, . . . , M̄, (44)

such that the density of roots in the limit M̄ → ∞ is �pk

�k = π

M̄ .
Based on numerical checks we conjecture that this result
generalizes to arbitrary p > 1, including the case p = 2 con-
sidered in Ref. [20].

The ground-state energy per site in the bulk limit. The
ground-state energy of the Hamiltonians given by (9) with
general p is obtained by taking all the roots εk with si = 0
in (31). From the conjecture for the density of roots in the
M̄ → ∞ limit,

�pk

�k
= π

M̄
= (p + 1)π

M
, (45)

we have

e(p)
∞ ≡ −E0

M
= − 1

M

M̄∑
k=1

εk = − 1

(p + 1)π

∫ π

0
ε(p)dp. (46)

By means of the change of variables sin ( pk

p+1 ) = sin ( π
p+1 )

√
t ,

the integral (46) can be identified as an integral of Euler type
in (p − 1) variables which is the integral representation of the
Lauricella hypergeometric series F (p−1)

D [35]. The cases p =
1, 2, 3 reduce to other known functions. For example, we have

e(1)
∞ = −2

2
N −1�

(
1
N + 1

2

)
√

π
(

1
N + 1

) , (47)

e(2)
∞ = − 3

3
N + 1

2 �
(

3
N + 1

)
2

2
N +2√π�

(
3
N + 3

2

) 2F1

(
1
2

1
N + 1

2
3
N + 3

2
;

3

4

)
, (48)

e(3)
∞ = − 2

8
N − 3

2 �
(

4
N + 1

)
3

3
N
√

π�
(

4
N + 3

2

)
×F1

(
1

2
;

1

2
− 2

N
,

3

N
;

4

N
+ 3

2
;

1

2
,

2

3

)
, (49)
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TABLE I. Ground-state energy per site −e(p)
∞ and dynamical

critical exponent zc for the models (9) and (12), for some values of
N and p. The third column shows the extrapolated (M̄ → ∞) results
obtained from the roots of (26) up to M̄ = 500. The exact results
(47)–(50) are shown in the fourth column. The estimator z(p)

M (see
text) and the exact results for the dynamical critical exponent are
shown in the last two columns.

N p −e(p)
∞ : roots −e(p)

∞ : exact z(p)
M zc

2 1 0.63661977 0.63661977 1.0000000 1
2 2 0.50000000 0.50000000 1.4999998 3/2
2 3 0.42441318 0.42441318 1.9999994 2
2 4 0.37500000 0.37500000 2.4999996 5/2

3 1 0.56604660 0.56604668 0.6666667 2/3
3 2 0.41349667 0.41349667 0.9999999 1
3 3 0.33333331 0.33333333 1.3333331 4/3
3 4 0.28302332 0.28302334 1.6666663 5/3

4 1 0.53935231 0.53935260 0.5000000 1/2
4 2 0.38137983 0.38137988 0.7499999 3/4
4 3 0.30010545 0.30010544 0.9999998 1
4 4 0.25000000 0.25000000 1.2499997 5/4

where F1 is the Appel function,

e(4)
∞ = −5

5
N sin

(
π
5

)
�

(
5
N + 1

)
2

8
N +1√π�

(
5
N + 3

2

)
×F (3)

D

(
1

2
;

1

2
+ 2

N
,− 5

N
,

4

N
;

5

N
+ 3

2
; x1, x2, x3

)
, (50)

where F (3)
D is the Lauricella function with three variables at

x1 = 1
2+ 2√

5

, x2 = 2
3+√

5
, and x3 = 1

1+ 1√
5

. We note that for N =
2, the integrals converge to

e(p)
∞ = −�

(
1
2 + p

2

)
�

(
1 + p

2

) for N = 2. (51)

The numerical solutions for the roots of (26) are simple to
obtain numerically. In the third column of Table I we present
the values of e(p)

∞ obtained directly from the roots up to M̄ =
500. The results are the extrapolated ones. The agreement with
the exact results obtained from the integral (46), shown in the
fourth column of Table I, is remarkable.

The first excited state E1 is obtained by the addition of
all the roots in (31) with si = 0 except for the largest one
(sM̄ = 1), where pk = pM̄ = π − a

M , with a being a harmless

constant. The real part of the energy gap behaves, as M → ∞,

�
(p)
M = E1 − E0 = (1 − ω)ε(pM̄ ) ≈

( a

M

)zc

, (52)

where zc = (p + 1)/N is the dynamical critical exponent.
The case N = 2 and p = 1 gives the dynamical exponent of
the conformally invariant quantum Ising chain (zc = 1), and
the case N = p = 2 recovers the result zc = 3/2 obtained in
Ref. [20]. For the sake of illustration, we also show in the
fifth column of Table I the extrapolated results of the esti-
mator z(p)

M = − log (�(p)
M )/ log(M ) of the dynamical critical

exponent for some values of N and p. These results were
obtained from the numerical solution of the largest root of
the polynomial (26). The agreement with the predicted result
zc = (p + 1)/N (last column) is also remarkable.

The result (52) then implies that the Hamiltonians (9) with
the couplings (32) and general values of p undergo a contin-
uous phase transition at λ = λc = 1 with a dynamical critical
exponent zc = (p + 1)/N , also shown in the last column of
Table I.

Discussion. We have introduced a family of integrable
quantum spin chains with multispin interactions and which
have a free fermionic or parafermionic spectrum. We believe
that many interesting directions of investigation can be pur-
sued. First, it would be important to prove the conjectures
we have made, in particular the product formula (20). Next,
one should try to construct the so-called parafermionic op-
erators which satisfy a generalized Clifford algebra [8,10–
12,20]. This is one step towards the computation of correlation
functions for this family of models. It is also very interesting
to compute the entanglement entropy, initially for N = 2 (in
this case, the Hamiltonian is Hermitian) and arbitrary p, and
study the role of the polynomials (23) along the lines of
Ref. [36]. Another problem is to study the random coupling
case. We also think it is worth exploiting the connections
between the algebra (8) and the algebras of Onsager and
of Temperley-Lieb, as well as trying to consider the models
within the quantum inverse scattering method. Going beyond
the free boundary case considered here, it is challenging to
consider the Hamiltonians with periodic boundary conditions
(see Ref. [37] for p = 1, N = 2); in this case, the product
formula (20) is no longer valid, and needs to be generalized.
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